Learning and Optimization in Multiagent Decision-Making Systems Lecture Notes on Markov Chains and Markov Decision Processes (by courtesy from R. Srikant) Instructor: Rasoul Etesami

Discrete-time Markov Chains

A *stochastic process* or a *random process* is an indexed collection of random variables, and if the index set is discrete, then it is called a *discrete-time* process.

Let $\{X_k\}$ denote a discrete-time random process that takes values in a finite set \mathscr{S} called the *state space*. A random process $\{X_k\}$ is called a *discrete-time Markov chain (DTMC)*, or simply a *Markov chain*, if for any sequence,

$$\mathbb{P}(X_k = s_k \mid X_{k-1} = s_{k-1}, X_{k-2} = s_{k-2}, \dots, X_0 = s_0) = \mathbb{P}(X_k = s_k \mid X_{k-1} = s_{k-1}),$$

for any choice of $s_i \in \mathcal{S}$ and for all k.

Let p_k denote the probability distribution of the random variable X_k , i.e., a row vector of probabilities with $p_k(s) = \mathbb{P}(X_k = s)$. Assuming $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$, the distribution p_k is given by

$$p_k = (p_k(s_1), p_k(s_2), \dots, p_k(s_n)) = (\mathbb{P}(X_k = s_1), \mathbb{P}(X_k = s_2), \dots, \mathbb{P}(X_k = s_n)).$$

By the Markov property, the evolution of the probability distribution p_k is governed by

$$p_k(s) = \sum_{s' \in \mathscr{S}} p_{k-1}(s') \mathbb{P}(X_k = s \mid X_{k-1} = s').$$

Let p_k denote the probability distribution of the random variable X_k , i.e., a row vector of probabilities $p_k(s) = P(X_k = s)$. Assuming $S = \{s_1, s_2, ..., s_n\}$,

$$p_k = (p_k(s_1), p_k(s_2), \dots, p_k(s_n)) = (P(X_k = s_1), P(X_k = s_2), \dots, P(X_k = s_n)).$$

By the Markov property, the evolution of p_k is given by

$$p_k(s) = \sum_{s' \in S} p_{k-1}(s') P(X_k = s \mid X_{k-1} = s').$$

A Markov chain is said to be *time homogeneous* if $\mathbb{P}(X_k = s \mid X_{k-1} = s')$ is independent of the time index *k*. In this discussion, we only consider time-homogeneous Markov chains.

Associated with each time-homogeneous Markov chain is a matrix called the *transition* probability matrix, denoted by P, whose (s', s)-th element is given by

$$P(s', s) = \mathbb{P}(X_1 = s \mid X_0 = s').$$

Notice that

$$P^{\ell}(s',s) = \mathbb{P}(X_{\ell} = s \mid X_0 = s').$$

Using the transition matrix *P*, the evolution of p_k can be written in vector form as:

$$p_k = p_{k-1}P = p_0 P^k. (13)$$

Thus, p_0 and P capture all the relevant information about the dynamics of the Markov chain. The matrix P can be encoded into a weighted directed graph, called the *transition diagram*, where the vertex set is S, and the weight of an edge (s', s) equals P(s', s).

Example Consider movements of a knight on a 4 × 4 chessboard starting at the most left corner.

- 1. X_k = knight's location; randomly walks: It is a Markov chain.
- 2. Y_k = knight's location with no backtracking: It is not a Markov chain.

3. $U_k = 0$ if on white, 1 otherwise; no backtracking: It is a Markov chain.

4. $Z_k = (Y_k, Y_{k-1})$: It is a Markov chain due to inclusion of sufficient history.

This example highlights the fact that the same dynamics may or may not be a Markov process depending on the choice of the state space.

Definition 40. A state *s* is called reachable from *s'* if $\exists l \ge 1$ s.t. $P^{l}(s', s) > 0$. A Markov chain is *irreducible* if every state is reachable from any other state.

Definition 41. The period of a state $s \in \mathcal{S}$ is defined by $d_s = \text{gcd}\{l : P^l(s,s) > 0\}$. A state *s* is **aperiodic** if $d_s = 1$. A Markov chain is aperiodic if all states are aperiodic.

Lemma 42. In an irreducible chain, all states share the same period. Thus, if one is aperiodic, all are, and the Markov chain becomes aperiodic.

Theorem 43. A finite, irreducible Markov chain has a unique stationary distribution μ . If also aperiodic, then $\lim_{k\to\infty} p_k = \mu$ for all p_0 . Specifically, $\lim_{k\to\infty} P^k = 1^T \mu$.

Example Consider a Markov chain with state space {1, 2, 3} and the transition matrix:

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{bmatrix}$$

It is easy to see that the chain is irreducible, and state 1 is aperiodic. So, the chain is ergodic. We can solve for the stationary distribution $\mu = \mu P$ to get

$$\mu = [\mu(1), \mu(2), \mu(3)] = [1/2, 1/4, 1/4]$$

Now let T_1 be the first return time to state 1. Then the expected value of T_1 equals

$$E[T_1] = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + \sum_{k=0}^{\infty} (k+3) \cdot \frac{1}{8} \cdot \left(\frac{1}{2}\right)^k = 2.$$

An interesting observation in the above example is that $\mu(1) = \frac{1}{\mathbb{E}[T_1]}$. The following lemma confirms that this holds for any irreducible Markov chain.

