研究领域
研究领域为代数表示论。一方面关注Hecke代数、q-Schur代数及其相关代数(例如:Khovanov-Lauda-Rouquier代数)的表示理论,另一方面关注τ-倾斜理论、淤积(Silting)理论等在李理论中的一些性质,例如考虑Hecke代数、q-Schur代数的τ-倾斜有限性、淤积箭图的对称性等等。
教育背景
博士,大阪大学,2018.4-2022.3
硕士,上海财经大学,2015.9-2018.1
本科,滨州学院,2011.9-2015.6
荣誉与奖励
1. 2023 -- 2025: 第73批面上资助,中国博士后科学基金会
2. 2022 -- 2024: 博士后国际交流计划-引进项目,中国博士后科学基金会
3. 2022 -- 2024: 水木学者计划,清华大学
4. 2022: 优秀益友学者,清华大学求真书院
5. 2020 -- 2022: JSPS DC2 科研奖励费,日本学术振兴会
发表论文
1. Representation type of cyclotomic quiver Hecke algebras of affine type A, (with Susumu Ariki and Linliang Song), published by Advances in Mathematics, 2023. (https://doi.org/10.1016/j.aim.2023.109329)
2. τ-tilting finiteness of two-point algebras II, published by Journal of Algebra and its Applications, 2023. (https://doi.org/10.1142/S0219498825500549)
3. A symmetry of silting quivers, (with Takuma Aihara), published by Glasgow Mathematical Journal, 2023. (https://doi.org/10.1017/S0017089523000204)
4. On τ-tilting finiteness of the Schur algebra, published by Journal of Pure and Applied Algebra, 2022. (https://doi.org/10.1016/j.jpaa.2021.106818)
5. On τ-tilting finite simply connected algebras, published by Tsukuba Journal of Mathematics, 2022. (https://doi.org/10.21099/tkbjm/20224601001)
6. τ-tilting finiteness of two-point algebras I, published by Mathematical Journal of Okayama University, 2022. (http://doi.org/10.18926/mjou/62799)
7. Report on the finiteness of silting objects, (with Takuma Aihara, Takahiro Honma, Kengo Miyamoto), published by Proceedings of the Edinburgh Mathematical Society, 2021. (https://doi.org/10.1017/S0013091521000109)
8. On τ-tilting finite Borel-Schur algebras, 2023. See: arXiv:2310.00358.
9. On τ-tilting finiteness of symmetric algebras of polynomial growth, 0-Hecke and 0-Schur algebras, (with Kengo Miyamoto), 2022. See: arXiv:2207.03079.
10. On τ-tilting modules over trivial extensions of gentle tree algebras, (with Yingying Zhang), 2022. See: arXiv:2204.06418.
11. On τ-tilting finiteness of blocks of Schur algebras, (with Toshitaka Aoki), 2021. See: arXiv:2110.02000.
12. Representation-finite tensor product of simply connected algebras, (with Kengo Miyamoto), 2021. See: arXiv:2106.06423.