Research Areas

Inverse Problems and Wave Imaging; Partial Differential Equations; Mathematical Materials Science; Asymptotic and Spectral Analysis; Finite element method; Numerical Analysis and Scientific Computing.


Education

• PhD in Mathematics, 06/2019

  Hong Kong Baptist University, Hong Kong, HKSAR, China

• B.S. in Mathematics, 07/2013; M.S. in Mathematics, 03/2016

   Beijing Institute of Technology, Beijing, China


Research experience

Assistant Professor, Yau Mathematical Sciences Center, Tsinghua University, 2023 -

Research Assistant Professor, Department of Mathematics, The Chinese University of Hong Kong, 2020 - 2023

Post-doctoral fellowship, Department of Mathematics, The Chinese University of Hong Kong, 2019 – 2020


Honors & Awards

2024 Best Presentation Award, at 8th Young Scholar Symposium, East Asia Section of Inverse Problems International Association

2022 NSFC/RGC Joint Research Scheme(Co-I)

2021 Hong Kong Mathematical Society Best Thesis Award 2021 (Only two awardees in 2021).

2016--2019 Awarded the Hong Kong PhD Fellowships for three years by Research Grants Council of Hong Kong Government

2018 Yakun Scholarship Scheme



Publications 

Preprints

[1] Y. Deng, L. Kong, H. Li, H. Liu and L Zhu, Mathematical theory on multi-layer high contrast acoustic subwavelength resonators, arXiv:2411.08938.

[2] H. Li and L. Xu, Resonant modes of two hard inclusions within a soft elastic material and their stress estimate, arXiv:2407.19769.

[3] L. Chesnel, H. Haddar, H. Li and J Xiao, Examples of non-scattering inhomogeneities, arXiv:2406.17527.

[4] H. Li and J. Zou, Mathematical theory on dipolar resonances of hard inclusions within a soft elastic material, arXiv:2310.12861.


Reprints

[1] Y. Guo, H. Li and X. Wang, A novel time-domain direct sampling approach for inverse scattering problems in acoustics, SIAM J. Appl. Math., 84 (2024), 2152–2174.

[2] Y. H, H. Li, H. Liu and X. Wang, Invisibility enables super-visibility in electromagnetic imaging, ESAIM: Mathematical Modelling and Numerical Analysis 58(2) (2024): 545-569.

[3] H. Ammari, B. Li, H. Li and J. Zou, Fano resonances in all-dielectric electromagnetic metasurfaces, Multiscale Modeling & Simulation, A SIAM Interdisciplinary Journal,22 (2024), 476-526.

[4] H. Diao, H. Li, H. Liu and J. Tang, Spectral properties of an acoustic-elastic transmission eigenvalue problem with applications, Journal of Differential Equations, 371 (2023), 629–659.

[5] H. Li, H. Liu and J. Zou, Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation, Studies in Applied Mathematics, 150 (2023), no. 3, 726–754.

[6] H. Li, H. Liu and J. Zou, Minnaert resonances for bubbles in soft elastic materials,SIAM J. Appl. Math., 82(2022), 119–141.

[7] Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system, SIAM J. Math. Anal., 52 (2020), no. 2, 1786–1805.

[8] Y. Deng, H. Li and H. Liu, Spectral properties of Neumann-Poincar´e operator and anomalous localized resonance in elasticity beyond quasi-static limit, Journal of Elasticity, 140(2020), 213–242.

[9] E. Bl˚asten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincar´e eigenfunctions, ESAIM: Math. Model. Numer. Anal., 54 (2020), no. 3, 957-976.

[10] H. Li, Recent progress on the mathematical study of anomalous localized resonance in elasticity, Electronic Research Archive, 28 (2020), no. 3, 1257–1272.

[11] H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonance, Journal de Math´ematiques Pures et Appliqu´ees, 120 (2018), 195–219.

[12] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit, Proceedings of the Royal Society A, 474: 20180165.

[13] X. Wang, M. Song, Y. Guo, H. Li and H. Liu, Fourier method for identifying electromagnetic sources with multi-frequency far-field data, J. Comput. Appl. Math., 358 (2019), 279–292.

[14] H. Li, S. Li, H. Liu and X.Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications, ESAIM: Math. Model. Numer. Anal., 53 (2019), no. 4, 1351–1371.

[15] Y. Deng, H. Li and H. Liu, On spectral properties of Neumann-Poincare operator and plasmonic cloaking in 3D elastostatics, Journal of Spectral Theory, 9 (2019), no. 3, 767–789.

[16] H. Li and H. Liu, On three-dimensional plasmon resonance in elastostatics, Annali di Matematica Pura ed Applicata, 196 (2017), no. 3, 1113–1135.

[17] H. Li and H. Liu, On anomalous localized resonance for the elastostatic system, SIAM J. Math. Anal., 48 (2016), no. 5, 3322–3344.

[18] H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in R3, SIAM J. Appl. Math., 75 (2015), 1245–1260.


jieli@tsinghua.edu.cn