Lemma 44. The stationary distribution of a finite state space, irreducible Markov chain satisfies

$$\mu(i) = \frac{1}{\mathbb{E}[T_i]},$$

where T_i is the first return time to state *i*.

Intuitively speaking, $1/\mathbb{E}[T_i]$ is the frequency of visits to state *i*. The ergodic theorem confirms this interpretation and enables us to estimate μ using a single sample path.

Theorem 45 (Ergodic Theorem). For a finite state space, irreducible Markov chain $\{X_k\}$, we have

$$\mathbb{P}\left(\lim_{\ell \to \infty} \frac{1}{\ell} \sum_{k=0}^{\ell-1} \mathbf{1}(X_k = i) = \frac{1}{\mathbb{E}[T_i]}\right) = 1.$$

More generally, for any function $c : \mathcal{S} \to \mathbb{R}$, we have

$$\mathbb{P}\left(\lim_{\ell\to\infty}\frac{1}{\ell}\sum_{k=0}^{\ell-1}c(X_k)=\sum_{i\in\mathscr{S}}\mu(i)c(i)\right)=1,$$

and in particular,

$$\lim_{\ell \to \infty} \mathbb{E}\left[\frac{1}{\ell} \sum_{k=0}^{\ell-1} c(X_k)\right] = \sum_{i \in \mathscr{S}} \mu(i) c(i).$$

The above theorem is one of the most fundamental results in the theory of Markov chains. In particular, assuming there is a cost $c(\cdot)$ associated with the state of the Markov chain, the ergodic theorem states that the average cost observed on the sample path converges almost surely and in mean to

$$\sum_{i\in\mathscr{S}}\mu(i)c(i).$$

Example Consider a a wireless link with Bernoulli(λ) arrivals, Bernoulli(ν) service, buffer size *B*. Define state as number of packets in the buffer. Therefore, the state space equals $S = \{0, 1, ..., B\}$. In order to find the stationary distribution, one needs to solve the equation

$$\mu = \mu P.$$

However, this task is almost impossible when the size of the matrix is large. Instead, we find the stationary distribution using the *flow equations*: if we partition the transition diagram into two sections A and B, the total transition flow from A to B in the steady state should be equal to the total flow from B to A. That is,

$$\sum_{i \in A} \sum_{j \in B} \mu(i) P(i, j) = \sum_{j \in B} \sum_{i \in A} \mu(j) P(j, i).$$
$$\mu(0)\lambda(1-\nu) = \mu(1)\nu(1-\lambda) \quad \Rightarrow \quad \mu(1) = \frac{\lambda(1-\nu)}{\nu(1-\lambda)}\mu(0)$$
$$\mu(1)\lambda(1-\nu) = \mu(2)\nu(1-\lambda) \quad \Rightarrow \quad \mu(2) = \left(\frac{\lambda(1-\nu)}{\nu(1-\lambda)}\right)^2 \mu(0)$$
$$\vdots$$

$$\mu(B-2)\lambda(1-\nu) = \mu(B-1)\nu(1-\lambda) \quad \Rightarrow \quad \mu(B-1) = \left(\frac{\lambda(1-\nu)}{\nu(1-\lambda)}\right)^{B-1}\mu(0)$$
$$\mu(B-1)\lambda(1-\nu) = \mu(B)\nu \quad \Rightarrow \quad \mu(B) = (1-\lambda)\left(\frac{\lambda(1-\nu)}{\nu(1-\lambda)}\right)^{B}\mu(0)$$

The above equations together with

$$\sum_{i} \mu(i) = 1,$$

give the stationary distribution of the Markov chain.

Markov Decision Processes

A Markov Decision Process (MDP) is a controlled Markov chain, i.e., a Markov chain in which the transition probabilities depend on an exogenous control parameter called action. More specifically, the probability of transitioning to state s' from state s upon taking action a is denoted by $P_{s,s'}(a)$ and is given by

$$P_{s,s'}(a) := \mathbb{P}(S_1 = s' \mid S_0 = s, A_0 = a), \quad \forall s, s' \in \mathcal{S}, \, \forall a \in \mathcal{A}_s.$$

In addition to the state space \mathcal{S} , for each $s \in \mathcal{S}$, we are given a finite action space \mathcal{A}_s which denotes the set of possible actions at state *s*. For simplicity, we drop the dependency on *s* and assume the action space is \mathcal{A} for all *s*.

Another component is a one-step random reward function $r : \mathscr{S} \times \mathscr{A} \to \mathbb{R}$ that assigns rewards to each (s, a) pair. We denote its expectation as $\bar{r}(s, a) = \mathbb{E}[r(s, a)]$. Assuming r is bounded, we can shift it to be non-negative without loss of generality.

Definition 46. An MDP is a tuple $(\mathcal{S}, \mathcal{A}, P, r)$ where:

- *S* is the finite state space;
- *A* is the finite action space;
- $P_{s,s'}(a) = \mathbb{P}(S_1 = s' | S_0 = s, A_0 = a)$ is the transition probability;
- $r: \mathscr{S} \times \mathscr{A} \rightarrow [0, r_{\max}]$ is the one-step random reward function.

