KPZ limit for interacting particle systems -Supplementary materials-

Tadahisa Funaki

Waseda University
November 19th+24th, 2020

Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020 Lecture No 2

Plan of the course (10 lectures)
1 Introduction
2 Supplementary materials
Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales
3 Invariant measures of KPZ equation (F-Quastel, 2015)
4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino, 2017)
5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
$5.3 n$-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation

Plan of this lecture

Supplementary materials

1 Brownian motion
2 Construction of space-time Gaussian white noise
3 (Additive) Linear SPDEs
4 (Finite-dimensional) SDEs, their invariant measures, reversible measures

5 Martingales

1. Brownian motion

- Brownian motion is a fundamental object in stochastic analysis. In our case, it will be used to construct space-time Gaussian white noise. It also appears as an invariant measure of KPZ equation.

[Definition] (Brownian motion) An \mathbb{R}-valued process

 $B=\left(B_{t}\right)_{t \geq 0}=\left(B_{t}(\omega)\right)_{t \geq 0}$ defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ is called a Brownian motion if(1) $B_{0}=0$ a.s.
(2) $B_{t}(\omega)$ is continuous in t for ${ }^{\forall} \omega \in \Omega$
(3) For every $0=t_{0}<{ }^{\forall} t_{1}<\cdots<{ }^{\forall} t_{n},{ }^{\forall} n \in \mathbb{N}$, the increments $\left\{B_{t_{i}}-B_{t_{i-1}}\right\}_{1 \leq i \leq n}$ are independent and distributed under $N\left(0, t_{i}-t_{i-1}\right)$ (i.e. Gaussian, mean 0 , variance $\left.t_{i}-t_{i-1}\right)$.

A function $X: \Omega \rightarrow \mathbb{R}$ which is $\mathcal{F} / \mathcal{B}(\mathbb{R})$-measurable is called a random variable. A collection of \mathbb{R}-valued random variables $X=\{X(t)\}_{t \geq 0}$ defined on a probability space (so that $X(t)=X(t, \omega)$) is called a stochastic process or process.

5 trials of BMs

2D BM

- The condition (3) is equivalent to

$$
\begin{aligned}
P\left(B_{t_{i}}\right. & \left.-B_{t_{i-1}} \in A_{i}, 1 \leq i \leq n\right) \\
& =\int_{A_{1}} d x_{1} \int_{A_{2}} d x_{2} \cdots \int_{A_{n}} d x_{n} \prod_{i=1}^{n} p\left(t_{i}-t_{i-1}, x_{i}\right)
\end{aligned}
$$

for ${ }^{\forall} A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$, where $p(t, x)$ is the heat kernel:

$$
p(t, x):=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}, \quad t>0, x \in \mathbb{R} .
$$

- Or under the transformation $x_{i}=y_{i}-y_{i-1}, 1 \leq i \leq n$ with $y_{0}=0$, this is further equivalent to

$$
\begin{aligned}
P\left(B\left(t_{i}\right)\right. & \left.\in A_{i}, 1 \leq i \leq n\right) \\
& =\int_{A_{1}} d y_{1} \int_{A_{2}} d y_{2} \cdots \int_{A_{n}} d y_{n} \prod_{i=1}^{n} p\left(t_{i}-t_{i-1}, y_{i-1}, y_{i}\right)
\end{aligned}
$$

for ${ }^{\forall} A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$, where

$$
p(t, x, y):=p(t, x-y)=\frac{1}{\sqrt{2 \pi t}} e^{-(x-y)^{2} / 2 t}, \quad t>0, x, y \in \mathbb{R} .
$$

- $p(t, x, y)$ is called the transition probability (density) of the BM.
- The distribution of Brownian motion on the path space $\mathcal{C}:=C([0, \infty), \mathbb{R})$ is called the Wiener measure.
- In other words, the Wiener measure is the image measure of $P($ on $\Omega)$ under the map $\Omega \ni \omega \mapsto B(\omega)=\left(B_{t}(\omega)\right)_{t \geq 0} \in \mathcal{C}$.
- The property

$$
E\left[\left(B_{t}-B_{s}\right)^{2}\right]=|t-s|
$$

or

$$
E\left[\left(B_{t}-B_{s}\right)^{2 n}\right]=C_{n}|t-s|^{n}, \quad n \in \mathbb{N}
$$

roughly implies $\frac{1}{2}$-Hölder continuity of B_{t} in t.

