主讲人 Speaker:沈佐伟
时间 Time: Fri. 4:00-5:00 pm,2021-12-3
地点 Venue:Zoom Meeting ID:849 963 1368 Passcode:YMSC
The primary task of many applications is approximating/estimating a function through samples drawn from a probability distribution on the input space. The deep approximation is to approximate a function by compositions of many layers of simple functions, that can be viewed as a series of nested feature extractors. The key idea of deep learning network is to convert layers of compositions to layers of tuneable parameters that can be adjusted through a learning process, so that it achieves a good approximation with respect to the input data. In this talk, we shall discuss mathematical theory behind this new approach and approximation rate of deep network; we will also show how this new approach differs from the classic approximation theory, and how this new theory can be used to understand and design deep learning network.
沈佐伟,新加坡国立大学陈振传百年纪念教授,主要研究方向是数据科学中的数学理论及其应用。研究领域包括逼近与小波理论、图像科学、压缩感知及机器学习等。作为国际著名数学家,沈佐伟教授先后受邀在2010年国际数学家大会和2015年国际工业与应用数学大会上作报告。沈佐伟教授是新加坡国家科学院院士,发展中国家科学院院士,美国数学会会士(AMS Fellow),美国工业与应用数学会会士(SIAM Fellow)。