Definition 47. A policy is a probabilistic rule for choosing actions at each time step. Formally, a policy is a family of distributions $\pi = {\pi_k}_{k>0}$ where $\pi_k : \mathscr{S}^{k+1} \times \mathscr{A}^k \to \Delta_{\mathscr{A}}$:

$$\pi_k(a \mid \{s_i, a_i\}_{i=0}^{k-1}, s_k) := \mathbb{P}(A_k = a \mid S_0 = s_0, A_0 = a_0, \dots, S_k = s_k).$$

If a policy only depends on the current state, i.e., $\pi_k(a \mid \{s_i, a_i\}_{i=0}^{k-1}, s_k) = \pi_k(a \mid s_k) \forall k$, then it is called a **Markov** policy. If further, the policy is independent of time-step k, i.e., $\pi_k = \pi$ for all k, it is called a **stationary** policy.

Remark 11. Under a stationary policy π , the MDP behaves like a Markov chain with transition matrix $P^{\pi} = [P_{s,s'}^{\pi}]$, where

$$P_{s,s'}^{\pi} = \sum_{a \in \mathscr{A}} \pi(a \mid s) P_{s,s'}(a), \quad \forall s, s' \in \mathscr{S}.$$

Performance Measure: Actions in an MDP are chosen to optimize some performance measure. One such measure is the **expected discounted total reward**, given by:

$$\mathbb{E}\left[\sum_{k=0}^{L} \gamma^{k} r(S_{k}, A_{k})\right] \quad \text{or} \quad \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r(S_{k}, A_{k})\right],$$

depending on whether the horizon is finite or infinite. The discount factor γ discounts future rewards: If horizon is finite: $\gamma \in [0, 1]$. Otherwise, if horizon is infinite: $\gamma \in [0, 1)$. Note that the infinite sum is well-defined since $r : \mathscr{S} \times \mathscr{A} \rightarrow [0, r_{\max}]$ is bounded.

Given an MDP ($\mathscr{S}, \mathscr{A}, P, r$) and discount factor γ , the main goal is to find an optimal policy $\{\pi_k^*\}_{k\geq 0}$ that maximizes the expected discounted total reward. Fortunately, it suffices to focus on Markov policies.

Theorem 48. For an MDP $(\mathcal{S}, \mathcal{A}, P, r)$ with discount factor γ (finite horizon or infinite horizon), there exists a **Markov policy** $\{\pi_k^*\}_{k>0}$ that maximizes the expected discounted total reward.

Our goal is to develop a systematic approach to find the optimum policy or evaluate the performance of a fixed policy for a given MDP.

Finite Horizon MDPs

Let $(\mathcal{S}, \mathcal{A}, P, r, \gamma, L)$ denote a discounted finite-horizon MDP, with discount factor $\gamma \in [0, 1]$, and horizon $L < \infty$. Our goal is to find a Markov policy $\{\pi_k\}_{k=0}^L$ that maximizes the performance measure:

$$\mathbb{E}\left[\sum_{k=0}^{L}\gamma^{k}r(S_{k},A_{k})\right].$$

For a given policy $\pi = {\{\pi_k\}}_{k=0}^L$, define value functions ${\{V_{k\to L}^{\pi}\}}_{k=0}^L$, where each $V_{k\to L}^{\pi} : \mathscr{S} \to \mathbb{R}_+$ is the expected total discounted reward from time-step *k* to *L*, conditioned on $S_k = s$:

$$V_{k\to L}^{\pi}(s) := \mathbb{E}^{\pi} \left[\sum_{l=k}^{L} \gamma^{l-k} r(S_l, A_l) \middle| S_k = s \right].$$

Define expected reward and transition probability under policy π_l :

$$\bar{r}(s,\pi_l(s)):=\sum_{a\in\mathscr{A}}\pi_l(a\mid s)\bar{r}(s,a), \quad P_{s,s'}^{\pi_l}:=\sum_{a\in\mathscr{A}}\pi_l(a\mid s)P_{s,s'}(a).$$

Then we can recursively express:

$$V_{k \to L}^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{l=k}^{L} \gamma^{l-k} r(S_{l}, \pi_{l}(S_{l})) \middle| S_{k} = s \right]$$

= $\bar{r}(s, \pi_{k}(s)) + \gamma \mathbb{E}_{\pi} \left[\sum_{l=k+1}^{L} \gamma^{l-k-1} r(S_{l}, \pi_{l}(S_{l})) \middle| S_{k} = s \right]$
= $\bar{r}(s, \pi_{k}(s)) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}^{\pi_{k}} \mathbb{E}_{\pi} \left[\sum_{l=k+1}^{L} \gamma^{l-k-1} r(S_{l}, \pi_{l}(S_{l})) \middle| S_{k+1} = s' \right].$

Notice that the expectation in the right-hand side of the above equation equals $V_{k+1\rightarrow L}^{\pi}(s')$. Therefore, we have

$$V_{k\to L}^{\pi}(s) = \bar{r}(s, \pi_k(s)) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}^{\pi_k} V_{k+1\to L}^{\pi}(s').$$

The functions $\{V_{k\to L}^{\pi}\}_{k=0}^{L}$ are called (state-)value functions, and they can be calculated using the following recursive equations, called the *Bellman equations*:

$$V_{L\to L}^{\pi}(s) = \bar{r}(s, \pi_L(s)),$$

$$V_{k\to L}^{\pi}(s) = \bar{r}(s, \pi_k(s)) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}^{\pi_k} V_{k+1\to L}^{\pi}(s'), \quad \forall k = 0, \dots, L-1.$$

