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Lecture Notes on Markov Chains and Markov Decision Processes (by courtesy from R. Srikant)
Instructor: Rasoul Etesami

Discrete-time Markov Chains

A stochastic process or a random process is an indexed collection of random variables, and if the
index set is discrete, then it is called a discrete-time process.

Let {Xk} denote a discrete-time random process that takes values in a finite set S called the
state space. A random process {Xk} is called a discrete-time Markov chain (DTMC), or simply a
Markov chain, if for any sequence,

P(Xk = sk | Xk−1 = sk−1, Xk−2 = sk−2, . . . , X0 = s0) = P(Xk = sk | Xk−1 = sk−1),

for any choice of si ∈ S and for all k.
Let pk denote the probability distribution of the random variable Xk, i.e., a row vector of

probabilities with pk(s) = P(Xk = s). Assuming S = {s1, s2, . . . , sn}, the distribution pk is given
by

pk = (pk(s1), pk(s2), . . . , pk(sn)) = (P(Xk = s1),P(Xk = s2), . . . ,P(Xk = sn)) .

By the Markov property, the evolution of the probability distribution pk is governed by

pk(s) =
∑

s′∈S
pk−1(s

′)P(Xk = s | Xk−1 = s′).

Let pk denote the probability distribution of the random variable Xk, i.e., a row vector of
probabilities pk(s) = P(Xk = s). Assuming S = {s1, s2, . . . , sn},

pk = (pk(s1), pk(s2), . . . , pk(sn)) = (P(Xk = s1), P(Xk = s2), . . . , P(Xk = sn)).

By the Markov property, the evolution of pk is given by

pk(s) =
∑

s′∈S

pk−1(s
′)P(Xk = s | Xk−1 = s′).

A Markov chain is said to be time homogeneous if P(Xk = s | Xk−1 = s′) is independent of the time
index k. In this discussion, we only consider time-homogeneous Markov chains.

Associated with each time-homogeneous Markov chain is a matrix called the transition
probability matrix, denoted by P, whose (s′, s)-th element is given by

P(s′, s) = P(X1 = s | X0 = s′).

Notice that
Pℓ(s′, s) = P(Xℓ = s | X0 = s′).

Using the transition matrix P, the evolution of pk can be written in vector form as:

pk = pk−1P = p0Pk. (13)

Thus, p0 and P capture all the relevant information about the dynamics of the Markov chain. The
matrix P can be encoded into a weighted directed graph, called the transition diagram, where
the vertex set is S , and the weight of an edge (s′, s) equals P(s′, s).
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Example Consider movements of a knight on a 4×4 chessboard starting at the most left corner.
1. Xk = knight’s location; randomly walks: It is a Markov chain.
2. Yk = knight’s location with no backtracking: It is not a Markov chain.
3. Uk = 0 if on white, 1 otherwise; no backtracking: It is a Markov chain.
4. Zk = (Yk, Yk−1): It is a Markov chain due to inclusion of sufficient history.
This example highlights the fact that the same dynamics may or may not be a Markov process

depending on the choice of the state space.

Definition 40. A state s is called reachable from s′ if ∃l ≥ 1 s.t. P l(s′, s)> 0. A Markov chain is
irreducible if every state is reachable from any other state.

Definition 41. The period of a state s ∈ S is defined by ds = gcd{l : P l(s, s) > 0}. A state s is
aperiodic if ds = 1. A Markov chain is aperiodic if all states are aperiodic.

Lemma 42. In an irreducible chain, all states share the same period. Thus, if one is aperiodic,
all are, and the Markov chain becomes aperiodic.

Theorem 43. A finite, irreducible Markov chain has a unique stationary distribution µ. If also
aperiodic, then limk→∞ pk = µ for all p0. Specifically, limk→∞ Pk = 1Tµ.

Example Consider a Markov chain with state space {1, 2,3} and the transition matrix:

P =





1/2 1/4 1/4
0 1/2 1/2
1 0 0





It is easy to see that the chain is irreducible, and state 1 is aperiodic. So, the chain is ergodic. We
can solve for the stationary distribution µ= µP to get

µ= [µ(1),µ(2),µ(3)] = [1/2, 1/4,1/4]

Now let T1 be the first return time to state 1. Then the expected value of T1 equals

E[T1] = 1 · 1
2 + 2 · 1

4 +
∞
∑

k=0

(k+ 3) · 1
8 ·
�1

2

�k
= 2.

