
Lecture No 20 May 17, 2022 (Tue)

§22 Neumann problem and local time

▶ One can give a probabilistic representation of a solution
of Neumann boundary value problem for general elliptic or
parabolic PDEs by means of SDEs.

▶ Here, for simplicity, we consider only the heat equation in
one-dimensional space.

▶ We set R+ := (0,∞), R̄+ = [0,∞).

22.1 Neumann boundary value problem
Let B = (Bt)t≥0 be a 1-dimensional Brownian motion starting
at x ∈ R in general. For a given f ∈ Cb(R̄+), set

u(t, x) := Ex [f (|Bt |)], t ≥ 0, x ∈ R̄+. (1)

Then, we see u ∈ C∞((0,∞)× R+) ∩ C ([0,∞)× R̄+) and u
satisfies the following Cauchy problem (2)–(3) of the heat
equation with the Neumann boundary condition (4).
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∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x), t > 0, x ∈ R+, (2)

u(0, x) = f (x), x ∈ R̄+, (3)

∂+u(t, 0) = 0, t > 0, (4)

where ∂+ denotes the right derivative at x = 0.

∵⃝ First, we extend f to the whole line R as
f̃ (x) := f (−x), x ∈ (−∞, 0)

and set ũ(t, x) := Ex [f̃ (Bt)] for
∀x ∈ R. Note f̃ ∈ Cb(R).

Then, ũ(t, x) = u(t, x), x ∈ R̄+. By this, we see that u
satisfies (2) and (3). Moreover, by the symmetry of f̃ and the
Brownian motion Bt , we see that ũ(t, x) is an even function in
x and, in particular, we obtain (4).

We call |B | := (|Bt |)t≥0 a reflecting Brownian motion at 0. It
is a diffusion process (strong Markov process) on R̄+.
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22.2 Local time
Since |B | := (|Bt |)t≥0 is a submartingale, it has a Doob-Meyer
decomposition: |Bt | = Mt + Lt , where Mt is a continuous
martingale and Lt is a continuous increasing process.

In general, let us consider the reflection at a ∈ R.

[Theorem 22.1] (Tanaka’s formula) For ∀a ∈ R, there exists a
continuous increasing process Lat such that

|Bt − a| = |B0 − a|+
∫ t

0

sgn(Bs − a) dBs + Lat , ∀t ≥ 0, a.s., (5)

where sgn x = 1(x ≥ 0),= −1(x < 0).

Note that, for φ(x) := |x − a|, its derivatives in the sense of
generalized functions are given by

φ′(x) = sgn(x − a), φ′′(x) = 2δa(x).
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[Proof] Take an approximating sequence φn(x) ∈ C 2(R) of
φ(x) := |x − a| such that, as n → ∞,

· φn(x) converges to φ(x) uniformly on R,
· φ′

n(x) converges to sgn(x − a) for ∀x ̸= a,

· they satisfy supn,x |φ′
n(x)| <∞ and φ′′

n(x) ≥ 0.

Then, one can apply Itô’s formula for φn(Bt) and obtain

φn(Bt) = φn(B0) +

∫ t

0

φ′
n(Bs) dBs +

1

2

∫ t

0

φ′′
n(Bs) ds. (6)

However, as n → ∞, φn(Bt) converges to |Bt − a| uniformly
in t ∈ [0,T ] in a.s. sense.
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For the 2nd term of (6), by Doob’s inequality and Itô
isometry, and then applying Lebesgue’s convergence theorem
(noting Bs ̸= a a.s.), we have

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

φ′
n(Bs) dBs −

∫ t

0

sgn(Bs − a) dBs

∣∣∣∣2
]

≤ 4

∫ T

0

E [|φ′
n(Bs)− sgn(Bs − a)|2] ds −→

n→∞
0.

Therefore, the 2nd term converges to
∫ t

0
sgn(Bs − a) dBs

uniformly in t ∈ [0,T ] in probability sense.

In particular, regarding (6) as an equation determining the last
term Lat,n :=

1
2

∫ t

0
φ′′
n(Bs) ds, by taking subsequence n′ → ∞ (if

necessary), each term converges uniformly in t ∈ [0,T ] in a.s.
sense. Therefore, setting Lat the limit of Lat,n, since Lat,n is a
continuous increasing process, Lat has the same property and
(5) holds.
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[Remark] (i) Recall that, for φ(x) := |x − a|, its derivatives in
the sense of generalized functions are given by

φ′(x) = sgn(x − a), φ′′(x) = 2δa(x).
Thus, if Itô’s formula is applicable for φ(Bt), we would obtain
a formal expression Lat =

∫ t

0
δa(Bs) ds. Here, δa is the Dirac’s

δ-measure at a. Indeed, it is known that for ∀f ∈ Cb(R),∫
R
f (a)Lat da =

∫ t

0

f (Bs) ds a.s. (7)

holds. Formally saying, this can be observed by∫
R
f (a)Lat da =

∫
R
f (a) da

∫ t

0

δa(Bs) ds

=

∫ t

0

ds

∫
R
f (a)δBs (a) da =

∫ t

0

f (Bs) ds.
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[Remark] (ii) Taking 1{a} instead of δa, we have∫ t

0
1{a}(Bs) ds = 0 a.s. (differently from Lat ), that is, the

sojourn time (staying time) of the Brownian motion at a single
point a is 0. Indeed, this is seen from

E
[ ∫ t

0

1{a}(Bs) ds
]

=
Fubini’s theorem

∫ t

0

E [1{a}(Bs)] ds

=

∫ t

0

P(Bs = a) ds = 0.