Abusing notation, we can rewrite the Bellman equations in vector form. To that end, let \bar{r}^{π_k} denote the vector with entries $\bar{r}^{\pi_k}(s) := \bar{r}(s, \pi_k(s))$. Then:

$$V_{L\to L}^{\pi} = \bar{r}^{\pi_L}, \quad V_{k\to L}^{\pi} = \bar{r}^{\pi_k} + \gamma P^{\pi_k} V_{k+1\to L}^{\pi} \quad \forall k = 0, \dots, L-1.$$

Example: Consider a finite-horizon discounted MDP with $\gamma = 0.1$, L = 2, $\mathscr{S} = \{1, 2, 3\}$, $\mathscr{A} = \{a, b\}$, and transition probabilities:

$$P(a) = \begin{bmatrix} 0.2 & 0.2 & 0.6 \\ 0.3 & 0.4 & 0.3 \\ 0 & 1 & 0 \end{bmatrix}, \quad P(b) = \begin{bmatrix} 0.4 & 0.2 & 0.4 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.8 & 0.2 \end{bmatrix},$$

Also, assume the expected reward vector $\bar{r} = r$ has the form

$$\bar{r}(1,a) = 2, \quad \bar{r}(1,b) = 1,$$

 $\bar{r}(2,a) = -0.5, \quad \bar{r}(2,b) = 0,$
 $\bar{r}(3,a) = 3, \quad \bar{r}(3,b) = 1.$

Consider the stationary policy π that takes an action uniformly at random at each time-step. Calculate the family of value functions associated with this policy.

Solution: For such a uniform stationary policy π , we have

$$\bar{r}^{\pi} = \begin{bmatrix} 1.5 \\ -0.25 \\ 2 \end{bmatrix}, \quad P^{\pi} = \frac{1}{2}(P(a) + P(b)) = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.25 & 0.55 & 0.2 \\ 0 & 0.9 & 0.1 \end{bmatrix}.$$

Then, the Bellman equations can be calculated recursively as

$$V_{2\to2}^{\pi} = \bar{r}^{\pi} = \begin{bmatrix} 1.5\\ -0.25\\ 2 \end{bmatrix}, \quad V_{1\to2}^{\pi} = \bar{r}^{\pi} + \gamma P^{\pi} V_{2\to2}^{\pi} = \begin{bmatrix} 1.64\\ -0.1892\\ 1.9975 \end{bmatrix},$$
$$V_{0\to2}^{\pi} = \bar{r}^{\pi} + \gamma P^{\pi} V_{1\to2}^{\pi} = \begin{bmatrix} 1.6454\\ -0.1793\\ 2.0032 \end{bmatrix}.$$

Optimal Policies in Finite-Horizon MDPs

Our goal is to find a Markov policy that maximizes the expected discounted total reward over the horizon *L*. Specifically, we solve:

$$\max_{\pi=\{\pi_l\}_{l=0}^L} \mathbb{E}_{\pi}\left[\sum_{l=0}^L \gamma^l r(S_l, A_l) \, \middle| \, S_0 = s\right].$$

Let $V_{k\to L}^*(s)$ be the maximum expected discounted reward from time *k* to *L*:

$$V_{k\to L}^*(s) = \max_{\{\pi_l\}_{l=k}^L} \mathbb{E}_{\pi} \left[\sum_{l=k}^L \gamma^{l-k} r(S_l, A_l) \left| S_k = s \right].$$

By the same logic as in deriving Bellman equations, we have

$$\begin{split} V_{0 \to L}^{*}(s) &= \max_{\pi = \{\pi_{l}\}_{l=0}^{L}} \mathbb{E}_{\pi} \left[\sum_{l=0}^{L} \gamma^{l} r(S_{l}, A_{l}) \left| S_{0} = s \right] \right] \\ &= \max_{\pi_{0}} \left(\mathbb{E}_{\pi_{0}} \left[r(S_{0}, A_{0}) \left| S_{0} = s \right] + \gamma \max_{\pi = \{\pi_{l}\}_{l=1}^{L}} \mathbb{E}_{\pi} \left[\sum_{l=1}^{L} \gamma^{l-1} r(S_{l}, A_{l}) \left| S_{0} = s \right] \right] \right) \\ &= \max_{\pi_{0}} \left(\bar{r}(s, \pi_{0}(s)) + \gamma \max_{\pi = \{\pi_{l}\}_{l=1}^{L}} \sum_{s' \in \mathscr{S}} P_{s,s'}^{\pi_{0}} \mathbb{E}_{\pi} \left[\sum_{l=1}^{L} \gamma^{l-1} r(S_{l}, A_{l}) \left| S_{1} = s' \right] \right] \right) \\ &= \max_{\pi_{0}} \left(\bar{r}(s, \pi_{0}(s)) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}^{\pi_{0}} V_{1 \to L}^{*}(s') \right). \end{split}$$

Notice that given $V_{1 \to L}^* : \mathscr{S} \to \mathbb{R}_+$, the right-hand side of the above equation is maximized for a deterministic policy π_0 . Hence, we have

$$V_{0\to L}^*(s) = \max_{a\in\mathscr{A}} \left\{ \bar{r}(s,a) + \gamma \sum_{s'\in\mathscr{S}} P_{s,s'}(a) V_{1\to L}^*(s') \right\}.$$

The same argument generalizes to $\{V_{k\to L}^*\}_{k=0}^L$, which results in the following set of recursive equations known as *Bellman optimality equations* or *dynamic programming equations*:

$$V_{L\to L}^*(s) = \max_{a \in \mathscr{A}} \bar{r}(s, a),$$

$$V_{k\to L}^*(s) = \max_{a \in \mathscr{A}} \left(\bar{r}(s, a) + \gamma \sum_{s'} P_{s,s'}(a) V_{k+1\to L}^*(s') \right), \quad \forall k = 0, \dots, L-1.$$

