Beilinson--Bloch--Kato Conjecture and Iwasawa theory for Rankin--Selberg motives

Speaker:Yichao Tian (MCM, CAS)
Schedule:Fri., 16:00-17:00, Mar. 22. 2024
Venue:Lecture Hall C548, Shuangqing Complex Building A(清华大学双清综合楼A座C548报告厅); Zoom Meeting ID: 271 534 5558 Passcode: YMSC
Date:2024-03-22

Abstract: 

Beilinson--Bloch--Kato conjecture and Iwasawa main conjecture can be viewed as generalizations and p-adic analogues of the celebrated BSD conjecture for elliptic curves. These conjectures predict deep relations between the L-function (or its p-adic analogue) of a motive with some arithmetic invariants.  In this talk, I will first start with some review on more classical results and basic ideas in the case of elliptic curves, and then I will discuss some recent progress of those two conjectures for Rankin--Selberg motives of type GL_n*GL_{n+1} over a CM field. This talk is based on my joint work with Yifeng Liu, Liang Xiao, Wei Zhang and Xinwen Zhu.


Speaker Website: http://www.mcm.ac.cn/people/members/202108/t20210820_658104.html 


Video: http://archive.ymsc.tsinghua.edu.cn/pacm_lecture?html=Beilinson_Bloch_Kato_Conjecture_and_Iwasawa_theory_for_Rankin_Selberg_motives.html