(iii) It is known that Lat has a continuous modification in
(a, t).
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[Proposition 22.2] Lat increases only at t such that Bt = a.
Namely,

∫ t

0
1{Bs ̸=a} dL

a
s = 0 a.s. holds, where dLas is the

Stieltjes measure determined from Las .

[Proof] Assume a = 0 for simplicity. Then, by (5) (Tanaka’s
formula) with a = 0, we have

|Bt | = |B0|+
∫ t

0

sgn(Bs) dBs + L0t . (8)

Then, applying Itô’s formula for dφ(|Bt |) with φ(x) = x2,
since φ′(x) = 2x , φ′′(x) = 2, d |Bt | = sgn(Bt) dBt + dL0t and
φ(|Bt |) = B2

t , we have

B2
t = B2

0 + 2

∫ t

0

|Bs |sgn(Bs) dBs + 2

∫ t

0

|Bs | dL0s +
∫ t

0

sgn(Bs)
2 ds

= B2
0 + 2

∫ t

0

Bs dBs + 2

∫ t

0

|Bs | dL0s + t,

from which we obtain
∫ t

0
|Bs | dL0s = 0. This implies that

|Bs | = 0 for dL0s -a.e.s, so that we obtain the conclusion (with
a = 0).
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[Definition 22.1] We call Lat the local time of the Brownian
motion Bt at a.

It is known that the local time has the following expression:

Lat = lim
ε↓0

1

2ε

∫ t

0

1[a−ε,a+ε](Bs) ds, a.s. (9)

Indeed, taking f (a) = 1
2ε
1[b−ε,b+ε](a) in (7), we have

1

2ε

∫ b+ε

b−ε

Lat da =
1

2ε

∫ t

0

1[b−ε,b+ε](Bs) ds.

However, by Remark (iii), Lat is continuous in a. Therefore, as
ε ↓ 0, LHS converges to Lbt , and this shows (9) for a = b.

As we saw in Remark (ii), the sojourn time of the Brownian
motion at the point a is 0. However, the sojourn time on its
neighborhood [a − ε, a + ε] scaled by (2ε)−1 has the limit Lat
as ε ↓ 0. It is called the local time in a sense that we consider
the time spent by the Brownian motion in a neighborhood of a
under a proper scaling.
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22.3 Skorohod’s SDE
Reflecting Brownian motion can be constructed also by solving
Skorohod’s SDE. It is a problem to find a pair (Xt , ψt), which
satisfies the following conditions (10)–(12), given a starting
point x ∈ R̄+ and the Brownian motion Bt starting at 0:

Xt is an R̄+-valued continuous process (10)

ψt is a continuous increasing process s.t. ψ0 = 0,

and it increases only at t such that Xt = 0,

that is,

∫ t

0

1{0}(Xs) dψs = ψt a.s. (11)

Xt = x + Bt + ψt (12)

This problem can be discussed for each fixed ω. Indeed, let a
sample path Bt ∈ W = C ([0,∞),R) be given,
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[Lemma 22.3] (Xt , ψt) satisfying (10)–(12) exists uniquely.
Indeed, ψ is given by

ψt = sup
s∈[0,t]

{(−x − Bs) ∨ 0}.

In particular, when x = 0, we have ψt = − infs≤t Bs .

[Proof] The picture of the next page suggests that we may
take ψt as above. To show uniqueness, let us assume that
there exist another pair (X̃t , ψ̃t) satisfying the conditions
(10)–(12). Then, since Xt − X̃t = ψt − ψ̃t is of bounded
variation in t, we have

0 ≤ (Xt − X̃t)
2 = 2

∫ t

0

(Xs − X̃s) d(ψs − ψ̃s)

= −2

∫ t

0

X̃s dψs − 2

∫ t

0

Xs dψ̃s ≤ 0

Here, we use (11) for the 2nd equality and (10), (11) for the
last inequality. Therefore, we obtain Xt = X̃t , which implies
the uniqueness.
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Solution of the Skorohod equation
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The next theorem shows that Xt = Bt − infs≤t Bs , which is a
solution of Skorohod’s SDE when x = 0, is a reflecting
Brownian motion (or has the same distribution).

[Theorem 22.4] (Lévy) Two dimensional processes (|Bt |, L0t )
and (Bt − It ,−It) have a same distribution, where
It := infs≤t Bs .

[Proof] Set B̃t :=
∫ t

0
sgn(Bs) dBs , the term of stochastic

integral appearing in Tanaka’s formula (8) with a = 0. Then,
B̃t is a martingale with quadratic variation

⟨B̃⟩t =
∫ t

0
sgn(Bs)

2 ds = t.

Therefore, by Lévy’s theorem, B̃t is a Brownian motion.
Moreover, given this B̃t first, (|Bt |, L0t ) is a solution of
Skorohod equation with a starting point x = 0. Therefore, by
the uniqueness of the solution, we have

(|Bt |, L0t ) = (B̃t − infs≤t B̃s ,− infs≤t B̃s).
However, by replacing B̃t with Bt , the distribution of the RHS
does not change so that we obtain the conclusion.
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Part III. Applications of Stochastic Analysis

In this part, we discuss stochastic partial differential equations
(SPDEs) as an application of stochastic analysis.

Textbooks:

[4] T. Funaki, Lectures on Random Interfaces, SpringerBriefs, 2016.
[7] T. Funaki, Y. Otobe, B. Xie (舟木直久, 乙部厳己, 謝賓):

確率偏微分方程式, 岩波書店, 2019.
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