电话:
办公室:近春园西楼138
邮箱:zyzong@tsinghua.edu.cn
个人主页:
2006-2010 学士 清华大学
2010-2015 博士 哥伦比亚大学
2015 至今 助理教授 清华大学丘成桐数学科学中心
2017年 国家自然科学青年基金
1) Dustin Ross and Zhengyu Zong, The Gerby Gopakumar-Mariño-Vafa Formula, Geometry & Topology, 17 (2013) 2935–2976.
2) Zhengyu Zong, Generalized Mariño-Vafa formula and Local Gromov-Witten Theory of Orbi-curves, Journal of Differential Geometry 100 (2015), no. 1, 161-190.
3) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, Equivariant Gromov-Witten Theory of Affine Smooth Toric Deligne-Mumford Stacks, International Mathematics Research Notices, 2016, no. 7, 2127-2144.
4) Dustin Ross and Zhengyu Zong, Cyclic Hodge Integrals and Loop Schur Functions, Advances in Mathematics 285 (2015), 1448-1486.
5) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, All genus mirror symmetry for toric Calabi-Yau 3-orbifolds, Proceedings of Symposia in Pure Mathematics 93 (2016), 1-19.
6) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, The SYZ mirror symmetry and the BKMP remodeling conjecture, Advances in Theoretical and Mathematical Physics, 20, no. 1 (2016), 165-192.
7) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, The Eynard-Orantin Recursion and Equivariant Mirror Symmetry for the Projective Line, Geometry & Topology 21,no.4 (2017), 2049-2092.
8) Zhengyu Zong, A Formula of the One-leg Orbifold Gromov-Witten Vertex and Gromov-Witten Invariants of the Local BZ_m Gerbe, arXiv:1204.1753.
9) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, All Genus Open-Closed Mirror Symmetry for Affine Toric Calabi-Yau 3-Orbifolds, arXiv:1310.4818.
10) Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270.
11) Bohan Fang, Chiu-Chu Melissa Liu and Zhengyu Zong, On the Remodeling Conjecture For Toric Calabi-Yau 3-orbifolds, arXiv:1604.07123.
12) Bohan Fang and Zhengyu Zong, Topological recursion for the conifold transition of a torus knot, arXiv:1607.01208.
13) Zijun Zhou and Zhengyu Zong, Gromov--Witten theory of [C2/Zn+1]×P1, arXiv:1612.00652.
14) Bohan Fang and Zhengyu Zong, Graph sums in the remodeling conjecture, to appear in Proceedings of Symposia in Pure Mathematics.