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Lecture Times: Tuesday and Wednesday 3:20
pm.- 4:55 pm. (First from Feb. 21 to March 18,
then I think there is a break. We continue after
the break for another 8 weeks).
You can use the following information to log in
zoom.
Zoom Account: kaixu1996@gmail.com
Passcode: YMSCymsc106
Meeting ID: 849 963 1368
Passcode: YMSC
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Prerequisites

1. A course in Mathematical Statistics (unbi-
asedness, UMVUE, sufficiency, completeness,
consistency, admissibility).
2. A course in Probability with Calculus, in-
cluding probability inequalities and convergence
concepts (in probability, in law and almost surely,
Borel-Cantelli Lemma).
3. A course in Regression Analysis.
4. Calculus/Analysis and notions of Metric spaces,
Matrix Algebra.
A student who took already these courses will
follow the course/ideas more easily.
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The Content
Mainly my research results over the years: in
Statistical Theory with model assumptions, and
more recent results with Algorithmic models à
la Breiman (2001), i.e. the data X, is obtained
from a Black-Box, with input either data, Y, or
a parameter θ. The output of the Black-Box is
approximated by a Learning machine f (Y, θ);
θ may denote also the parameter used in the ap-
proximation.
Topics we will discuss
1. MLE’s Bias Pathology, model updated MLE
and MME and Wallace’s Minimum Message Length
method.
2. Bootstrap Pathologies (natural from part 1,
since Efron and Tibshirani in their Bootstrap
book present ir as extension of the ML “plug-
in” method.
3. Artificially augmented samples, shrinkage
and MSE reduction, Pitman’s Efficiency.
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4. Tukey’s Poly-efficiency (for k-models in-
stead of one).
5. Minimum Distance Estimation of a density
with convergence rates via Kolmogorov’s en-
tropy, respectively, of the space of densities or
a regression type function, i.e. not necessarily a
mean. Upper and lower convergence rates will
be presented.
6. Estimating a parameter θ without model as-
sumptions (in Algorithmic models), obtaining
upper error rates in probability. The approach
is based on an extension of Wolfowitz’s Mini-
mum Distance Estimation without models, us-
ing Rubin’s Matching idea and Data Generating
Machines (Sampler, Black Box.)
7. Approximate Bayesian Computations (ABC)
using a sufficient statistic: the Fiducial (F)-ABC.
Tools from part 6 are used.
8. How to choose among two or more Learning
Machines? Using new graphical tools to detect
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identifiability almost surely.
9. Classification: Projection Pursuit Cluster De-
tection without model assumptions, with Maxi-
mum Variance Components Split (MVCS) and
other methods. Separation of Cryptocurrencies.
Some topics are controversial. The presenta-
tions is not necessarily in this order. Parts 1-5
are using parametric models, parts 6-9 are Al-
gorithmic models. Part 5 needs to be done be-
fore parts 6 and 7.
References
Breiman, Leo (2001), Statistical Modeling: The
Two Culture, Statistical Science, 16, 199-231)
Rubin, D. B. (1973). Matching to remove bias
in observational studies. Biometrics 29, 159-
183. Correction (1974) 30, 728.
Wolfowitz, J. (1957) The Minimum Distance
Method The Annals of Mathematical Statistics,
28, 1, 75-88.
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THE GOAL: Present some Mathematical Foun-
dations of Data Science and new results. Why
these results are needed? Deep Learning has
its limitations and in its current form cannot be
used to solve all problems.
• In Le Cun et al. (2015, p. 442), the last sec-
tion “The future of deep learning”, it is men-
tioned that “major progress in artificial intel-
ligence will come about through systems that
combine learning with complex reasoning, re-
placing the simple reasoning used so far.” It is
also mentioned that unsupervised learning will
become more important in the future, “... we
discover the structure of the world by observing
it, not by being told the name of every object.”
• The complex reasoning will not involve only
computational extensions of simple reasoning.
• For new results, we will revisit classical ap-
proaches where model assumptions are used.
The methods will be altered and new methods
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are proposed to be used when the data, X, is ob-
tained from a Black-Box with inputs Y and θ,
and X is approximated by a Learning Machine
f (Y, θ), and the learned model is f (Y, θ̂); θ̂ is an
estimate of θ.

