研究领域

2000年, Schramm 引入随机过程Schramm Loewner Evolution (SLE) 使统计物理方向得到蓬勃发展。吴昊的工作主要是利用SLE研究统计物理模型,例如渗流模型、伊辛模型和高斯自由场等。

Research interest: Schramm Loewner evolution, Gaussian free field, Ising model, Uniform spanning tree. 

教育背景

2009.9-2013.8. 法国巴黎十一大,博士; Universite Paris-Sud, France, Ph. D. 

2005.9-2009.8. 清华大学,学士; Tsinghua University, China, Bachelor's degree.

工作经历

2017.9-今. 清华大学,教授; Tsinghua University, China, Professor. 

2015.9-2017.8. 瑞士日内瓦大学,博士后; Geneva University, Switzerland, postdoc.

2013.9-2015.8. 美国麻省理工学院,博士后; MIT, United States, Moore instructor.

荣誉与奖励

2020-2023. 北京市杰出青年科学基金; Beijing natural science foundation (JQ20001) PI.

2019. 清华大学学术新人奖; XUE SHU XIN REN award of Tsinghua University. 

2018. 华人数学联盟最佳论文奖; ICCM best paper award. 

2014-2017. 美国 NSF Award: DMS-1406411 (PI)

发表论文

PREPRINTS and PUBLICATIONS

[22]. M. Liu, H. Wu. Loop-erased random walk branch of uniform spanning tree in topological polygons.

arXiv:2108.10500. 2021.

[21]. M. Liu, E. Peltola, H. Wu. Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in 2 logarithm CFT. 

arXiv:2108.04421. 2021.

[20]. T. Lupu, H. Wu. A level line of the Gaussian free field with measure-valued boundary conditions.

arXiv:2106.15169. 2021.

[19]. Y. Han, M. Liu, H. Wu. Hypergeometric SLE with κ = 8: convergence of UST and LERW in topological rectangles. 

arXiv:2008.00403 (under revision) 2020.

[18]. E. Peltola, H. Wu. Crossing probabilities of multiple Ising interfaces.

arXiv:1808.09438 (submitted). 2018.

[17]. J. Ding, M. Wirth, H. Wu. Crossing estimates from metric graph and discrete GFF.

Ann. Inst. H. Poincar ́e Probab. Statist. to appear. 2021+.

[16]. V. Beffara, E. Peltola, H. Wu. On the uniqueness of global multiple SLEs.

Ann. Probab. 49(1): 400-434, 2021.

[15]. M. Liu, H. Wu. Scaling limits of crossing probabilities in metric graph GFF.

Electron. J. Probab. 26: article no. 37, 1-46, 2021.

[14]. H. Wu. Hypergeometric SLE: conformal Markov characterization and applications.

Comm. Math. Phys. 374(2): 433-484, 2020.

[13]. C. Garban, H. Wu. On the convergence of FK-Ising percolation to SLE(16/316/− 6). 

J. Theor. Probab. 33: 828–865, 2020.

[12]. E. Peltola, H. Wu. Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF. 

Comm. Math. Phys. 366(2): 469-536, 2019.

[11]. H. Wu. Alternating arm exponents for the critical planar Ising model.

Ann. Probab. 46(5): 2863-2907, 2018.

[10]. H. Wu. Polychromatic arm exponents for the critical planar FK-Ising model.

J. Stat. Phys. 170(6): 1177-1196, 2018.

[9]. G. Pete, H. Wu. A conformally invariant growth process of SLE excursions.

Lat. Am. J. Probab. Math. Stat. 15: 851-874, 2018.

[8]. J. Miller, H. Wu. Intersections of SLE paths: the double and cut point dimension of SLE.

Probab. Theory Relat. Fields, 167:45-105, 2017.

[7]. H. Wu, D. Zhan. Boundary arm exponents for SLE.

Electron. J. Probab. 22: article no. 89, 1-26, 2017.

[6]. E. Powell, H. Wu. Level lines of the Gaussian free field with general boundary data.

Ann. Inst. H. Poincare Probab. Statist. 53(4), 2229–2259, 2017.

[5]. M. Wang, H. Wu. Level lines of Gaussian free field I: zero-boundary GFF.

Stochastic Process. Appl. 127(4):1045-1124, 2017.

[4]. S. Sheffield, S. Watson, H. Wu. Simple CLE in doubly connected domains.

Ann. Inst. H. Poincare Probab. Statist. 53(2): 594-615, 2017.

[3]. H. Wu. Conformal restriction: the radial case.

Stochastic Process. Appl. 125(2):552-570, 2015.

[2]. W. Werner, H. Wu. On conformally invariant CLE explorations.

Comm. Math. Phys. 320(3): 637-661, 2013.

[1]. W. Werner, H. Wu. From CLE(κ) to SLE(κ, ρ). 

Electron. J. Probab. 18: article no. 36, 1-20, 2013.


LECTURE NOTES and SURVEYS

[2]. H. Wu. Conformal restriction and Brownian motion.

Probab. Surv. 12:55-103, 2015.

[1]. H. Wu. On the occupation times of Brownian excursions and Brownian loops.

Lecture Notes in Math. Vol.2046:149-166, Springer, Heidelberg, 2012.