An interesting observation in the above example is that µ(1) = 1
E[T1]

. The following lemma
confirms that this holds for any irreducible Markov chain.

Lemma 44. The stationary distribution of a finite state space, irreducible Markov chain satisfies

µ(i) =
1
E[Ti]

,

where Ti is the first return time to state i.

Intuitively speaking, 1/E[Ti] is the frequency of visits to state i. The ergodic theorem
confirms this interpretation and enables us to estimate µ using a single sample path.
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Theorem 45 (Ergodic Theorem). For a finite state space, irreducible Markov chain {Xk}, we
have

P

�

lim
ℓ→∞

1
ℓ

ℓ−1
∑

k=0

1(Xk = i) =
1
E[Ti]

�

= 1.

More generally, for any function c : S → R, we have

P

�

lim
ℓ→∞

1
ℓ

ℓ−1
∑

k=0

c(Xk) =
∑

i∈S
µ(i)c(i)

�

= 1,

and in particular,

lim
ℓ→∞
E

�

1
ℓ

ℓ−1
∑

k=0

c(Xk)

�

=
∑

i∈S
µ(i)c(i).

The above theorem is one of the most fundamental results in the theory of Markov chains. In
particular, assuming there is a cost c(·) associated with the state of the Markov chain, the ergodic
theorem states that the average cost observed on the sample path converges almost surely and in
mean to

∑

i∈S
µ(i)c(i).

Example Consider a a wireless link with Bernoulli(λ) arrivals, Bernoulli(ν) service, buffer
size B. Define state as number of packets in the buffer. Therefore, the state space equals
S = {0, 1, . . . , B}. In order to find the stationary distribution, one needs to solve the equation

µ= µP.

However, this task is almost impossible when the size of the matrix is large. Instead, we find the
stationary distribution using the flow equations: if we partition the transition diagram into two
sections A and B, the total transition flow from A to B in the steady state should be equal to the
total flow from B to A. That is,

∑

i∈A

∑

j∈B

µ(i)P(i, j) =
∑

j∈B

∑

i∈A

µ( j)P( j, i).

µ(0)λ(1− ν) = µ(1)ν(1−λ) ⇒ µ(1) =
λ(1− ν)
ν(1−λ)

µ(0)

µ(1)λ(1− ν) = µ(2)ν(1−λ) ⇒ µ(2) =
�

λ(1− ν)
ν(1−λ)

�2

µ(0)

...

µ(B − 2)λ(1− ν) = µ(B − 1)ν(1−λ) ⇒ µ(B − 1) =
�

λ(1− ν)
ν(1−λ)

�B−1

µ(0)

µ(B − 1)λ(1− ν) = µ(B)ν ⇒ µ(B) = (1−λ)
�

λ(1− ν)
ν(1−λ)

�B

µ(0)

The above equations together with
∑

i

µ(i) = 1,

give the stationary distribution of the Markov chain.
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Markov Decision Processes

A Markov Decision Process (MDP) is a controlled Markov chain, i.e., a Markov chain in which
the transition probabilities depend on an exogenous control parameter called action. More
specifically, the probability of transitioning to state s′ from state s upon taking action a is denoted
by Ps,s′(a) and is given by

Ps,s′(a) := P(S1 = s′ | S0 = s, A0 = a), ∀s, s′ ∈ S , ∀a ∈As.

In addition to the state space S , for each s ∈ S , we are given a finite action spaceAs which
denotes the set of possible actions at state s. For simplicity, we drop the dependency on s and
assume the action space isA for all s.

Another component is a one-step random reward function r : S ×A → R that assigns
rewards to each (s, a) pair. We denote its expectation as r̄(s, a) = E[r(s, a)]. Assuming r is
bounded, we can shift it to be non-negative without loss of generality.

Definition 46. An MDP is a tuple (S ,A , P, r) where:

• S is the finite state space;

• A is the finite action space;

• Ps,s′(a) = P(S1 = s′ | S0 = s, A0 = a) is the transition probability;

• r : S ×A → [0, rmax] is the one-step random reward function.

