摘要:
层流非稳态边界层流动的研究对于理解从层流到湍流的过渡以及湍流的起源至关重要。然而,找到这一现象的解决方案具有重大挑战。在这项研究中,我们引入了一种新颖的变换方法,该方法使用相似变换将二维非稳态层流边界层方程转换为系数中不包含坐标x的单一偏微分方程。通过应用这种变换,我们成功地求得平板边界层流动的用Kummer函数表示的相似解。对于收缩边界层流动,我们求出了一个包括了冲击波和孤子波解的近似解析解,这二个解的叠加为边界层内存在孤子/类相干结构(SCS)提供了证据。此外,本文还探讨了二维和三维层流,以及三维湍流流动方程,发现它们都包含了相对于空间坐标的三阶导数。这一发现表明,所有粘性流体运动都有可能表现出孤子/类相干结构(SCS)。[参考文献:Bo Hua Sun, Similarity Solutions of a Class of Unsteady Laminar Boundary Layer, Phys. Fluids, 36, 083616 (2024); doi: 10.1063/5.0225957]
报告人介绍:
孙博华,中国科学院纳米能源与系统研究所资深研究员和PI。2010年10月入选南非科学院院士。于1989年获得兰州大学理学博士学位,清华大学博士后(1989.07-1991.07),荷兰代尔福特理工大学航天工程学院研究员(1991.08-1992.07),德国鲁尔大学土木工程学院洪堡学者(1992.08-1993.12), 南非开普敦大学工学院博士后(1993.07-1994.07), 南非半岛工学院机械工程系访问教授、讲师、教授(1994.08-2005.12), 南非开普半岛技术大学机械工程系教授、Senate(2006.01-2018.06) ,暨南大学理工学院教授、国际学院首任院长(2002-2008),西安建筑科技大学土木工程学院教授、力学技术研究院院长、首席科学家(2018.12-2023.12),现兼任南非斯泰伦博斯Stellenbosch大学Extraordinary Professor,曾兼任宁波大学包玉刚讲座教授(2018-2021)。主持过多项南非科技部和南非国家基金会的研究课题,发表学术论文 150 余篇,编著出版《量纲分析与 Lie 群》、《Toroidal Shells》,译著《普朗特传》等。
研究方向:
主要从事连续统物理、流体力学基本问题和科学问题标度律、非协调位移场的微分几何结构、广义变分原理的热力学基础、三体问题开普勒周期律猜想、多米诺传播速度标度律、蒲公英气动摩阻问题的标度律、湍流现象、非定常边界层相似解、仿生与高熵(超材料)结构力学(密堆积卡扣力学、编织结构与膜结构力学、充气折纸结构力学、书类多层结构力学)、以及力学能量捕获技术等方面。
部分论著:
[1] Bohua Sun, Kepler’s third law of n-body periodic orbits in a Newtonian gravitation field, Sci. China-Phys. Mech. Astron. 61:054721 (2018).
[2] Bohua Sun, Classical and quantum Kepler.s third law of N-Body System, Results in Physics 13 (2019) 102144.
[3] Bohua Sun, Scaling laws of compressible turbulence, Appl. Math. Mech.-Engl. Ed., 2017,38(6): 765-778
[4] Bohua Sun, Scaling laws of aquatic locomotion, Sci. China-Phys. Mech. Astron., 60(10), 104711(2017).
[5] Bohua Sun, Incompatible deformation field and Riemann curvature tensor, Appl. Math. Mech.-Engl. Ed., 2017,38(3):311-332
[6] Bohua Sun, A new additive decomposition of velocity gradient, Physics of Fluids, 31, 061702 (2019).
[7] Bohua Sun, Scaling law for the propagation speed of domino toppling. AIP Advances. 10(9):095124 (2020).
[8] Bohua Sun. Explicit representation for the SO(3) rotation tensor of deformable bodies. Applied Mathematics Letters, 2021, 111: 106606.
[9] Bohua Sun, Geometry-induced rigidity in elastic torus from circular to oblique elliptic cross-section. International Journal of Non-Linear Mechanics, 2021, 135: 103754.
[10] Bohua Sun, Gol’denveizer’s problem of elastic torus, Thin-Walled Structures, 2022, 171: 108718.
[11] Bohua Sun, Small symmetrical deformation and stress analysis of catenary shells of revolution, Acta Mechanica Sinica, 2022, 38:421425.
[12] Bohua Sun, Turbulent Poiseuille flow modeling by enhanced Prandtl-van Driest mixing length, Acta Mechanica Sinica, 2023, 39:322066.
[13] Bohua Sun, An Equivalent Form of The Navier-Stokes Equations, Acta Mechanica Sinica, 2023: 322241.
[14] Bohua Sun, On Chen’s question to the Hu-Washizu three-field functional and variational principle, Applied Mathematics and Mechanics, 2022, 43(4): 537-546.
[15] Bohua Sun, Nonlinear elastic deformation of Mindlin torus, Communications in Nonlinear Science and Numerical Simulation, 2022, 114: 106698.
[16] Bohua Sun, Small symmetrical deformation of thin torus with circular cross-section, Thin-Walled Structures, 2021, 163: 107680.
[17] Bohua Sun, Hertz elastic dynamics of two colliding elastic spheres, Results in Physics, 2021, 30: 104870.
[18] Bohua Sun, The temporal scaling laws of compressible turbulence. Modern Physics Letters B, Vol. 30, No. 23 (2016) 1650297.
[19] Bohua Sun and Xiao-Lin Guo, Drag scaling law and parachute terminal velocity of the dandelion, AIP Advances 2023,13:085305.
[20] Nanxian Chen and Bohua Sun, Note on Divergence of the Chapman-Enskog Expansion for Solving Boltzmann Equation, 2017 Chin. Phys. Lett. 34 020502.
[21] Bohua Sun, Similarity Solutions of a Class of Unsteady Laminar Boundary Layer, Phys. Fluids, 36, 083616 (2024); doi: 10.1063/5.0225957