ENGLISH
首页
关于我们
中心简介
行政团队
中心动态
访问指南
数学学人
领军学者
专业委员会
中心教师
博士后
来访学者
人才培养
国内博士招生
海外博士招生
暑期学校
中学夏令营
在读研究生
学生动态
人才跟踪
学术日历
学术活动
中心公开课
短期课程
讨论班
学术报告
会议论坛
科学研究
研究团队
双有理几何研究团队
弦论研究团队
学术资源
招募英才
教师招聘
博士后招聘
行政招聘
Caucher Birkar
教授
电话:
办公室:静斋315
邮箱:
个人主页:https://www.dpmms.cam.ac.uk/~cb496/research.html
研究领域
双有理几何
教育背景
2001-2004 博士 诺丁汉大学
工作经历
英国剑桥大学 教授
清华大学丘成桐数学科学中心 教授
荣誉与奖励
2019年 英国皇家学会会员
2018年 菲尔兹奖得主
2010年 菲利普·莱弗休姆奖
2010年 Prize of the Fondation Sciences Mathématiques de Paris
发表论文
(1) C. Birkar, Boundedness and volume of generalised pairs. arXiv:2103.14935v2.
(2) C. Birkar, G. Di Cerbo, R. Svaldi; Boundedness of elliptic Calabi-Yau varieties with a rational section.
arXiv:2010.09769v1.
(3) C. Birkar, On connectedness of non-klt loci of singularities of pairs. arXiv:2010.08226v1.
(4) C. Birkar, Y. Chen, Singularities on toric fibrations. arXiv:2010.07651v1.
(5) C. Birkar, K. Loginov, Bounding non-rationality of divisors on 3-fold Fano fibrations. arXiv:2007.15754v1.
(6) C. Birkar, Generalised pairs in birational geometry. arXiv:2008.01008v2.
(7) C. Birkar, Geometry and moduli of polarised varieties.. arXiv:2006.11238v1 (2020).
(8) C. Birkar, Log Calabi-Yau fibrations. arXiv:1811.10709v2.
(9) C. Birkar, Singularities of linear systems and boundedness of Fano varieties. Ann. of Math, 193, No. 2
(2021), 347–405.
(10) C. Birkar; Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190, No. 2 (2019), 345–463.
(11) C. Birkar, Y. Chen, L. Zhang, Iitaka’s Cn,m conjecture for 3-folds over finite fields. Nagoya Math. J., (2016), 1-31.
(12) C. Birkar, J. Waldron; Existence of Mori fibre spaces for 3-folds in char p. Adv. in Math. 313 (2017), 62-101.
(13) C. Birkar, D.-Q. Zhang; Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Pub. Math. IHES
123 (2016), 283-331.
(14) C. Birkar; The augmented base locus of real divisors over arbitrary fields. Math Ann. 368 (2017), no. 3-4, 905-921.
(15) C. Birkar, J.A. Chen; Varieties fibred over abelian varieties with fibres of log general type. Adv. in Math. 270 (2015),
206-222.
(16) C. Birkar; Existence of flips and minimal models for 3-folds in char p. Annales Scientifiques de l’ENS,
49 (2016), 169-212.
(17) C. Birkar; Singularities on the base of a Fano type fibration. J. Reine Angew Math., 715 (2016), 125-142.
(18) C. Birkar, Y. Chen; Images of manifolds with semi-ample anti-canonical divisor. J. Alg. Geom., 25 (2016), 273-287.
(19) C. Birkar, Z. Hu; Log canonical pairs with good augmented base loci. Compos. Math, 150, 04, (2014), 579-592.
(20) C. Birkar, Z. Hu; Polarized pairs, log minimal models, and Zariski decompositions. Nagoya Math. J.
Volume 215 (2014), 203-224.
(21) C. Birkar; Existence of log canonical flips and a special LMMP. Pub. Math. IHES. Volume 115 (2012), 1, 325-368.
(22) C. Birkar; On existence of log minimal models and weak Zariski decompositions. Math Ann., Volume
354 (2012), Number 2, 787-799.
(23) C. Birkar; On existence of log minimal models II. J. Reine Angew Math. 658 (2011), 99-113.
(24) C. Birkar; The Iitaka conjecture C n,m in dimension six. Compos. Math. 145 (2009), 1442-1446.
(25) C. Birkar; On existence of log minimal models. Compos. Math. 146 (2010), 919-928.
(26) C. Birkar; P. Cascini; C. Hacon; J. M c Kernan; Existence of minimal models for varieties of log general
type. J. Amer. Math. Soc. 23 (2010), 405-468.
(27) C. Birkar; V.V. Shokurov; Mld’s vs thresholds and flips. J. Reine Angew. Math. 638 (2010), 209-234.
(28) C. Birkar; Ascending chain condition for log canonical thresholds and termination of log flips. Duke
Math. Journal, volume 136, no 1, (2007), 173-180.×××