Definition 47. A policy is a probabilistic rule for choosing actions at each time step. Formally, a
policy is a family of distributions π= {πk}k≥0 where πk : S k+1 ×A k→∆A :

πk(a | {si , ai}k−1
i=0 , sk) := P(Ak = a | S0 = s0, A0 = a0, . . . , Sk = sk).

If a policy only depends on the current state, i.e., πk(a | {si , ai}k−1
i=0 , sk) = πk(a | sk) ∀k, then it is

called a Markov policy. If further, the policy is independent of time-step k, i.e., πk = π for all k,
it is called a stationary policy.

Remark 11. Under a stationary policy π, the MDP behaves like a Markov chain with transition
matrix Pπ = [Pπs,s′], where

Pπs,s′ =
∑

a∈A
π(a | s)Ps,s′(a), ∀s, s′ ∈ S .

Performance Measure: Actions in an MDP are chosen to optimize some performance measure.
One such measure is the expected discounted total reward, given by:

E

� L
∑

k=0

γkr(Sk, Ak)

�

or E

�∞
∑

k=0

γkr(Sk, Ak)

�

,

depending on whether the horizon is finite or infinite. The discount factor γ discounts future
rewards: If horizon is finite: γ ∈ [0,1]. Otherwise, if horizon is infinite: γ ∈ [0,1). Note that
the infinite sum is well-defined since r : S ×A → [0, rmax] is bounded.

Given an MDP (S ,A , P, r) and discount factor γ, the main goal is to find an optimal policy
{π∗k}k≥0 that maximizes the expected discounted total reward. Fortunately, it suffices to focus on
Markov policies.
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Theorem 48. For an MDP (S ,A , P, r) with discount factor γ (finite horizon or infinite horizon),
there exists a Markov policy {π∗k}k≥0 that maximizes the expected discounted total reward.

Our goal is to develop a systematic approach to find the optimum policy or evaluate the
performance of a fixed policy for a given MDP.

Finite Horizon MDPs

Let (S ,A , P, r,γ, L) denote a discounted finite-horizon MDP, with discount factor γ ∈ [0,1], and
horizon L <∞. Our goal is to find a Markov policy {πk}Lk=0 that maximizes the performance
measure:

E

� L
∑

k=0

γkr(Sk, Ak)

�

.

For a given policyπ= {πk}Lk=0, define value functions {V
π
k→L}

L
k=0, where each Vπk→L : S → R+

is the expected total discounted reward from time-step k to L, conditioned on Sk = s:

Vπk→L(s) := Eπ
� L
∑

l=k

γl−kr(Sl , Al)

�

�

�

�

�

Sk = s

�

.

Define expected reward and transition probability under policy πl :

r̄(s,πl(s)) :=
∑

a∈A
πl(a | s)r̄(s, a), Pπl

s,s′ :=
∑

a∈A
πl(a | s)Ps,s′(a).

Then we can recursively express:

Vπk→L(s) = Eπ

� L
∑

l=k

γl−kr(Sl ,πl(Sl))

�

�

�

�

�

Sk = s

�

= r̄(s,πk(s)) + γEπ

� L
∑

l=k+1

γl−k−1r(Sl ,πl(Sl))

�

�

�

�

�

Sk = s

�

= r̄(s,πk(s)) + γ
∑

s′∈S
Pπk

s,s′ Eπ

� L
∑

l=k+1

γl−k−1r(Sl ,πl(Sl))

�

�

�

�

�

Sk+1 = s′
�

.

Notice that the expectation in the right-hand side of the above equation equals Vπk+1→L(s
′).

Therefore, we have
Vπk→L(s) = r̄(s,πk(s)) + γ

∑

s′∈S
Pπk

s,s′V
π
k+1→L(s

′).

The functions {Vπk→L}
L
k=0 are called (state-)value functions, and they can be calculated using the

following recursive equations, called the Bellman equations:

VπL→L(s) = r̄(s,πL(s)),

Vπk→L(s) = r̄(s,πk(s)) + γ
∑

s′∈S
Pπk

s,s′V
π
k+1→L(s

′), ∀k = 0, . . . , L − 1.