- More precisely, the modulus of continuity of BM is given by

$$
\limsup _{\substack{t_{2}-t_{1}=\varepsilon \in 0 \\ 0 \leq 1}} \frac{\left|B_{t_{2}}-B_{t_{1}}\right|}{\sqrt{2 \varepsilon \log 1 / \varepsilon}}=1 \quad \text { a.s. }
$$

- Brownian motion has a (diffusive) scale invariance: $B^{c}:=\left(c B_{t / c^{2}}\right)_{t \geq 0}$ has the same distribution as B for all $c \neq 0$.
- B_{t} is a martingale, i.e., $E\left[B_{t} \mid \mathcal{F}_{s}^{B}\right]=B_{s}$ if $t \geq s \geq 0$ w.r.t. the natural filtration $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}$ of BM i.e. $\mathcal{F}_{t}^{B}:=$ $\sigma\left\{B_{s} ; 0 \leq s \leq t\right\}$ (\rightarrow see below).
- Its quadratic variation is given by $\langle B\rangle_{t}=t$, i.e. $B_{t}^{2}-t$ is a martingale (\rightarrow see below).
- B_{t} is neither differentiable nor of bounded variation, so that the (Stieltjes-)integral $\int_{0}^{t} f(s, \omega) d B_{s}$ can not be defined in a usual sense.

Stochastic integral

- It is definable only in stochastic (Itô's) sense. Roughly,

$$
\int_{0}^{t} f(s, \omega) d B_{s}:=\lim _{|\Delta| \rightarrow 0} \sum_{i=1}^{n} f\left(s_{i-1}, \omega\right)\left(B_{s_{i}}(\omega)-B_{s_{i-1}}(\omega)\right)
$$

in $L^{2}(\Omega)$, where $\Delta=\left\{0=s_{0}<s_{1}<\cdots<s_{n}=t\right\}$ is a division of the interval $[0, t]$ and $|\Delta|=\max _{i}\left(s_{i}-s_{i-1}\right)$.

- $M_{t}:=\int_{0}^{t} f(s, \omega) d B_{s}$ is a martingale (\rightarrow see below).
- Itô isometry:

$$
E\left[M_{t}^{2}\right]=\int_{0}^{t} E\left[f^{2}(s)\right] d s
$$

- Or, the quadratic variation of M_{t} is given by

$$
\langle M\rangle_{t}=\int_{0}^{t} f^{2}(s) d s
$$

(i.e. $M_{t}^{2}-\langle M\rangle_{t}$ is a martingale $\rightarrow E\left[M_{t}^{2}-\langle M\rangle_{t}\right]=0$
\rightarrow Itô isometry).

- The formal derivative \dot{B}_{t} of B_{t} (though it is not differentiable) called the white noise is δ-correlated:

$$
E\left[\dot{B}_{t} \dot{B}_{s}\right]=\delta(t-s)\left(=\delta_{0}(t-s)\right) .
$$

- Heuristically, since $E\left[B_{t} B_{s}\right]=t \wedge s=G(t, s)$, taking the derivative in t, we would have

$$
E\left[\dot{B}_{t} B_{s}\right]=1_{(0, s]}(t)=1_{[t, \infty)}(s) .
$$

Next, taking the derivative in s,

$$
E\left[\dot{B}_{t} \dot{B}_{s}\right]=\frac{d}{d s} 1_{[t, \infty)}(s)=\delta_{t}(s)=\delta(t-s) .
$$

2. Construction of space-time Gaussian white noise

- Take $\left\{\psi_{k}\right\}_{k=1}^{\infty}$: CONS of $L^{2}(D, d x), D \subset \mathbb{R}^{d}$ or \mathbb{T}^{d}, and $\left\{B_{t}^{k}\right\}_{k=1}^{\infty}$: independent 1D BMs, and consider a formal Fourier series:

$$
\begin{equation*}
W(t, x)=\sum_{k=1}^{\infty} B_{t}^{k} \psi_{k}(x) \tag{1}
\end{equation*}
$$

(This doesn't converge in $L^{2}(D)$.)

