Lecture No 20 May 17, 2022 (Tue)

$\S{22}$ Neumann problem and local time

- One can give a probabilistic representation of a solution of Neumann boundary value problem for general elliptic or parabolic PDEs by means of SDEs.
- Here, for simplicity, we consider only the heat equation in one-dimensional space.

• We set
$$\mathbb{R}_+ := (0, \infty), \overline{\mathbb{R}}_+ = [0, \infty).$$

22.1 Neumann boundary value problem

Let $B = (B_t)_{t \ge 0}$ be a 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ in general. For a given $f \in C_b(\overline{\mathbb{R}}_+)$, set

$$u(t,x) := E_x[f(|B_t|)], \quad t \ge 0, \ x \in \overline{\mathbb{R}}_+.$$
 (1)

Then, we see $u \in C^{\infty}((0,\infty) \times \mathbb{R}_+) \cap C([0,\infty) \times \mathbb{R}_+)$ and u satisfies the following Cauchy problem (2)–(3) of the heat equation with the Neumann boundary condition (4).

$$\begin{aligned} \frac{\partial u}{\partial t}(t,x) &= \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(t,x), \quad t > 0, \ x \in \mathbb{R}_+, \\ u(0,x) &= f(x), \quad x \in \bar{\mathbb{R}}_+, \\ \partial^+ u(t,0) &= 0, \quad t > 0, \end{aligned} \tag{2}$$

where ∂^+ denotes the right derivative at x = 0.

ⓒ First, we extend f to the whole line \mathbb{R} as $\tilde{f}(x) := f(-x), \quad x \in (-\infty, 0)$ and set $\tilde{u}(t, x) := E_x[\tilde{f}(B_t)]$ for $\forall x \in \mathbb{R}$. Note $\tilde{f} \in C_b(\mathbb{R})$. Then, $\tilde{u}(t, x) = u(t, x), x \in \mathbb{R}_+$. By this, we see that usatisfies (2) and (3). Moreover, by the symmetry of \tilde{f} and the Brownian motion B_t , we see that $\tilde{u}(t, x)$ is an even function in x and, in particular, we obtain (4). □

We call $|B| := (|B_t|)_{t \ge 0}$ a reflecting Brownian motion at 0. It is a diffusion process (strong Markov process) on $\overline{\mathbb{R}}_+$.

22.2 Local time

Since $|B| := (|B_t|)_{t \ge 0}$ is a submartingale, it has a Doob-Meyer decomposition: $|B_t| = M_t + L_t$, where M_t is a continuous martingale and L_t is a continuous increasing process.

In general, let us consider the reflection at $a \in \mathbb{R}$.

[Theorem 22.1] (Tanaka's formula) For $\forall a \in \mathbb{R}$, there exists a continuous increasing process L_t^a such that

$$|B_t - a| = |B_0 - a| + \int_0^t \operatorname{sgn}(B_s - a) dB_s + L_t^a, \quad \forall t \ge 0, \text{ a.s.},$$
 (5)

where $sgn x = 1(x \ge 0), = -1(x < 0).$

Note that, for $\varphi(x) := |x - a|$, its derivatives in the sense of generalized functions are given by

$$\varphi'(x) = \operatorname{sgn}(x-a), \varphi''(x) = 2\delta_a(x).$$

[Proof] Take an approximating sequence $\varphi_n(x) \in C^2(\mathbb{R})$ of $\varphi(x) := |x - a|$ such that, as $n \to \infty$,

- $\cdot \ arphi_n(x)$ converges to arphi(x) uniformly on \mathbb{R} ,
- $\cdot \ arphi_n(x)$ converges to $\mathrm{sgn}(x-a)$ for ${}^{orall}x
 eq a$,
- $\cdot \text{ they satisfy } \sup_{n,x} |\varphi_n'(x)| < \infty \text{ and } \varphi_n''(x) \geq 0.$

Then, one can apply Itô's formula for $\varphi_n(B_t)$ and obtain

$$\varphi_n(B_t) = \varphi_n(B_0) + \int_0^t \varphi_n'(B_s) \, dB_s + \frac{1}{2} \int_0^t \varphi_n''(B_s) \, ds. \quad (6)$$

However, as $n \to \infty$, $\varphi_n(B_t)$ converges to $|B_t - a|$ uniformly in $t \in [0, T]$ in a.s. sense.

For the 2nd term of (6), by Doob's inequality and Itô isometry, and then applying Lebesgue's convergence theorem (noting $B_s \neq a$ a.s.), we have

$$E\left[\sup_{0\leq t\leq T}\left|\int_{0}^{t}\varphi_{n}'(B_{s})\,dB_{s}-\int_{0}^{t}\operatorname{sgn}(B_{s}-a)\,dB_{s}\right|^{2}\right]$$
$$\leq 4\int_{0}^{T}E[|\varphi_{n}'(B_{s})-\operatorname{sgn}(B_{s}-a)|^{2}]\,ds\xrightarrow[n\to\infty]{}0.$$

Therefore, the 2nd term converges to $\int_0^t \operatorname{sgn}(B_s - a) dB_s$ uniformly in $t \in [0, T]$ in probability sense.

