任课教师 Speaker:余成龙
时间 Time: 周一、三 15:20-16:55 2021-2-22 ~ 5-14
地点 Venue:宁斋 W11
Cubic
hypersurfaces provide some fundamental examples in algebraic geometry. In this
course we will start from cubic surfaces together with the geometry of 27
lines. We introduce Fano scheme of lines and rationality. Then we focus on the
Hodge theory of cubic 3-folds and cubic 4-folds, including the following
topics: irrationality of cubic 3-folds via intermediate Jacobians, hyperKahler
geometry related to cubic 4-folds, global Torelli theorems, integrable systems
from cubics. You will see that Hodge theory is a powerful tool in algebraic
geometry.
Some
basic knowledge of algebraic geometry and Hodge theory.
D. Huybrechts "The geometry of cubic
hypersurfaces"
I. V. Dolgachev "Classical
Algebraic Geometry: A Modern View"
C. H. Clemens and P. A. Griffiths
"The Intermediate Jacobian of the Cubic Threefold"
A. Beauville "Les singularites du
diviseur Θ de la jacobienne intermediaire de l’hypersurface cubique dans
P^4"
A. Beauville and R. Donagi "La
variété des droites d'une hypersurface cubique de dimension 4"
C. Voisin "Théorème de Torelli pour
les cubiques de P^5”
B. Hassett "Special Cubic
Fourfolds"
R. Laza, “The moduli space of cubic
fourfolds”
R. Laza, “The moduli space of cubic
fourfolds via the period map”
E. Looijenga "The period map for
cubic fourfolds”