Reference
LeCun, Y., Bengio, Y. and Hinton, G. (2015)
Deep learning. Nature, 521, 436-444.

Questions we will study in order to complete
our trip/tour.

1) Do you prefer more or less randomness in a
Statistical Experiment?
2) Does Data from a Model evolve, providing
additional Information? How do you use the
additional information? In Deep Learning each
layer provides additional information. How is
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it used?
3) Which estimation criteria to use?
You prefer estimate T of θ over estimate S if

E(T − θ)2 ≤ E(S − θ)2 (1)
or use the Pitman’s Closeness criterion,

P [|S − θ| > |T − θ|] > 1/2, or ... (2)
Do you think (1) and (2) hold both for T ?
How you would feel if this is not the case?
4) The efficiency of an estimate Tn is usually
studied under one model. Data rarely follows
the assumed model. Is there an alternative?
5) Do you see a sample as i.i.d. r.vs X1, . . . , Xn

or as vector (X1, . . . , Xn)?

6) In Analysis of Variance we have two terms:
the between-groups variations and the within-
groups variation. It is used to detect clusters
when MacQueen (1967, p. 288) who introduced
it wrote “The point of view taken in this ap-
plication is not to find some unique, definitive
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grouping, but rather to simply aid the investiga-
tor in obtaining qualitative and quantitative un-
derstanding of large amounts of N -dimensional
data by providing him with reasonably good sim-
ilarity groups.”
Is there an alternative Analysis?
7) Is it easier to identify with statistical methods
clusters in R10 or in R20?

8) Did you think of estimating a random func-
tion of a parameter with risk the Mean Squared
Error?
9) Should the estimation error of θ ∈ Θ depend
on the “massiveness” of Θ?
10) How can you decide between two learning
machines f1(Y, θ) and f2(Y, θ) wghich one to
use to represent the output of a Black-Box?
The material is not going to be presented in the
same order.
Reference
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MacQueen, J (1967) Some methods for clas-
sification and analysis of multivariate observa-
tions. Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Proba-
bility, Volume 1: Statistics, pages 281-297, Berke-
ley, Calif., 1967. University of California Press.
https://projecteuclid.org/euclid.bsmsp/1200512992.

Preview of some of 1)-10) with Data to get a
feeling.
A) SEPARATING CRYPTOS FROM OTHER
ASSETS (non-supervised)
• Data=log(Returns of prices) for: cryptos, stocks,
bonds, commodities, real estate indices, com-
modities.
• Collected, summarised, presented using Fac-
tor Analysis.
Think of Regression of Y on undetermined X’s
you define according to a criterion, usually via
Variance decomposition in components.
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CRYPTOS: THE MOVIE! A FIRST LOOK(IN
01B)
The procedure:
• First, we “estimate” the 24D dataset for the
interval [03.01.2014; 22.04.2016].
• At every moment t, we project the 24D dataset
on the 2 main factors extracted via Factor Anal-
ysis. The idea was to show that over time the
cryptos tend to form a separate cluster.
• Second, we extend the interval on a daily ba-
sis, “estimate” the 24D dataset from the begin-
ning till the current time and project on the 2D
space defined by the tail and memory factor,
explaining, respectively, 76% and 6% of Total
Variance. Third, the moment factor, explain-
ing 6% of total variance, correlated with skew-
ness and kyrtosis of log-returns. Memory fac-
tor: relates to decay of statistical dependence
over time, measured via autocovariance func-
tion or change in variance of consecutive sums.
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• The last observation is 31.11.2020.
• At every moment we also include the past.
• The number of assets vary by time, as we
don’t have all the cryptos for the entire period.
At the end, we have 906 assets: 234 cryptocur-
rencies, 635 stocks, 13 exchange rates, 17 com-
modities, 5 bonds, and 2 real estate indexes.
• Green dots are the Cryptos. Part of the Green
dots is surrounded by a curve, which is a 95%
confidence region for the cryptos to be a po-
tential cluster, based on Kernel Density Estima-
tion.
• We plot the confidence region only for cryp-
tos in this video, we also tried for other assets,
but it looked messy.
• USDT is closer to CHF if we project on the
3D space.
QUESTIONS AND ANSWERS
• Why BCH appears in the beginning in Black,
in the other assets writing BCH, and at the end
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is in the middle of cryptos? At the beginning it
was close to the other classical assets.
• Why BCH was circled in the beginning? It
was in separate cluster.
• Why some names appear and what they are?
USDT, BCH, CHF, ETH, XRR(?). We chose
only top ten cryptos, based on market capital-
ization.
SEPARATING THE ASSETS
• There is no complete separation of clusters
with K-Means or Support Vector Machines.
• Complete separation with Variance Compo-
nents Split (VCS) method, seen in this course.
Figures in 01A
TIME FOR THE MOVIE AGAIN! 01B
• K-Means and its disadvantage. From Francis
Bach notes on unsupervised clustering.
Figure 2 in 02
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B) THE BOOTSTRAP
X denotes sample X1, . . . , Xn. Include it in a
box and draw B samples X∗

