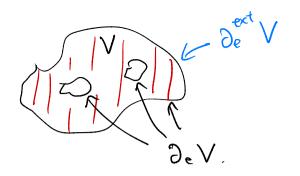
On the geometry of the growing ball of first-passage percolation
Based on joint works with M. Damron, J. Gold, J. Hanson, X. Shen)
First-passage percolation
Consider
$$\mathbb{Z}^d$$
 ($d \ge 2$) with nearest-neighbor edges \mathbb{E}^d ,
Let (te)ee \mathbb{E}^d be fild nonnegative weights (passage times)
For a path \mathcal{N} , define $T(\mathcal{N}) = \sum_{e \in \mathcal{T}} te$
For x, y $\in \mathbb{Z}^d$, define
 $T(x,y) = \inf \{T(\mathcal{N}) : \mathcal{N} \text{ is a path from } x \text{ to } y \}$
Easy to verify : T is a pseudometric.

Geometry of the metric space
$$(\mathbb{Z}^{d}, T)$$
?
B(t) = $\{x \in \mathbb{Z}^{d} : T(0, x) \leq t\}$.
Shape theorem (Cox - Durrett).
Define B(t) = B(t) + [0, 1)^{d}. If $\mathbb{P}(te=0) < Pe$ and
 $\mathbb{E}Y^{d} < \infty$, where $Y = \min \{t_{1}, ..., t_{2d}\}$ and t_{i} 's are iid copies
of te, then $\exists a$ nonrondom, compact, convex set \mathbb{B} with
nonempty interior s.t. $\forall e > 0$,
 $\mathbb{P}((1-e)\mathbb{B} \subset \frac{1}{EB(t)} \subseteq (1+e)\mathbb{B}$ $\forall |arge t) = 1$.

A weaker version (Kesten):
If
$$P(te = 0) < pe$$
, then $\exists B$ with the above properties s.t.
a.s., $Vol((\pm B(t) \Delta B)) \rightarrow 0$ as $t \rightarrow \infty$.
Not too much is known about B .
Also interesting: The geometry of $B(t)$ for large t ?
We will focus on the boundary and holes of $B(t)$.
 $\underline{Petinition} \quad V \text{ vertex set}.$
 $\overline{\partial_e V} = f\{x,y\} \in E^d: x \in V, y \notin V\}.$
 $\overline{\partial_e^{xt}} V = f\{x,y\} \in E^d: x \in V, y \notin V, y \iff without \}$



Want to study!
$$\partial e^{B(t)}$$
, $\partial e^{e^{xt}}B(t)$.
What is the size of $\partial e^{B(t)}$? $\partial e^{e^{xt}}B(t)$?
Expect: the order should be $\sim t^{d-1}$.
Theorem (Damron - Hanson - L., '18). Suppose that $P(te=0) < pe$.
Upper bound: $\exists C > 0$ s.t. a.s.,
Upper bound: $\exists C > 0$ s.t. a.s.,
 $\lim_{t \to \infty} \frac{Leb(\{s \in [0, t] : \# \partial_e B(s) \ge a s^{d-1} \mathbb{E}[Y \land s]\})}{t} \le \frac{C}{a}$

