Tel.:
Office:Shuangqing Complex Bldg. B722
E-mail:cmchang(at)tsinghua.edu.cn
Personal Website:https://inspirehep.net/authors/1069713
Research Areas
Quantum Field Theory, String Theory, Quantum Gravity
Education
2008-2014 Ph.D Harvard University
Work Experience
2025 - Present Associate Professor, Tsinghua University
2019 - 2025 Assistant Professor, Tsinghua University
2016 - 2019 Postdoctoral Scholar, University of California, Davis
2014 - 2016 Postdoctoral Scholar, University of California, Berkeley
Publications
[1] C.-M. Chang, Y.-H. Lin, and H. Zhang, Fortuity in the D1-D5 system, arXiv:2501.05448.
[2] C.-M. Chang, Y. Chen, B. S. Sia, and Z. Yang, Fortuity in SYK Models, arXiv:2412.06902.
[3] C.-M. Chang, Witten index of BMN matrix quantum mechanics, arXiv:2404.18442.
[4] C.-M. Chang and Y.-H. Lin, Holographic covering and the fortuity of black holes, arXiv:2402.10129.
[5] C.-M. Chang, L. Feng, Y.-H. Lin, and Y.-X. Tao, Decoding stringy near-supersymmetric black holes, SciPost Phys. 16 (2024), no. 4 109, [arXiv:2306.04673].
[6] C.-M. Chang, Y.-H. Lin, and J. Wu, On 1/8-BPS black holes and the chiral algebra of N = 4 SYM, Adv. Theor. Math. Phys. 28 (2024), no. 7 2431–2489, [arXiv:2310.20086].
[7] C.-M. Chang and X. Shen, Disordered N = (2,2) supersymmetric field theories, SciPost Phys. 16 (2024), no. 5 140, [arXiv:2307.08742].
[8] C.-M. Chang, R. Liu, and W.-J. Ma, Split representation in celestial holography, arXiv:2311.08736.
[9] C.-M. Chang and W.-J. Ma, Missing corner in the sky: massless three-point celestial amplitudes, JHEP 04 (2023) 051, [arXiv:2212.07025].
[10] C.-M. Chang and Y.-H. Lin, Words to describe a black hole, JHEP 02 (2023) 109, [arXiv:2209.06728].
[11] C.-M. Chang, W. Cui, W.-J. Ma, H. Shu, and H. Zou, Shadow celestial amplitudes, JHEP 02 (2023) 017, [arXiv:2210.04725].
[12] C.-M. Chang, J. Chen, and F. Xu, Topological defect lines in two dimensional fermionic CFTs, SciPost Phys. 15 (2023), no. 5 216, [arXiv:2208.02757].
[13] C.-M. Chang, Y.-t. Huang, Z.-X. Huang, and W. Li, Bulk locality from the celestial amplitude, SciPost Phys. 12 (2022), no. 5 176, [arXiv:2106.11948].
[14] C.-M. Chang, S. Colin-Ellerin, C. Peng, and M. Rangamani, Disordered Vector Models: From Higher Spins to Incipient Strings, Phys. Rev. Lett. 129 (2022), no. 1 011603,
[arXiv:2112.09157].[15] C.-M. Chang, S. Colin-Ellerin, C. Peng, and M. Rangamani, A 3d disordered superconformal fixed point, JHEP 11 (2021) 211, [arXiv:2108.00027].
[16] C.-M. Chang and Y.-H. Lin, Lorentzian dynamics and factorization beyond rationality, JHEP 10 (2021) 125, [arXiv:2012.01429].
[17] C.-M. Chang and Y.-H. Lin, On exotic consistent anomalies in (1+1)d: A ghost story, SciPost Phys. 10 (2021), no. 5 119, [arXiv:2009.07273].
[18] C.-M. Chang, M. Fluder, Y.-H. Lin, and Y. Wang, Proving the 6d Cardy Formula and Matching Global Gravitational Anomalies, SciPost Phys. 11 (2021), no. 2 036, [arXiv:1910.10151].