Once we compute $\{V_{k\to L}^*\}$, we define the optimal deterministic policy $\pi^* = \{\pi_k^*\}_{k=0}^L$:

$$\begin{aligned} \pi_L^*(a \mid s) &= \begin{cases} 1 & \text{if } a = \arg\max_{a' \in \mathscr{A}} \bar{r}(s, a'), \\ 0 & \text{otherwise,} \end{cases} \\ \pi_k^*(a \mid s) &= \begin{cases} 1 & \text{if } a = \arg\max_{a' \in \mathscr{A}} \left(\bar{r}(s, a') + \gamma \sum_{s'} P_{s,s'}(a') V_{k+1 \to L}^*(s') \right), \\ 0 & \text{otherwise,} \end{cases} \quad \forall k = 0, \dots, L-1, \end{aligned}$$

where ties are broken arbitrarily.

Example Find the optimal deterministic policy for the MDP in the previous example with L = 3 and $\gamma = 0.65$. Moreover, determine i) the best action A_0 if $S_0 = 2$, and ii) the best action A_1 if $S_1 = 2$.

Solution. Using the Bellman optimality equation, we have

$$V_{3\to3}^* = \begin{bmatrix} 2\\0\\3 \end{bmatrix}, \quad \pi_3^*(a \mid 1) = 1, \quad \pi_3^*(b \mid 2) = 1, \quad \pi_3^*(a \mid 3) = 1,$$
$$V_{2\to3}^* = \begin{bmatrix} 3.43\\0.475\\3 \end{bmatrix}, \quad \pi_2^*(a \mid 1) = 1, \quad \pi_2^*(a \mid 2) = 1, \quad \pi_2^*(a \mid 3) = 1,$$

$$V_{1\to3}^* = \begin{bmatrix} 3.6776\\ 0.8773\\ 3.3087 \end{bmatrix}, \quad \pi_1^*(a\mid 1) = 1, \quad \pi_1^*(a\mid 2) = 1, \quad \pi_1^*(a\mid 3) = 1,$$
$$V_{0\to3}^* = \begin{bmatrix} 3.8826\\ 1.0924\\ 3.5703 \end{bmatrix}, \quad \pi_0^*(a\mid 1) = 1, \quad \pi_0^*(b\mid 2) = 1, \quad \pi_0^*(a\mid 3) = 1.$$

Thus, if $S_0 = 2$, best action is $A_0 = b$, and if $S_1 = 2$, the best action is $A_1 = a$. In particular, notice that the optimal policy π^* is not stationary.

Infinite Horizon MDPs

Let $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$ denote a discounted infinite-horizon MDP with discount factor $\gamma \in [0, 1)$. The objective is to find a Markov policy $\pi = {\pi_k}_{k\geq 0}$ that maximizes:

$$\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty}\gamma^{k}r(S_{k},A_{k})\right].$$

Similar to finite-horizon MDPs, associated with each Markov policy $\pi = {\{\pi_k\}_{k=0}^{\infty}}$, there is a set of value functions ${\{V_{k\to\infty}^{\pi}\}_{k\geq 0}}$. For now, we focus on stationary policies. Later on, we will show that there exists a stationary policy that maximizes the expected discounted total reward.

For each stationary policy π , define the value function $V^{\pi} : \mathscr{S} \to \mathbb{R}_+$:

$$V^{\pi}(s) := \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} r(S_{k}, A_{k}) \, \middle| \, S_{0} = s\right].$$

Following a similar idea as in finite-horizon MDPs, let us rewrite $V^{\pi}(s)$ as follows:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r(S_0, A_0) + \gamma \sum_{k=1}^{\infty} \gamma^{k-1} r(S_k, A_k) \middle| S_0 = s \right]$$

= $\bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathscr{S}} P^{\pi}_{s,s'} \mathbb{E}^{\pi} \left[\sum_{k=1}^{\infty} \gamma^{k-1} r(S_k, A_k) \middle| S_1 = s' \right]$
= $\bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathscr{S}} P^{\pi}_{s,s'} V^{\pi}(s')$

where $\bar{r}(s, \pi(s)) := \sum_{a \in \mathscr{A}} \pi(a \mid s) \bar{r}(s, a)$ and $P_{s,s'}^{\pi} := \sum_{a \in \mathscr{A}} \pi(a \mid s) P_{s,s'}(a)$, and the last equality follows from the fact that the policy π is stationary. Rewriting it in the vector form, we have:

$$V^{\pi} = \bar{r}^{\pi} + \gamma P^{\pi} V^{\pi}$$

Hence, V^{π} satisfies a fixed point equation. In particular, if $I - \gamma P^{\pi}$ is invertible, then we have

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} \bar{r}^{\pi}.$$

It is easy to check that $I - \gamma P^{\pi}$ is invertible. In fact, its inverse is given by

$$(I-\gamma P^{\pi})^{-1}=\sum_{k=0}^{\infty}(\gamma P^{\pi})^{k},$$

where $(P^{\pi})^0 := I$. However, calculating the matrix inverse is computationally expensive. Associated with each policy π , there is the operator $T^{\pi} : \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ defined as

$$T^{\pi}(V) = \bar{r}^{\pi} + \gamma P^{\pi} V,$$

which is called the *Bellman operator*. By the above discussion, the value function V^{π} is the unique fixed point of the operator T^{π} .

