Lecture No 20 May 17, 2022 (Tue)

§22 Neumann problem and local time
» One can give a probabilistic representation of a solution
of Neumann boundary value problem for general elliptic or
parabolic PDEs by means of SDEs.
» Here, for simplicity, we consider only the heat equation in
one-dimensional space.
> We set R, := (0,00), R, = [0,00).

22.1 Neumann boundary value problem
Let B = (B:)t>0 be a 1-dimensional Brownian motion starting
at x € R in general. For a given f € Cp(R,), set

u(t,x) = E[f(|B:])], t>0, xcR,. (1)

Then, we see u € C=((0,00) x R;) N C([0,00) x R, ) and u
satisfies the following Cauchy problem (2)—(3) of the heat
equation with the Neumann boundary condition (4).



a(tax)_ Eax2(t7x)a_ t>0, xRy, (2)
U(O,X) - (X)7 X € R+, (3)
& u(t,0)=0, t>0, (4)

where 0" denotes the right derivative at x = 0.

€D First, we extend f to the whole line R as

f(x) = f(=x), x €& (—00,0)
and set ii(t, x) == E[f(B;)] for Yx € R. Note f € C,(R).
Then, ii(t, x) = u(t,x),x € R,.. By this, we see that u
satisfies (2) and (3). Moreover, by the symmetry of f and the
Brownian motion B;, we see that (¢, x) is an even function in
x and, in particular, we obtain (4). O

We call [B| := (|B¢|)>0 a reflecting Brownian motion at 0. It
is a diffusion process (strong Markov process) on R, .



22.2 Local time

Since |B| := (| Bt|)+>0 is a submartingale, it has a Doob-Meyer
decomposition: |B;| = M; + L;, where M, is a continuous
martingale and L, is a continuous increasing process.

In general, let us consider the reflection at a € R.

[Theorem 22.1] (Tanaka's formula) For Ya € R, there exists a
continuous increasing process L7 such that

t
|B: — a| = |By — 4 —|—/ sgn(Bs —a)dBs + L7, Yt>0,as., (b)
0
where sgn x = 1(x > 0),= —1(x < 0). O

Note that, for ¢(x) := |x — a, its derivatives in the sense of
generalized functions are given by

¥'(x) = sgn(x — a), ¢"(x) = 20,(x).




[Proof] Take an approximating sequence ¢,(x) € C3(R) of
@(x) := |x — a| such that, as n — o0,

- pn(x) converges to ¢(x) uniformly on R,
- ¢! (x) converges to sgn(x — a) for "x # a,

- they satisfy sup,, , |¢},(x)| < oo and ¢} (x) > 0.

Then, one can apply 1t6's formula for ,(B;) and obtain

on(8) = enB) + [ (B aB+ 3 [ (BB (0

However, as n — oo, ¢,(B;) converges to |B; — a| uniformly
int € [0, T] in a.s. sense.



For the 2nd term of (6), by Doob's inequality and Itd
isometry, and then applying Lebesgue's convergence theorem
(noting Bs # a a.s.), we have

t t
| eutBae.~ [ sene. - 2B,
0 0

T
<4 / Ell(Bs) — sen(Bs — a)[2] ds — 0.
0

n—o0

2

E | sup
0<t<T

Therefore, the 2nd term converges to fot sgn(Bs — a) dB
uniformly in t € [0, T] in probability sense.

In particular, regarding (6) as an equation determining the last
term L7, =3 fo ©"(Bs) ds, by taking subsequence n’ — oo (if
necessary), each term converges uniformly in t € [0, T] in a.s.
sense. Therefore, setting L? the limit of Lfn, since Lan is a

continuous increasing process, L7 has the same property and
(5) holds. O



[Remark] (i) Recall that, for ¢(x) := |x — al, its derivatives in
the sense of generalized functions are given by

¢'(x) = sgn(x — a), ¢"(x) = 20a(x).
Thus, if 1td's formula is applicable for p(B;), we would obtain
a formal expression L2 = fot 0,(Bs) ds. Here, 0, is the Dirac's
d-measure at a. Indeed, it is known that for Vf € Cp(R),

/Rf(a)L;_?da:/Otf(Bs)dS a.s. (7)

holds. Formally saying, this can be observed by

/Rf(a)L?da:/Rf(a) da/0t5a(Bs) ds

:/Ot ds/Rf(a)cSBS(a) da:/otf(Bs)ds.