In particular, regarding (6) as an equation determining the last term $L_{t,n}^a := \frac{1}{2} \int_0^t \varphi_n''(B_s) ds$, by taking subsequence $n' \to \infty$ (if necessary), each term converges uniformly in $t \in [0, T]$ in a.s. sense. Therefore, setting L_t^a the limit of $L_{t,n}^a$, since $L_{t,n}^a$ is a continuous increasing process, L_t^a has the same property and (5) holds.

[Remark] (i) Recall that, for $\varphi(x) := |x - a|$, its derivatives in the sense of generalized functions are given by

$$\varphi'(x) = \operatorname{sgn}(x-a), \varphi''(x) = 2\delta_a(x).$$

Thus, if Itô's formula is applicable for $\varphi(B_t)$, we would obtain a formal expression $L_t^a = \int_0^t \delta_a(B_s) ds$. Here, δ_a is the Dirac's δ -measure at a. Indeed, it is known that for $\forall f \in C_b(\mathbb{R})$,

$$\int_{\mathbb{R}} f(a) L_t^a \, da = \int_0^t f(B_s) \, ds \quad \text{a.s.} \tag{7}$$

holds. Formally saying, this can be observed by

$$\int_{\mathbb{R}} f(a) L_t^a da = \int_{\mathbb{R}} f(a) da \int_0^t \delta_a(B_s) ds$$
$$= \int_0^t ds \int_{\mathbb{R}} f(a) \delta_{B_s}(a) da = \int_0^t f(B_s) ds.$$

[Remark] (ii) Taking $1_{\{a\}}$ instead of δ_a , we have $\int_0^t 1_{\{a\}}(B_s) ds = 0$ a.s. (differently from L_t^a), that is, the sojourn time (staying time) of the Brownian motion at a single point *a* is 0. Indeed, this is seen from

$$E\left[\int_0^t \mathbb{1}_{\{a\}}(B_s) \, ds\right] \underset{\text{Fubini's theorem}}{=} \int_0^t E[\mathbb{1}_{\{a\}}(B_s)] \, ds$$
$$= \int_0^t P(B_s = a) \, ds = 0.$$

(iii) It is known that L_t^a has a continuous modification in (a, t).

[Proposition 22.2] L_t^a increases only at t such that $B_t = a$. Namely, $\int_0^t \mathbf{1}_{\{B_s \neq a\}} dL_s^a = 0$ a.s. holds, where dL_s^a is the Stieltjes measure determined from L_s^a .

[Proof] Assume a = 0 for simplicity. Then, by (5) (Tanaka's formula) with a = 0, we have

$$|B_t| = |B_0| + \int_0^t \operatorname{sgn}(B_s) \, dB_s + L_t^0.$$
(8)

Then, applying Itô's formula for $d\varphi(|B_t|)$ with $\varphi(x) = x^2$, since $\varphi'(x) = 2x$, $\varphi''(x) = 2$, $d|B_t| = \operatorname{sgn}(B_t) dB_t + dL_t^0$ and $\varphi(|B_t|) = B_t^2$, we have

$$B_t^2 = B_0^2 + 2\int_0^t |B_s| \operatorname{sgn}(B_s) dB_s + 2\int_0^t |B_s| dL_s^0 + \int_0^t \operatorname{sgn}(B_s)^2 ds$$
$$= B_0^2 + 2\int_0^t B_s dB_s + 2\int_0^t |B_s| dL_s^0 + t,$$

from which we obtain $\int_0^t |B_s| dL_s^0 = 0$. This implies that $|B_s| = 0$ for dL_s^0 -a.e.s, so that we obtain the conclusion (with a = 0).

[Definition 22.1] We call L_t^a the local time of the Brownian motion B_t at a.

It is known that the local time has the following expression:

$$L_t^{a} = \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{[a-\varepsilon, a+\varepsilon]}(B_s) \, ds, \quad \text{a.s.}$$
(9)

Indeed, taking $f(a) = \frac{1}{2\varepsilon} \mathbb{1}_{[b-\varepsilon,b+\varepsilon]}(a)$ in (7), we have $\frac{1}{2\varepsilon} \int_{b-\varepsilon}^{b+\varepsilon} L_t^a \, da = \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{[b-\varepsilon,b+\varepsilon]}(B_s) \, ds.$

However, by Remark (iii), L_t^a is continuous in a. Therefore, as $\varepsilon \downarrow 0$, LHS converges to L_t^b , and this shows (9) for a = b.