Remark 12. Notice the similarity between the Bellman equation $T^{\pi}(V^{\pi}) = V^{\pi}$ and the Bellman equations for finite-horizon MDPs. Specifically, since the horizon is infinite here and the policy is stationary, the value function does not depend on time.

Proposition 49. The operator T^{π} is a contraction in ℓ_{∞} norm with contraction factor γ :

$$||T^{\pi}(V) - T^{\pi}(V')||_{\infty} \le \gamma ||V - V'||_{\infty},$$

where $||V||_{\infty} = \max_{s \in \mathcal{S}} |V(s)|$.

Proof: For any fixed $s \in \mathcal{S}$, we have

$$|T^{\pi}(V)(s) - T^{\pi}(V')(s)| = \gamma \left| \sum_{s'} P^{\pi}_{s,s'}(V(s') - V'(s')) \right|$$

$$\leq \gamma \sum_{s'} P^{\pi}_{s,s'} |V(s') - V'(s')|$$

$$\leq \gamma ||V - V'||_{\infty} \sum_{s'} P^{\pi}_{s,s'} = \gamma ||V - V'||_{\infty}$$

Since this holds for all *s*, the operator T^{π} is a γ -contraction.

A known general result for contraction operators is the contraction mapping theorem. It provides an algorithmic way to find the unique fixed point of a contraction operator defined on a general Banach spaces.

Theorem 50. Let $U : \mathbb{R}^n \to \mathbb{R}^n$ be a contraction with factor $\gamma \in [0, 1)$ with respect to some norm $\|\cdot\|$, *i.e.*,

$$|U(x) - U(y)|| \le \gamma ||x - y||.$$

Then U has a unique fixed point $U(x^*) = x^*$ such that for any $x_0 \in \mathbb{R}^n$:

$$||U^{k}(x_{0}) - x^{*}|| \le \gamma^{k} ||x_{0} - x^{*}||, \text{ and } \lim_{k \to \infty} U^{k}(x_{0}) = x^{*}.$$

Hence, to compute V^{π} , we can apply value iteration:

$$V_{k+1} := T^{\pi}(V_k) = \bar{r}^{\pi} + \gamma P^{\pi} V_k.$$

By Theorem 50 and Proposition 49, for any initial value vector V_0 , we have

$$\|(T^{\pi})^{k}(V_{0}) - V^{\pi}\|_{\infty} \leq \gamma^{k} \|V_{0} - V^{\pi}\|_{\infty}$$

Optimal Policy for Infinite-Horizon MDPs

Next, we want to find the optimum stationary policy π^* for which $V^{\pi^*}(s) \ge V^{\pi}(s)$ for all stationary policies π . Notice that the existence of such a policy is not clear at this point. Nevertheless, let us pretend such an optimal policy exists.

Let V^* denote the value function of the optimal stationary policy π^* . Following the same argument as in the case of finite-horizon MDPs, we may expect V^* to satisfy some Bellman optimality equations. Since the policy π^* is stationary, the value function should not depend on time, as we discussed above. Hence, intuitively speaking, we may expect the value function V^* to satisfy the following Bellman optimality equation:

$$V^*(s) = \max_{a \in \mathscr{A}} \left(\bar{r}(s,a) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}(a) V^*(s') \right).$$

We will show that:

- 1. The above equation has a unique solution which corresponds to the value function of some deterministic stationary policy π^* ;
- 2. $V^*(s) \ge V^{\pi}(s)$ for all stationary policies π ;
- 3. $V^*(s) \ge V^{\pi}(s)$ for any (possibly non-stationary) Markov policy π .

Let $T : \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ denote the *Bellman optimality operator*, which is defined as follows:

$$T(V)(s) = \max_{a \in \mathscr{A}} \left(\bar{r}(s,a) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}(a) V(s') \right), \quad \forall s \in \mathscr{S}.$$

Notice that for any vector $V \in \mathbb{R}^{|\mathcal{S}|}$, T(V) corresponds to a stationary deterministic policy for which

$$T(V)(s) = \bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}(\pi(s))V(s') = T^{\pi}(V)(s),$$

where $\pi(s)$ denotes the deterministic action of policy π in state *s*, i.e.,

$$\pi(s) \in \arg \max_{a \in \mathscr{A}} \left(\bar{r}(s,a) + \gamma \sum_{s' \in \mathscr{S}} P_{s,s'}(a) V(s') \right).$$

Given the above equality, we say that the policy π is a greedy policy with respect to the vector V.

We want to show that *T* has a unique fixed point V^* , which by the above argument is the value function of some policy π^* . By the *contraction mapping theorem*, it is enough to show that *T* is a contraction operator.

Proposition 51. The optimality operator *T* is a contraction in ℓ_{∞} norm with factor γ :

$$||T(V) - T(V')||_{\infty} \le \gamma ||V - V'||_{\infty}.$$

Proof: Fix $V, V' \in \mathbb{R}^{|\mathcal{S}|}$. Let π denote the greedy policy with respect to vector V. Consider a fixed $s \in \mathcal{S}$. We have:

$$T(V)(s) - T(V')(s) = \bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}(\pi(s))V(s') - \max_{a \in \mathcal{A}} \left(\bar{r}(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}(a)V'(s') \right)$$

$$\leq \bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}(\pi(s))V(s') - \left(\bar{r}(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}(\pi(s))V'(s') \right)$$

$$= \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}(\pi(s)) \left(V(s') - V'(s') \right)$$

$$\leq \gamma ||V - V'||_{\infty}.$$

Notice that the right-hand side of the above inequality does not depend on $s \in \mathcal{S}$ nor the greedy policy π . Repeating the same argument for T(V')(s) - T(V)(s), and then applying this bound for all $s \in \mathcal{S}$, the result follows.