[19] C.-M. Chang, M. Fluder, Y.-H. Lin, S.-H. Shao, and Y. Wang, 3d N=4 Bootstrap and Mirror Symmetry, SciPost Phys. 10 (2021), no. 4 097, [arXiv:1910.03600].
[20] C.-M. Chang, S. Colin-Ellerin, and M. Rangamani, Supersymmetric Landau-Ginzburg Tensor Models, JHEP 11 (2019) 007, [arXiv:1906.02163].
[21] C.-M. Chang, 5d and 6d SCFTs Have No Weak Coupling Limit, JHEP 09 (2019) 016, [arXiv:1810.04169].
[22] C.-M. Chang, D. M. Ramirez, and M. Rangamani, Spinning constraints on chaotic large c CFTs, JHEP 03 (2019) 068, [arXiv:1812.05585].
[23] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, Topological Defect Lines and Renormalization Group Flows in Two Dimensions, JHEP 01 (2019) 026, [arXiv:1802.04445].
[24] C.-M. Chang, S. Colin-Ellerin, and M. Rangamani, On Melonic Supertensor Models, JHEP 10 (2018) 157, [arXiv:1806.09903].
[25] C.-M. Chang, M. Fluder, Y.-H. Lin, and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039, [arXiv:1712.10313].
[26] C.-M. Chang, M. Fluder, Y.-H. Lin, and Y. Wang, Spheres, Charges, Instantons, and Bootstrap: A Five-Dimensional Odyssey, JHEP 03 (2018) 123, [arXiv:1710.08418].
[27] C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP 08 (2017) 128, [arXiv:1705.05392].
[28] C.-M. Chang, O. Ganor, and J. Oh, An index for ray operators in 5d En SCFTs, JHEP 02 (2017) 018, [arXiv:1608.06284].
[29] C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP 10 (2016) 068, [arXiv:1604.01774].
[30] C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the Semiclassical Limit, JHEP 08 (2016) 056, [arXiv:1510.02464].
[31] C.-M. Chang, Y.-H. Lin, Y. Wang, and X. Yin, Deformations with Maximal Supersymmetries Part 2: Off-shell Formulation, JHEP 04 (2016) 171, [arXiv:1403.0709].
[32] C.-M. Chang, Y.-H. Lin, Y. Wang, and X. Yin, Deformations with Maximal Supersymmetries Part 1: On-shell Formulation, arXiv:1403.0545.
[33] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, Little String Amplitudes (and the Unreasonable Effectiveness of 6D SYM), JHEP 12 (2014) 176, [arXiv:1407.7511].
[34] C.-M. Chang, Higher Spin Holography. PhD thesis, Harvard U. (main), 2014.
[35] C.-M. Chang, A. Pathak, and A. Strominger, Non-Minimal Higher-Spin DS4/CFT3, arXiv:1309.7413.
[36] C.-M. Chang and X. Yin, A semilocal holographic minimal model, Phys. Rev. D 88 (2013), no. 10 106002, [arXiv:1302.4420].
[37] C.-M. Chang and X. Yin, 1/16 BPS states in N= 4 super-Yang-Mills theory, Phys. Rev. D 88 (2013), no. 10 106005, [arXiv:1305.6314].
[38] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009, [arXiv:1207.4485].[39] C.-M. Chang and X. Yin, Correlators in WN Minimal Model Revisited, JHEP 10 (2012) 050,
[arXiv:1112.5459].
[40] C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS3 and Its CFT Dual, JHEP 10 (2012) 024, [arXiv:1106.2580].
[41] C.-M. Chang and X. Yin, Families of Conformal Fixed Points of N=2 Chern-Simons-Matter Theories, JHEP 05 (2010) 108, [arXiv:1002.0568].
[42] C.-M. Chang, W.-C. Shen, C.-Y. Lai, P. Chen, and D.-W. Wang, Interaction-induced first-order correlation between spatially separated one-dimensional dipolar fermions, Phys. Rev. A 79 (May, 2009) 053630, [arXiv:0807.1166].