Abusing notation, we can rewrite the Bellman equations in vector form. To that end, let r̄πk

denote the vector with entries r̄πk(s) := r̄(s,πk(s)). Then:

VπL→L = r̄πL , Vπk→L = r̄πk + γPπk Vπk+1→L ∀k = 0, . . . , L − 1.
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Example: Consider a finite-horizon discounted MDP with γ = 0.1, L = 2, S = {1,2, 3},
A = {a, b}, and transition probabilities:

P(a) =





0.2 0.2 0.6
0.3 0.4 0.3
0 1 0



 , P(b) =





0.4 0.2 0.4
0.2 0.7 0.1
0 0.8 0.2



 ,

Also, assume the expected reward vector r̄ = r has the form

r̄(1, a) = 2, r̄(1, b) = 1,

r̄(2, a) = −0.5, r̄(2, b) = 0,

r̄(3, a) = 3, r̄(3, b) = 1.

Consider the stationary policy π that takes an action uniformly at random at each time-step.
Calculate the family of value functions associated with this policy.

Solution: For such a uniform stationary policy π, we have

r̄π =





1.5
−0.25

2



 , Pπ =
1
2
(P(a) + P(b)) =





0.3 0.2 0.5
0.25 0.55 0.2

0 0.9 0.1



 .

Then, the Bellman equations can be calculated recursively as

Vπ2→2 = r̄π =





1.5
−0.25

2



 , Vπ1→2 = r̄π + γPπVπ2→2 =





1.64
−0.1892
1.9975



 ,

Vπ0→2 = r̄π + γPπVπ1→2 =





1.6454
−0.1793
2.0032



 .

Optimal Policies in Finite-Horizon MDPs

Our goal is to find a Markov policy that maximizes the expected discounted total reward over the
horizon L. Specifically, we solve:

max
π={πl}Ll=0

Eπ

� L
∑

l=0

γl r(Sl , Al)
�

�S0 = s

�

.

Let V ∗k→L(s) be the maximum expected discounted reward from time k to L:

V ∗k→L(s) = max
{πl}Ll=k

Eπ

� L
∑

l=k

γl−kr(Sl , Al)
�

�Sk = s

�

.
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By the same logic as in deriving Bellman equations, we have

V ∗0→L(s) = max
π={πl}Ll=0

Eπ

� L
∑

l=0

γl r(Sl , Al)

�

�

�

�

�

S0 = s

�

=max
π0

�

Eπ0
[r(S0, A0) |S0 = s] + γ max

π={πl}Ll=1

Eπ

� L
∑

l=1

γl−1r(Sl , Al)

�

�

�

�

�

S0 = s

��

=max
π0

�

r̄(s,π0(s)) + γ max
π={πl}Ll=1

∑

s′∈S
Pπ0

s,s′ Eπ

� L
∑

l=1

γl−1r(Sl , Al)

�

�

�

�

�

S1 = s′
��

=max
π0

�

r̄(s,π0(s)) + γ
∑

s′∈S
Pπ0

s,s′V
∗

1→L(s
′)

�

.

Notice that given V ∗1→L : S → R+, the right-hand side of the above equation is maximized for a
deterministic policy π0. Hence, we have

V ∗0→L(s) =max
a∈A

¨

r̄(s, a) + γ
∑

s′∈S
Ps,s′(a)V

∗
1→L(s

′)

«

.

The same argument generalizes to {V ∗k→L}
L
k=0, which results in the following set of recursive

equations known as Bellman optimality equations or dynamic programming equations:

V ∗L→L(s) =max
a∈A

r̄(s, a),

V ∗k→L(s) =max
a∈A

�

r̄(s, a) + γ
∑

s′
Ps,s′(a)V

∗
k+1→L(s

′)

�

, ∀k = 0, . . . , L − 1.

Once we compute {V ∗k→L}, we define the optimal deterministic policy π∗ = {π∗k}
L
k=0:

π∗L(a | s) =

¨

1 if a = argmaxa′∈A r̄(s, a′),
0 otherwise,

π∗k(a | s) =

¨

1 if a = arg maxa′∈A
�

r̄(s, a′) + γ
∑

s′ Ps,s′(a′)V ∗k+1→L(s
′)
�

,

0 otherwise,
∀k = 0, . . . , L − 1,

where ties are broken arbitrarily.