In conclusion, by the contraction mapping theorem, *T* has a unique fixed point V^* , which is the value function of a deterministic (greedy) stationary policy π^* :

$$V^*(s) = T(V^*)(s) = \bar{r}(s, \pi^*(s)) + \gamma \sum_{s'} P_{s,s'}(\pi^*(s)) V^*(s') = T^{\pi^*}(V^*)(s).$$

Next, we will show that π^* is the optimal stationary policy, i.e., $V^*(s) \ge V^{\pi}(s)$ for all $s \in \mathscr{S}$ and any stationary policy π . Let us first present two important properties of the Bellman optimality operator T.

Proposition 52. The Bellman optimality operator T satisfies:

- (i) Monotonicity: If $V \le V'$ (elementwise), then $T(V) \le T(V')$.
- (ii) Translation Invariance: For any $c \in \mathbb{R}$, $T(V + c \cdot 1) = T(V) + \gamma c \cdot 1$.

Proof: (i) For all *s*, since $V \le V'$, we have for any *a*:

$$\bar{r}(s,a) + \gamma \sum_{s'} P_{s,s'}(a) V(s') \le \bar{r}(s,a) + \gamma \sum_{s'} P_{s,s'}(a) V'(s').$$

Taking the max over *a* on both sides gives $T(V)(s) \le T(V')(s)$.

(ii) For any s,

$$T(V + c\mathbf{1})(s) = \max_{a} \left(\bar{r}(s, a) + \gamma \sum_{s'} P_{s,s'}(a)(V(s') + c) \right)$$

= $\max_{a} \left(\bar{r}(s, a) + \gamma \sum_{s'} P_{s,s'}(a)V(s') + \gamma c \sum_{s'} P_{s,s'}(a) \right)$
= $T(V)(s) + \gamma c.$

since $\sum_{s'} P_{s,s'}(a) = 1$.

Fix a stationary policy π . Notice that by the definition of *T* and T^{π} , we have

$$T(V^{\pi}) \ge T^{\pi}(V^{\pi}) = V^{\pi}.$$

By the monotonicity of T, we have

$$T^2(V^{\pi}) \ge T(V^{\pi}) \ge V^{\pi}.$$

Repeating the same argument, we get

$$T^k(V^{\pi}) \ge V^{\pi}$$
 for all $k \in \mathbb{N}$.

Taking the limit as $k \to \infty$ and invoking the contraction mapping theorem, we obtain

$$V^* = \lim_{k \to \infty} T^k(V^{\pi}) \ge V^{\pi}.$$

Hence, the policy π^* is the optimal policy among all stationary policies. It remains to show that π^* is the optimal policy among all Markov policies.

Theorem 53. Given an infinite-horizon MDP ($\mathscr{S}, \mathscr{A}, P, r, \gamma$), there exists a stationary policy π^* that maximizes the expected discounted total reward. Moreover, $V^* = T(V^*) = T^{\pi^*}(V^*)$.

Proof: Let $\pi = {\pi_k}_{k \ge 0}$ be an optimal Markov policy. Define the time-dependent value function:

$$V_{k\to\infty}^{\pi}(s) := \mathbb{E}_{\pi}\left[\sum_{l=k}^{\infty} \gamma^{l-k} r(S_l, A_l) \,\middle|\, S_k = s\right].$$

Using Bellman equations, we have

$$V_{k\to\infty}^{\pi}(s) = \bar{r}(s,\pi_k(s)) + \gamma \sum_{s'} P_{s,s'}^{\pi_k} V_{k+1\to\infty}^{\pi}(s') \quad \forall k, s \in \mathbb{N}$$

where

$$r(s,\pi_{\ell}(s)) := \sum_{a \in \mathscr{A}} \pi_{\ell}(a \mid s) r(s,a) \quad \text{and} \quad \bar{r}(s,\pi_{\ell}(s)) := \sum_{a \in \mathscr{A}} \pi_{\ell}(a \mid s) \bar{r}(s,a).$$

Next, we will show that

$$V_{k\to\infty}^{\pi} = T\left(V_{k+1\to\infty}^{\pi}\right) \text{ for all } k \ge 0.$$

Suppose the contrary, i.e., for some $k \ge 0$ and $s \in \mathcal{S}$, we have

$$V_{k\to\infty}^{\pi}(s) < T\left(V_{k+1\to\infty}^{\pi}\right)(s).$$

Let $\tilde{\pi}_k$ denote the greedy policy with respect to $T(V_{k+1\to\infty}^{\pi})$, i.e.,

$$T\left(V_{k+1\to\infty}^{\pi}\right)(s) = \bar{r}(s,\tilde{\pi}_k(s)) + \gamma \sum_{s'\in\mathscr{S}} P_{s,s'}^{\tilde{\pi}_k} V_{k+1\to\infty}^{\pi}(s') = T^{\tilde{\pi}_k}\left(V_{k+1\to\infty}^{\pi}\right)(s).$$

