研究领域

非线性偏微分方程,如薛定谔方程、水波方程、Vlasov方程等。




教育背景

2007-2011        经济学学士     中央财经大学

2011-2016        数学博士        普林斯顿大学


 

工作经历

2017 至今         助理教授        清华大学丘成桐数学科学中心

2016-2017        博士后           普林斯顿大学和布朗大学

发表论文


15.  (With A. Ionescu, B. Pausader,  and K. Widmayer), On the asymptotic behavior of solutions to the Vlasov-Poisson system, 
accepted by International Mathematics Research Notices.

14. Global solution of the 3D relativistic Vlasov-Maxwell system for the large radial data, arXiv:2003.14192, preprint (2020).

13. Global solution of the 3D Relativistic Vlasov-Poisson system for a class of large data, arXiv:2003.14191, preprint (2020).

12. Decay estimates for the 3D relativistic and non-relativistic Vlasov-Poisson systems, arXiv:1805.10837, preprint (2018).

11. Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system, arXiv:1804.06566, preprint (2018).

10. Propagation of regularity and long time behavior of 3D massive relativistic transport equation I: Vlasov-Nordström system, Communications in Mathematical Physics, 382 (2021), no. 3, 1843–1934.

9. Global regularity for the 3D finite depth capillary water waves, Annales scientifiques de l’ Ecole normale superieure, 53 (2020), no. 4, 847–943.

8.  Global solution for the 3D quadratic Schr\"odinger equation of $Q(u, \bar{u})$ type, Discrete and Continuous Dynamical Systems - Series A, Vol 37 (2017), no 9, 5037-5048.

7.  Global solution for the 3D gravity water waves system above a flat bottom, Advances in Mathematics, Vol. 346 (2019), 805-886.

6.  On the 3-dimensional water waves system above a flat bottom, Analysis & PDE, Vol. 10 (2017), No. 4, 893–928.

5. Global infinite energy solutions for the 2D gravity water waves system, Communications on Pure and Applied Mathematics, 71(2018), no. 1, 90-162.

4. Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Annales Henri Poincaré , 18 (2017), no.4, 1213–1267.

3. On global existence of 3D charge critical Dirac-Klein-Gordon system, International Mathematics Research Notices, (2015) 2015 (21): 10801-10846.

2. (With Benoit Pausader and Nikolay Tzvetkov) Global regularity for the energy-critical NLS on S^3, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire 2014; 31(2), 315-338.

1. A Beurling-Hormander theorem associated with the Riemann-Liouville operator, Pacific Journal of Mathematics, 251(2011), pp 239--255.