Example Find the optimal deterministic policy for the MDP in the previous example with L = 3
and γ = 0.65. Moreover, determine i) the best action A0 if S0 = 2, and ii) the best action A1 if
S1 = 2.

Solution. Using the Bellman optimality equation, we have

V ∗3→3 =





2
0
3



 , π∗3(a | 1) = 1, π∗3(b | 2) = 1, π∗3(a | 3) = 1,

V ∗2→3 =





3.43
0.475

3



 , π∗2(a | 1) = 1, π∗2(a | 2) = 1, π∗2(a | 3) = 1,
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V ∗1→3 =





3.6776
0.8773
3.3087



 , π∗1(a | 1) = 1, π∗1(a | 2) = 1, π∗1(a | 3) = 1,

V ∗0→3 =





3.8826
1.0924
3.5703



 , π∗0(a | 1) = 1, π∗0(b | 2) = 1, π∗0(a | 3) = 1.

Thus, if S0 = 2, best action is A0 = b, and if S1 = 2, the best action is A1 = a. In particular,
notice that the optimal policy π∗ is not stationary.

Infinite Horizon MDPs

Let (S ,A , P, r,γ) denote a discounted infinite-horizon MDP with discount factor γ ∈ [0, 1). The
objective is to find a Markov policy π= {πk}k≥0 that maximizes:

Eπ

�∞
∑

k=0

γkr(Sk, Ak)

�

.

Similar to finite-horizon MDPs, associated with each Markov policy π= {πk}∞k=0, there is a set of
value functions {Vπk→∞}k≥0. For now, we focus on stationary policies. Later on, we will show
that there exists a stationary policy that maximizes the expected discounted total reward.

For each stationary policy π, define the value function Vπ : S → R+:

Vπ(s) := Eπ

�∞
∑

k=0

γkr(Sk, Ak)
�

�S0 = s

�

.

Following a similar idea as in finite-horizon MDPs, let us rewrite Vπ(s) as follows:

Vπ(s) = Eπ

�

r(S0, A0) + γ
∞
∑

k=1

γk−1r(Sk, Ak)

�

�

�

�

�

S0 = s

�

= r̄(s,π(s)) + γ
∑

s′∈S
Pπs,s′ E

π

�∞
∑

k=1

γk−1r(Sk, Ak)

�

�

�

�

�

S1 = s′
�

= r̄(s,π(s)) + γ
∑

s′∈S
Pπs,s′ V

π(s′)

where r̄(s,π(s)) :=
∑

a∈A π(a | s) r̄(s, a) and Pπs,s′ :=
∑

a∈A π(a | s) Ps,s′(a), and the last equality
follows from the fact that the policy π is stationary. Rewriting it in the vector form, we have:

Vπ = r̄π + γPπVπ

Hence, Vπ satisfies a fixed point equation. In particular, if I − γPπ is invertible, then we have

Vπ = (I − γPπ)−1 r̄π.

It is easy to check that I − γPπ is invertible. In fact, its inverse is given by

(I − γPπ)−1 =
∞
∑

k=0

(γPπ)k,
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where (Pπ)0 := I . However, calculating the matrix inverse is computationally expensive.
Associated with each policy π, there is the operator Tπ : R|S |→ R|S | defined as

Tπ(V ) = r̄π + γPπV,

which is called the Bellman operator. By the above discussion, the value function Vπ is the unique
fixed point of the operator Tπ.

Remark 12. Notice the similarity between the Bellman equation Tπ(Vπ) = Vπ and the Bellman
equations for finite-horizon MDPs. Specifically, since the horizon is infinite here and the policy is
stationary, the value function does not depend on time.

Proposition 49. The operator Tπ is a contraction in ℓ∞ norm with contraction factor γ:

∥Tπ(V )− Tπ(V ′)∥∞ ≤ γ∥V − V ′∥∞,

where ∥V∥∞ =maxs∈S |V (s)|.