Define the policy $\tilde{\pi}$ to be exactly the same as π , except at index k, for which π_k is replaced with $\tilde{\pi}_k$. By the above argument and simple induction, we have $V_{0\to\infty}^{\pi} \leq V_{0\to\infty}^{\tilde{\pi}}$ element-wise,

with inequality being strict for some $s \in \mathcal{S}$. This contradicts the assumption that π is optimal. Hence, for all $k \ge 0$, we have $V_{k\to\infty}^{\pi} = T\left(V_{k+1\to\infty}^{\pi}\right)$. Repetitive use of this identity yields

$$V_{0\to\infty}^{\pi} = T\left(V_{1\to\infty}^{\pi}\right) = T^2\left(V_{2\to\infty}^{\pi}\right) = \dots = T^k\left(V_{k\to\infty}^{\pi}\right).$$

Since the random reward function is bounded by $r_{\rm max}$, it readily follows that

$$V_{k\to\infty}^{\pi} \leq \frac{r_{\max}}{1-\gamma} \cdot \mathbf{1},$$

where $\mathbf{1} \in \mathbb{R}^{|\mathcal{S}|}$ is the all-ones vector.

By Theorem 51 and using the above inequalities, for any k > 0 we have:

$$\begin{split} \|V_{0\to\infty}^{\pi} - V^*\|_{\infty} &= \left\|T^k \left(V_{k\to\infty}^{\pi}\right) - V^*\right\|_{\infty} \\ &\leq \gamma^k \left\|V_{k\to\infty}^{\pi} - V^*\right\|_{\infty} \\ &\leq \frac{2\gamma^k r_{\max}}{1-\gamma}. \end{split}$$

Taking the limit as $k \to \infty$, it follows that $V_{0\to\infty}^{\pi} = V^*$. By the same argument, we also have $V_{k\to\infty}^{\pi} = V^*$ for all $k \ge 0$. It remains to notice that V^* is the value function of some stationary policy π^* .

Action-Value Function (Q-function)

So far, we have focused on the state-value function $V^{\pi} : \mathscr{S} \to \mathbb{R}_+$ for a policy π , and the optimal value function V^* . Another key object is the **action-value function** or **Q-function**:

Definition 54. For a policy π , define the *Q*-function corresponding with π as

$$Q^{\pi}(s,a) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r(S_k, A_k) \middle| S_0 = s, A_0 = a \right], \quad \forall s \in \mathscr{S}, a \in \mathscr{A}$$

That is, $Q^{\pi}(s, a)$ is the expected total reward when action a is taken at state s, and policy π is followed thereafter.

We note that by the above definition, for any $s \in \mathcal{S}$, we have

$$V^{\pi}(s) = \sum_{a \in \mathscr{A}} \pi(a \mid s) Q^{\pi}(s, a).$$

Bellman Equation for Q-function. We can derive the Bellman equation for Q^{π} as follows:

$$Q^{\pi}(s,a) = \mathbb{E}[r(s,a)] + \mathbb{E}_{\pi} \left[\sum_{k=1}^{\infty} \gamma^{k} r(S_{k},A_{k}) \middle| S_{0} = s, A_{0} = a \right]$$

= $\bar{r}(s,a) + \gamma \sum_{s',a'} \mathbb{P}(S_{1} = s' \mid S_{0} = s, A_{0} = a) \cdot \pi(a' \mid s') \cdot Q^{\pi}(s',a').$

Let the transition kernel under π be defined as:

$$P_{(s,a),(s',a')}^{\pi,q} := \mathbb{P}(S_1 = s' \mid S_0 = s, A_0 = a) \cdot \pi(a' \mid s').$$

Then the Bellman equation becomes:

$$Q^{\pi} = \bar{r} + \gamma P^{\pi, q} Q^{\pi},$$

where $Q^{\pi} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$, \bar{r} is the reward vector over (s, a) pairs, and $P^{\pi, q} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}||\mathcal{A}|}_+$ is the transition matrix under π .

Bellman Operator for Q. Define the operator $T^{\pi,q} : \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} \to \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$:

$$T^{\pi,q}(Q) = \bar{r} + \gamma P^{\pi,q}Q.$$

Again, one can show that Q^{π} is the unique fixed point of $T^{\pi,q}$, and this operator is also a γ -contraction.

Bellman Optimality Operator for Q. Define the Bellman optimality operator $T^q : \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} \to \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$:

$$T^{q}(Q)(s,a) = \bar{r}(s,a) + \gamma \sum_{s'} P_{s,s'}(a) \max_{a'} Q(s',a'), \quad \forall s \in \mathscr{S}, a \in \mathscr{A}.$$

Then,

- T^q is a γ -contraction in ℓ_{∞} norm.
- The unique fixed point Q^* of T^q satisfies:

$$Q^{*}(s,a) = \bar{r}(s,a) + \gamma \sum_{s'} P_{s,s'}(a) \max_{a'} Q^{*}(s',a').$$

• The optimal deterministic stationary policy π^* satisfies:

$$\pi^*(a \mid s) = \begin{cases} 1, & \text{if } a = \arg \max_{a'} Q^*(s, a'), \\ 0, & \text{otherwise.} \end{cases}$$

• The optimal value function is:

$$V^*(s) = \sum_{a \in \mathscr{A}} \pi^*(a|s)Q^*(s,a) = \max_{a \in \mathscr{A}} Q^*(s,a).$$