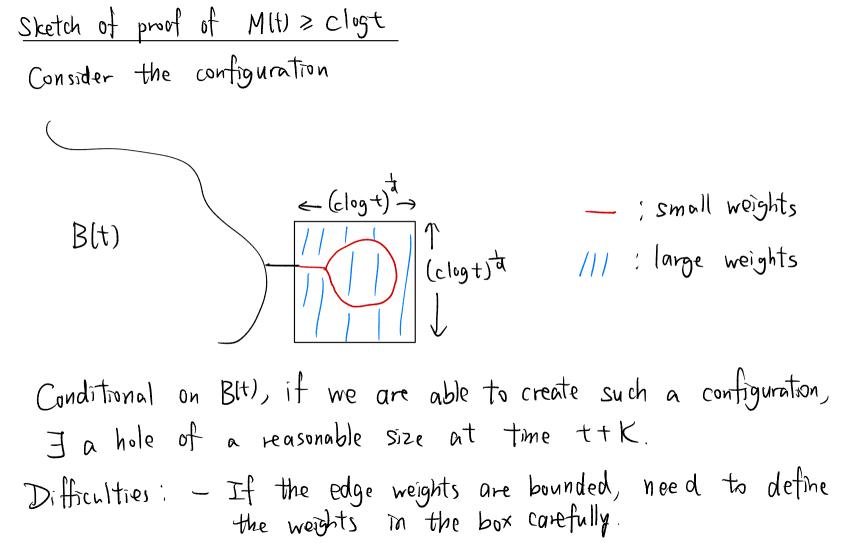
· E[1/t]? tIP(1/>t)? - If EY < , then E[YAt] < EY ⇒#20 Blt) < Ct^{d-1} for most times t. max {t P(Y>+), 1} ≥c ⇒ # ∂eBlt) ≥ ct^{d-1} for all large t - If $\mathbb{P}(\gamma > t) > \frac{1}{t^{1-\alpha}}$, $\alpha \in (0, 1)$, then $c t^{d-1+\alpha} \leq \# \partial_e B(t) \leq C t^{d-1+\alpha}$ Can be $\gg t^{d-1}$ But # 2° Bit) ~ td-1 -> Many/large holes when Y has a heavy tail.

Theorem (DHL, '18). If we assume that B is uniformly curvature
(not proved, but widely believed to hold for a large class of
distributions), and te has an exponential moment, then

$$\exists C_1, C_2 > 0$$
 s.t. $a \cdot s$. $\forall large t$.
 $\# \partial_e B(t) \leq C, t^{d-1} (\log t)^{C_2}$.
Holes in B(t)
M(t) = size of the largest hole in B(t)
N(t) = number of holes in B(t).
Theorem (Damron - Gold-L. - Shen, '22).
Suppose that $P(te=0) < pc$ and dist. of te is nontrivial.
 $\exists c > 0$ s.t.
 $P(M(t) \ge clogt \ \forall large t) = 1$, $P(N(t) \ge ct^{d+1} \ \forall large t) = 2$.

Are these sharp?
Remark N(t)
$$\leq \# \partial_{e} B(t)$$

If we assume that B is uniformly curved and te has exp. moment,
then N(t) $\leq Gt^{d-1} (\log t)^{C_{1}} \forall \log e^{t}$.
Theorem (DGLS, '22).
Suppose d=2.
If P(te=0)
then $\exists c > 0$ s.t.
 $P(M(t) \leq (\log t)^{C} \forall \log e^{t}) = 1$.
 $P(M(t) \leq Ct \log t \forall \log e^{t}) = 1$.
 $P(M(t) \leq Ct \log t \forall \log e^{t}) = 1$.



- If the edge weights are unbounded, the connecting
edge can possibly have large weight.

$$\partial_e^{ext}B(t) \ge ct^{d-1} \Longrightarrow \sim \frac{t^{d-1}}{(\log t)^d}$$
 positions to put disjoint
configurations in B(t)^c.
Each configuration causes a prob. factor ε^{clogt} .
 $P(\exists$ such a configuration at time t) = $1 - (1 - \varepsilon^{clogt})^{\frac{t^{d-1}}{(\log t)^d}}$
 $= 1 - (1 - t^{clog}\varepsilon)^{\frac{t^{d-1}}{(\log t)^d}}$
 ≥ 0 if c is small enough

A more careful argument allows us to conclude.

d=2

$$P[t_e = 1] > \overline{Pe}$$

 $supp [t_e] \in [1, \infty)$.
Häggstörm, Meester
Gren any B, then \exists dist. [t_e] ergodie, statinnary
s.t. the basit shape is B.