Proof: For any fixed s ∈ S , we have

|Tπ(V )(s)− Tπ(V ′)(s)|= γ

�

�

�

�

�

∑

s′
Pπs,s′(V (s

′)− V ′(s′))

�

�

�

�

�

≤ γ
∑

s′
Pπs,s′ |V (s

′)− V ′(s′)|

≤ γ∥V − V ′∥∞
∑

s′
Pπs,s′ = γ∥V − V ′∥∞.

Since this holds for all s, the operator Tπ is a γ-contraction. □

A known general result for contraction operators is the contraction mapping theorem. It
provides an algorithmic way to find the unique fixed point of a contraction operator defined on a
general Banach spaces.

Theorem 50. Let U : Rn→ Rn be a contraction with factor γ ∈ [0, 1) with respect to some norm
∥ · ∥, i.e.,

∥U(x)− U(y)∥ ≤ γ∥x − y∥.

Then U has a unique fixed point U(x∗) = x∗ such that for any x0 ∈ Rn:

∥Uk(x0)− x∗∥ ≤ γk∥x0 − x∗∥, and lim
k→∞

Uk(x0) = x∗.

Hence, to compute Vπ, we can apply value iteration:

Vk+1 := Tπ(Vk) = r̄π + γPπVk.

By Theorem 50 and Proposition 49, for any initial value vector V0, we have

∥(Tπ)k(V0)− Vπ∥∞ ≤ γk∥V0 − Vπ∥∞.
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Optimal Policy for Infinite-Horizon MDPs

Next, we want to find the optimum stationary policy π∗ for which Vπ
∗
(s)≥ Vπ(s) for all stationary

policies π. Notice that the existence of such a policy is not clear at this point. Nevertheless, let us
pretend such an optimal policy exists.

Let V ∗ denote the value function of the optimal stationary policy π∗. Following the same
argument as in the case of finite-horizon MDPs, we may expect V ∗ to satisfy some Bellman
optimality equations. Since the policy π∗ is stationary, the value function should not depend on
time, as we discussed above. Hence, intuitively speaking, we may expect the value function V ∗ to
satisfy the following Bellman optimality equation:

V ∗(s) =max
a∈A

�

r̄(s, a) + γ
∑

s′∈S
Ps,s′(a)V

∗(s′)

�

.

We will show that:

1. The above equation has a unique solution which corresponds to the value function of some
deterministic stationary policy π∗;

2. V ∗(s)≥ Vπ(s) for all stationary policies π;

3. V ∗(s)≥ Vπ(s) for any (possibly non-stationary) Markov policy π.

Let T : R|S |→ R|S | denote the Bellman optimality operator, which is defined as follows:

T (V )(s) =max
a∈A

�

r̄(s, a) + γ
∑

s′∈S
Ps,s′(a)V (s

′)

�

, ∀s ∈ S .

Notice that for any vector V ∈ R|S |, T (V ) corresponds to a stationary deterministic policy for
which

T (V )(s) = r̄(s,π(s)) + γ
∑

s′∈S
Ps,s′(π(s))V (s

′) = Tπ(V )(s),

where π(s) denotes the deterministic action of policy π in state s, i.e.,

π(s) ∈ argmax
a∈A

�

r̄(s, a) + γ
∑

s′∈S
Ps,s′(a)V (s

′)

�

.

Given the above equality, we say that the policy π is a greedy policy with respect to the vector V .
We want to show that T has a unique fixed point V ∗, which by the above argument is the

value function of some policy π∗. By the contraction mapping theorem, it is enough to show that
T is a contraction operator.

Proposition 51. The optimality operator T is a contraction in ℓ∞ norm with factor γ:

∥T (V )− T (V ′)∥∞ ≤ γ∥V − V ′∥∞.

Proof: Fix V, V ′ ∈ R|S |. Let π denote the greedy policy with respect to vector V . Consider a
fixed s ∈ S . We have:
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T (V )(s)− T (V ′)(s) = r̄(s,π(s)) + γ
∑

s′∈S
Ps,s′(π(s))V (s

′)−max
a∈A

�

r̄(s, a) + γ
∑

s′∈S
Ps,s′(a)V

′(s′)

�

≤ r̄(s,π(s)) + γ
∑

s′∈S
Ps,s′(π(s))V (s

′)−

�

r̄(s,π(s)) + γ
∑

s′∈S
Ps,s′(π(s))V

′(s′)

�

= γ
∑

s′∈S
Ps,s′(π(s))
�

V (s′)− V ′(s′)
�

≤ γ∥V − V ′∥∞.