Remark] (ii) Taking 1, instead of §,, we have

{a}
fot 123(Bs) ds = 0 a.s. (differently from L3), that is, the
sojourn time (staying time) of the Brownian motion at a single
point a is 0. Indeed, this is seen from

E[/Ot 1{a(Bs) dS} = /Ot Ell(s)(Bs)] ds

Fubini's theorem
t
:/ P(Bs = a)ds = 0.
0

(iii) It is known that L2 has a continuous modification in
(a, t). O



[Proposition 22.2] L2 increases only at t such that B, = a.
Namely, fot 1{p,2ay dLZ = 0 a.s. holds, where dL? is the
Stieltjes measure determined from L2. O

[Proof] Assume a = 0 for simplicity. Then, by (5) (Tanaka's
formula) with a = 0, we have

t
Bl = 180l + [ sen(E.) dB + L2 ®)
0
Then, applying It6's formula for d(|B;|) with ¢(x) = x?,
since '(x) = 2x, ©"(x) = 2,d|B;| = sgn(B;) dB; + dL° and
©(|B:|) = B?, we have

t t t
Bf:Bg+2/ |B$|sgn(Bs)st+2/ |Bs\dLS+/ sgn(B;)? ds
0 0 0
t t
:B§+2/ Bsst+2/ |Bs| dL? 4 t,
0 0

from which we obtain [; |Bs| dL2 = 0. This implies that
|Bs| = 0 for dL%a.e.s, so that we obtain the conclusion (with
a=0). O



[Definition 22.1] We call L? the local time of the Brownian

motion B; at a. O]

It is known that the local time has the following expression:
1t

L2 = LIIQ 2% |, lja—c,ate)(Bs) ds, as. 9)

Indeed, taking f(a) = 5-1[p—c pie)(a) in (7), we have

1 b+e 1 t
L2da= —/ 1 b—e,b+e (Bs) ds.
t 2¢ /o [b=e.bte]

However, by Remark (iii), L2 is continuous in a. Therefore, as
£ 1 0, LHS converges to L?, and this shows (9) for a = b.

2e b—e

As we saw in Remark (ii), the sojourn time of the Brownian
motion at the point a is 0. However, the sojourn time on its
neighborhood [a — €, a + €] scaled by (2¢)! has the limit L?
as € | 0. It is called the local time in a sense that we consider
the time spent by the Brownian motion in a neighborhood of a
under a proper scaling.



22.3 Skorohod’s SDE

Reflecting Brownian motion can be constructed also by solving
Skorohod's SDE. It is a problem to find a pair (X;, 1), which
satisfies the following conditions (10)—(12), given a starting
point x € R, and the Brownian motion B, starting at 0:

X; is an R -valued continuous process (10)
1 is a continuous increasing process s.t. ¥y = 0,

and it increases only at t such that X; =0,
t
that is, / Lioy(Xs) dips = ¢ ass. (11)
0
Xt:X‘f—Bt‘i_'lpt (12)

This problem can be discussed for each fixed w. Indeed, let a
sample path B, € W = C([0, o0),R) be given,



[Lemma 22.3] (X:, v;) satisfying (10)—(12) exists uniquely.
Indeed, v is given by
Yy = sup {(—x — Bs) V 0}.

s€[0,t]
In particular, when x = 0, we have ¢, = —inf,<; B;. O
[Proof] The picture of the next page suggests that we may
take 1 as above. To shov~v urJiqueness, let us assume that
there exist another pair (X;, ;) satisfying the conditions

(10)-(12). Then, since X; — X; = ¢y — 1), is of bounded
variation in t, we have

0< (X — ;(t)z = 2/Ot(Xs - )?S) d(s — 125)

t t
:—2/ Xsdws—z/ Xs dips <0
0 0
Here, we use (11) for the 2nd equality and (10), (11) for the

last inequality. Therefore, we obtain X; = X;, which implies
the uniqueness. O



.
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Solution of the Skorohod equation




The next theorem shows that X; = B; — infs<; Bs, which is a
solution of Skorohod's SDE when x = 0, is a reflecting
Brownian motion (or has the same distribution).

[Theorem 22.4] (Lévy) Two dimensional processes (|B:|, L?)
and (B; — I;,—1;) have a same distribution, where
lt = infSSt BS- D

[Proof] Set B, := fot sgn(Bs) dBs, the term of stochastic
integral appearing in Tanaka's formula (8) with a = 0. Then,
B, is a martingale with quadratic variation

(B), = fot sgn(Bs)ZNds =t
Therefore, by Lévy's theorem, B; is a Brownian motion.
Moreover, given this B, first, (|B|, %) is a solution of
Skorohod equation with a starting point x = 0. Therefore, by
the uniqueness of the solution, we have

(|B], L2) = (Bt infoce By, — infoce By).
However, by replacing Bt with B;, the distribution of the RHS
does not change so that we obtain the conclusion. O



Part Ill. Applications of Stochastic Analysis

In this part, we discuss stochastic partial differential equations
(SPDEs) as an application of stochastic analysis.
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