As we saw in Remark (ii), the sojourn time of the Brownian motion at the point *a* is 0. However, the sojourn time on its neighborhood $[a - \varepsilon, a + \varepsilon]$ scaled by $(2\varepsilon)^{-1}$ has the limit L_t^a as $\varepsilon \downarrow 0$. It is called the local time in a sense that we consider the time spent by the Brownian motion in a neighborhood of *a* under a proper scaling.

22.3 Skorohod's SDE

Reflecting Brownian motion can be constructed also by solving Skorohod's SDE. It is a problem to find a pair (X_t, ψ_t) , which satisfies the following conditions (10)–(12), given a starting point $x \in \mathbb{R}_+$ and the Brownian motion B_t starting at 0:

$$\begin{aligned} X_t \text{ is an } \bar{\mathbb{R}}_+ \text{-valued continuous process} & (10) \\ \psi_t \text{ is a continuous increasing process s.t. } \psi_0 &= 0, \\ \text{ and it increases only at } t \text{ such that } X_t &= 0, \\ \text{ that is, } \int_0^t \mathbf{1}_{\{0\}}(X_s) \, d\psi_s &= \psi_t \text{ a.s.} & (11) \\ X_t &= x + B_t + \psi_t & (12) \end{aligned}$$

This problem can be discussed for each fixed ω . Indeed, let a sample path $B_t \in W = C([0,\infty),\mathbb{R})$ be given,

[Lemma 22.3] (X_t , ψ_t) satisfying (10)–(12) exists uniquely. Indeed, ψ is given by

$$\psi_t = \sup_{s \in [0,t]} \{ (-x - B_s) \lor 0 \}.$$

In particular, when x = 0, we have $\psi_t = -\inf_{s \le t} B_s$.

[Proof] The picture of the next page suggests that we may take ψ_t as above. To show uniqueness, let us assume that there exist another pair $(\tilde{X}_t, \tilde{\psi}_t)$ satisfying the conditions (10)–(12). Then, since $X_t - \tilde{X}_t = \psi_t - \tilde{\psi}_t$ is of bounded variation in t, we have

$$0 \leq (X_t - \tilde{X}_t)^2 = 2 \int_0^t (X_s - \tilde{X}_s) d(\psi_s - \tilde{\psi}_s)$$
$$= -2 \int_0^t \tilde{X}_s d\psi_s - 2 \int_0^t X_s d\tilde{\psi}_s \leq 0$$

Here, we use (11) for the 2nd equality and (10), (11) for the last inequality. Therefore, we obtain $X_t = \tilde{X}_t$, which implies the uniqueness.

Solution of the Skorohod equation

The next theorem shows that $X_t = B_t - \inf_{s \le t} B_s$, which is a solution of Skorohod's SDE when x = 0, is a reflecting Brownian motion (or has the same distribution).

[Theorem 22.4] (Lévy) Two dimensional processes $(|B_t|, L_t^0)$ and $(B_t - I_t, -I_t)$ have a same distribution, where $I_t := \inf_{s \le t} B_s$.

[Proof] Set $\tilde{B}_t := \int_0^t \operatorname{sgn}(B_s) dB_s$, the term of stochastic integral appearing in Tanaka's formula (8) with a = 0. Then, \tilde{B}_t is a martingale with quadratic variation

 $\langle \tilde{B} \rangle_t = \int_0^t \operatorname{sgn}(B_s)^2 ds = t.$

Therefore, by Lévy's theorem, \tilde{B}_t is a Brownian motion. Moreover, given this \tilde{B}_t first, $(|B_t|, L_t^0)$ is a solution of Skorohod equation with a starting point x = 0. Therefore, by the uniqueness of the solution, we have

 $(|B_t|, L_t^0) = (\tilde{B}_t - \inf_{s \le t} \tilde{B}_s, -\inf_{s \le t} \tilde{B}_s).$ However, by replacing \tilde{B}_t with B_t , the distribution of the RHS does not change so that we obtain the conclusion. Part III. Applications of Stochastic Analysis

In this part, we discuss stochastic partial differential equations (SPDEs) as an application of stochastic analysis.

Textbooks:

[4] T. Funaki, Lectures on Random Interfaces, SpringerBriefs, 2016.
[7] T. Funaki, Y. Otobe, B. Xie (舟木直久, 乙部厳己, 謝賓): 確率偏微分方程式, 岩波書店, 2019.

SPRINGER BRIEFS IN PROBABILITY AND MATRICAL STATISTICS	[1:20748	
Edition Fundi Lectures on Random Interfaces	確率偏微分方利 先大点。 乙醇尼己 夏、育	た 日
Springer	178.845	