Notice that the right-hand side of the above inequality does not depend on s ∈ S nor the
greedy policy π. Repeating the same argument for T (V ′)(s)− T (V )(s), and then applying this
bound for all s ∈ S , the result follows. □

In conclusion, by the contraction mapping theorem, T has a unique fixed point V ∗, which is
the value function of a deterministic (greedy) stationary policy π∗:

V ∗(s) = T (V ∗)(s) = r̄(s,π∗(s)) + γ
∑

s′
Ps,s′(π

∗(s))V ∗(s′) = Tπ
∗
(V ∗)(s).

Next, we will show that π∗ is the optimal stationary policy, i.e., V ∗(s)≥ Vπ(s) for all s ∈ S
and any stationary policy π. Let us first present two important properties of the Bellman
optimality operator T .

Proposition 52. The Bellman optimality operator T satisfies:

(i) Monotonicity: If V ≤ V ′ (elementwise), then T (V )≤ T (V ′).

(ii) Translation Invariance: For any c ∈ R, T (V + c · 1) = T (V ) + γc · 1.

Proof: (i) For all s, since V ≤ V ′, we have for any a:

r̄(s, a) + γ
∑

s′
Ps,s′(a)V (s

′)≤ r̄(s, a) + γ
∑

s′
Ps,s′(a)V

′(s′).

Taking the max over a on both sides gives T (V )(s)≤ T (V ′)(s).

(ii) For any s,

T (V + c1)(s) =max
a

�

r̄(s, a) + γ
∑

s′
Ps,s′(a)(V (s

′) + c)

�

=max
a

�

r̄(s, a) + γ
∑

s′
Ps,s′(a)V (s

′) + γc
∑

s′
Ps,s′(a)

�

= T (V )(s) + γc.

since
∑

s′ Ps,s′(a) = 1.
□
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Fix a stationary policy π. Notice that by the definition of T and Tπ, we have

T (Vπ)≥ Tπ(Vπ) = Vπ.

By the monotonicity of T , we have

T2(Vπ)≥ T (Vπ)≥ Vπ.

Repeating the same argument, we get

T k(Vπ)≥ Vπ for all k ∈ N.

Taking the limit as k→∞ and invoking the contraction mapping theorem, we obtain

V ∗ = lim
k→∞

T k(Vπ)≥ Vπ.

Hence, the policy π∗ is the optimal policy among all stationary policies. It remains to show that
π∗ is the optimal policy among all Markov policies.

Theorem 53. Given an infinite-horizon MDP (S ,A , P, r,γ), there exists a stationary policy π∗
that maximizes the expected discounted total reward. Moreover, V ∗ = T (V ∗) = Tπ

∗
(V ∗).

Proof: Let π= {πk}k≥0 be an optimal Markov policy. Define the time-dependent value function:

Vπk→∞(s) := Eπ

�∞
∑

l=k

γl−kr(Sl , Al)

�

�

�

�

�

Sk = s

�

.

Using Bellman equations, we have

Vπk→∞(s) = r̄(s,πk(s)) + γ
∑

s′
Pπk

s,s′V
π
k+1→∞(s

′) ∀k,

where

r(s,πℓ(s)) :=
∑

a∈A
πℓ(a | s) r(s, a) and r̄(s,πℓ(s)) :=

∑

a∈A
πℓ(a | s) r̄(s, a).

Next, we will show that
Vπk→∞ = T
�

Vπk+1→∞

�

for all k ≥ 0.

Suppose the contrary, i.e., for some k ≥ 0 and s ∈ S , we have

Vπk→∞(s)< T
�

Vπk+1→∞

�

(s).

Let π̃k denote the greedy policy with respect to T
�

Vπk+1→∞

�

, i.e.,

T
�

Vπk+1→∞

�

(s) = r̄(s, π̃k(s)) + γ
∑

s′∈S
Pπ̃k

s,s′ V
π
k+1→∞(s

′) = T π̃k
�

Vπk+1→∞

�

(s).

