Abstract:
In 1917, Soichi Kakeya asked what is the minimum area of a region in which a needle of unit length can be turned through 360 degrees. Surprisingly, Besicovitch provided in 1919 an example that the area could be arbitrarily small! But how small could it be? This question leads to the study of the Kakeya sets, a subject in the intersection of geometric measure theory and Fourier analysis.
A Kakeya set in the n-dimensional Euclidean space is a bounded subset that contains a unit line segment pointing in every direction. Kakeya set conjecture asserts that every Kakeya set has Hausdorff dimension n. We prove this conjecture in three dimensional space as a consequence of a more general statement about union of tubes. This is joint work with Zahl.
主讲人简介:
2011年获北京大学数学学士学位,2014年获巴黎综合理工学院工程师学位和巴黎第十一大学硕士学位,2019年获麻省理工学院博士学位。2021年6月完成在普林斯顿高等研究院的博士后研究工作,并于当年7月起任加州大学洛杉矶分校助理教授,2023年7月加入纽约大学柯朗数学科学研究所任副教授。
她在调和分析和几何测度论领域取得重要成果,多篇文章在Annals ofMathematics、Inventionesmathematicae等发表,2022年获得Maryam Mirzakhani新前沿奖,2023年获得ICCM最佳论文奖2025年9月,将任法国高等科学研究所终身教授。