1 , . . . , X
∗
n, of size

n with replacement. Construct an estimate TB
of a parameter θ. Then T = E(TB|X) is an
estimate, since X is sufficient statistic. Then,
TB and T have the same mean, so they have the
same bias. It holds:

V ar(TB) = V ar(E(TB|X)) + EV ar(TB|X)

= V ar(T ) + EV ar(TB|X)

and the last term I called “Cushion Error” de-
pends on θ, so can be infinite. Therefore, E(T−
θ)2 < E(TB − θ)2.

Why somebody would use TB?

Simulations provide Ê(T − θ)2− Ê(TB − θ)2.
If they are mostly negative, below the line at 0,
the Bootstrap fails. See the results in Bootstrap
simulations.
Figure 03
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C) MINIMIZING THE MSE OR USE PITMAN’S
CLOSENESS CRITERION?
Estimate Tn is often preferred to Sn if
E(Tn − θ)2 < E(Sn − θ)2.

Often, when Sn is unbiased for θ, there is a bi-
ased estimate, usually shrinkage estimate, Tn =
cnSn, 0 < cn < 1, with

E(Tn − θ)2 < E(Sn − θ)2.

Do you expect most often |Sn − θ| > |Tn − θ|,
i.e. P [|Sn − θ| > |Tn − θ|] > 1/2?

We will see this is not often the case, as sim-
ulations for normal samples with θ = σ2 and
unknown mean show.
The graph shows P [|Tn − θ| > |Sn − θ|]) is
much larger than 1/2 for small samples, and it
is still larger than 1/2 for all n and not only for
the normal model; Sn is the unbiased estimate
of σ2 and Tn the shrinkage estimate.
Figure 04
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D) FOUNDATIONS OF ALGORITHMIC DATA
SCIENCE
Identifiability of parameters cannot be confirmed
so far with intractable or unavailable data mod-
els. The samples are obtained using a Black-
Box or Quantile function with input θ ∈ Θ. Ma-
chine Learners want to evaluate identifiability
of parameters used in Learning Machines but
still the underlying models are unknown. EDI is
introduced to confirm identifiability taking ad-
vantage of the available samplers.
Consider a normal mixture:

pN(µ1, 1) + (1− p)N(µ2, 1),

p ∈ [0, 1], (µ1, µ2) ∈ [0, 2]2. The model, with
θ = (p, µ1, µ2), is not identifiable, since θ =
(.25, .4, 1.2) and θ∗ = (.75, 1.2, .4) provide data
from the same model and θ ̸= θ∗.

EDI will confirm whether θ is identifiable, com-
paring EDI(θ, θ;n) with EDI(θ, θ∗i ;n), 1 ≤
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i ≤ M. If there is θ∗i0 ̸= θ such that both EDI(θ, θ)

and EDI(θ, θ∗ii0
), for large n, a) are not near 0

and b) take similar value, then θ is non-identifiable
because of θ∗i0.
EDI in action. Figure 05
We continue with
MLE’s Bias Pathology, Model Updated MLE
and MME, and Wallace’s Minimum Message
Length (MML) method
unless there is some other strong preference.
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