Define the policy π̃ to be exactly the same as π, except at index k, for which πk is replaced
with π̃k. By the above argument and simple induction, we have Vπ0→∞ ≤ V π̃0→∞ element-wise,
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with inequality being strict for some s ∈ S . This contradicts the assumption that π is optimal.
Hence, for all k ≥ 0, we have Vπk→∞ = T

�

Vπk+1→∞

�

. Repetitive use of this identity yields

Vπ0→∞ = T
�

Vπ1→∞
�

= T2
�

Vπ2→∞
�

= · · ·= T k
�

Vπk→∞
�

.

Since the random reward function is bounded by rmax, it readily follows that

Vπk→∞ ≤
rmax

1− γ
· 1,

where 1 ∈ R|S | is the all-ones vector.
By Theorem 51 and using the above inequalities, for any k > 0 we have:

∥Vπ0→∞ − V ∗∥∞ =


T k
�

Vπk→∞
�

− V ∗




∞

≤ γk


Vπk→∞ − V ∗




∞

≤
2γkrmax

1− γ
.

Taking the limit as k→∞, it follows that Vπ0→∞ = V ∗. By the same argument, we also have
Vπk→∞ = V ∗ for all k ≥ 0. It remains to notice that V ∗ is the value function of some stationary
policy π∗. □

Action-Value Function (Q-function)

So far, we have focused on the state-value function Vπ : S → R+ for a policy π, and the optimal
value function V ∗. Another key object is the action-value function or Q-function:

Definition 54. For a policy π, define the Q-function corresponding with π as

Qπ(s, a) := Eπ

�∞
∑

k=0

γkr(Sk, Ak)

�

�

�

�

�

S0 = s, A0 = a

�

, ∀s ∈ S , a ∈A .

That is, Qπ(s, a) is the expected total reward when action a is taken at state s, and policy π is
followed thereafter.

We note that by the above definition, for any s ∈ S , we have

Vπ(s) =
∑

a∈A
π(a | s)Qπ(s, a).

Bellman Equation for Q-function. We can derive the Bellman equation for Qπ as follows:

Qπ(s, a) = E[r(s, a)] +Eπ

�∞
∑

k=1

γkr(Sk, Ak)

�

�

�

�

�

S0 = s, A0 = a

�

= r̄(s, a) + γ
∑

s′,a′
P(S1 = s′ | S0 = s, A0 = a) ·π(a′ | s′) ·Qπ(s′, a′).

Let the transition kernel under π be defined as:

Pπ,q
(s,a),(s′,a′) := P(S1 = s′ | S0 = s, A0 = a) ·π(a′ | s′).
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Then the Bellman equation becomes:

Qπ = r̄ + γPπ,qQπ,

where Qπ ∈ R|S ||A |, r̄ is the reward vector over (s, a) pairs, and Pπ,q ∈ R|S ||A |×|S ||A |+ is the
transition matrix under π.

Bellman Operator for Q. Define the operator Tπ,q : R|S ||A |→ R|S ||A |:

Tπ,q(Q) = r̄ + γPπ,qQ.

Again, one can show that Qπ is the unique fixed point of Tπ,q, and this operator is also a
γ-contraction.

Bellman Optimality Operator for Q. Define the Bellman optimality operator T q : R|S ||A |→
R|S ||A |:

T q(Q)(s, a) = r̄(s, a) + γ
∑

s′
Ps,s′(a)max

a′
Q(s′, a′), ∀s ∈ S , a ∈A .

Then,

• T q is a γ-contraction in ℓ∞ norm.

• The unique fixed point Q∗ of T q satisfies:

Q∗(s, a) = r̄(s, a) + γ
∑

s′
Ps,s′(a)max

a′
Q∗(s′, a′).

• The optimal deterministic stationary policy π∗ satisfies:

π∗(a | s) =

¨

1, if a = arg maxa′Q
∗(s, a′),

0, otherwise.

• The optimal value function is:

V ∗(s) =
∑

a∈A
π∗(a|s)Q∗(s, a) =max

a∈A
Q∗(s, a).
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