几何表示论 Geometric representation theory
教育背景
2002-2005 清华大学 Tsinghua University,
2005-2008 巴黎高等师范学校 Ecole Normale Supérieure de Paris,
2008-2011 巴黎第七大学 Université Paris Diderot,博士
工作经历
2017至今 清华大学 Tsinghua University, 教授
2012-2013 美国麻省理工学院 MIT, C.L.E. Moore Instructor
2011-2017 法国国家科学研究中心 CNRS(France), Chargé de Recherche
荣誉与奖励
2017 求是杰出青年学者奖
2019 ICCM数学奖 银奖
2022 国际数学家大会45分钟报告人
发表论文
[11]. R. Bezrukavnikov, P. Boixeda-Alvarez, P. Shan, E. Vasserot, A geometric realization of the center of the small quantum group, preprint, https://arxiv.org/abs/2205.05951
[10]. P. Shan, M. Varagnolo, E. Vasserot, Coherent categorification of quantum loop algebras:the SL(2) case, Crelle's Journal, to appear.
[9]. C. Bonnafé, P. Shan, On the cohomology of Calogero-Moser spaces, IMRN 4 (2020),1091–1111.
[8]. H. Bao, P. Shan, W. Wang, B. Webster, Categorification of quantum symmetric pairs I. Quantum Topology 9. (2018), 643–714.
[7]. P. Shan, M. Varagnolo, E. Vasserot, On the center of Quiver Hecke algebras, Duke Math J. 166 no.6 (2017), 1005–1101.
[6]. R. Rouquier, P. Shan, M. Varagnolo, E. Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras, Invent. Math. 204 (2016) no. 3, 671–786.
[5]. P. Shan, M. Varagnolo, E. Vasserot, Koszul duality of affine Kac-Moody algebras and cyclotomic rational double affine Hecke algebras, Adv. Math. 262 (2014), 370–435.
[4]. P, Shan, E. Vasserot, Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc. 25(2012), no.4, 959-1031.
[3]. P. Shan, Graded decomposition matrices of v-Schur algebras via Jantzen filtration, Represent. Theory 16(2012), 212-269.
[2]. P. Shan, M. Varagnolo, E. Vasserot, Canonical bases and affine Hecke algebras of type D, Adv. Math. 227(2011) no.1, 267-291.
[1]. P. Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Annales scientifiques de l'ENS 44, fascicule 1 (2011), 147-182.