- Then, by independence of B^{k} and $E\left[B_{t}^{k} B_{s}^{k}\right]=t \wedge s$, one would expect to have that

$$
E[W(t, x) W(s, y)]=\sum_{k=1}^{\infty}(t \wedge s) \psi_{k}(x) \psi_{k}(y)=(t \wedge s) \delta(x-y)
$$

- Thus, as we saw $\frac{\partial}{\partial s} \frac{\partial}{\partial t}(t \wedge s)=\delta(t-s)$ to derive $E\left[\dot{B}_{t} \dot{B}_{s}\right]=\delta(t-s)$, the time derivative $\dot{W}(t, x):=\frac{\partial}{\partial t} W(t, x)$ would have the covariance structure:

$$
\begin{equation*}
E[\dot{W}(t, x) \dot{W}(s, y)]=\delta(t-s) \delta(x-y) . \tag{2}
\end{equation*}
$$

- One can define $W(t, \cdot)$ as an H-valued process by properly taking a Hilbert space $H\left(\supset L^{2}(D)\right)$.

3. (Additive) Linear SPDEs
3.1. Regularity of solutions of linear SPDE on \mathbb{T}^{d} or \mathbb{R}^{d}

- Consider the linear SPDE, dropping nonlinear term in KPZ equation, on \mathbb{T}^{d} :

$$
\partial_{t} h=\frac{1}{2} \Delta h+\dot{W}(t, x), \quad x \in \mathbb{T}^{d} .
$$

- Then, $h(t, x) \in C^{\frac{2-d}{4}-, \frac{2-d}{2}-}\left(:=\bigcap_{\delta>0} C^{\frac{2-d}{4}-\delta, \frac{2-d}{2}-\delta}\right)$ a.s.
- In fact, regularity in x is seen as follows. Let $\left\{\psi_{k}\right\}_{k=1}^{\infty},\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ be normalized eigenfunctions (CONS of $L^{2}\left(\mathbb{T}^{d}\right)$) and corresponding eigenvalues of $-\Delta$.
- Then it is well-known (Weyl's law): $\lambda_{k} \sim k^{2 / d}$ as $k \rightarrow \infty$.
- We define Sobolev norms for $s \in \mathbb{R}$:

$$
\|h\|_{H^{s}}^{2}:=\left((1-\Delta)^{s} h, h\right)_{L^{2}}=\sum_{k=1}^{\infty}\left(1+\lambda_{k}\right)^{s}\left(h, \psi_{k}\right)_{L^{2}}^{2} .
$$

- $h_{k}(t):=\left(h(t), \psi_{k}\right)_{L^{2}}$ satisfy SDEs (\rightarrow see below):

$$
d h_{k}(t)=-\frac{1}{2} \lambda_{k} h_{k}(t) d t+d B_{k}(t)
$$

with independent Brownian motions $\left\{B_{k}:=\left(W(t), \psi_{k}\right)_{L^{2}}\right\}_{k}$, and this can be solved as (Duhamel's formula)

$$
h_{k}(t)=e^{-\frac{1}{2} \lambda_{k} t} h_{k}(0)+\int_{0}^{t} e^{-\frac{1}{2} \lambda_{k}(t-s)} d B_{k}(s) .
$$

- Assuming $h(0)=0$ for simplicity, by Itô isometry, we have

$$
\begin{aligned}
E\left[\|h(t)\|_{H^{s}}^{2}\right] & =E\left[\sum_{k}\left(1+\lambda_{k}\right)^{s} \int_{0}^{t} e^{-\lambda_{k}(t-s)} d s\right] \\
& \sim \sum_{k} \frac{\left(1+\lambda_{k}\right)^{s}}{\lambda_{k}} \sim \sum_{k} k^{\frac{2}{d}(s-1)}
\end{aligned}
$$

Thus

$$
E\left[\|h(t)\|_{H^{s}}^{2}\right]<\infty \Leftrightarrow \frac{2}{d}(s-1)<-1 \Leftrightarrow s<\frac{2-d}{2} .
$$

- The linear SPDE is well-posed only when $d=1$ and in this case, we have $h \in C^{\frac{1}{4}-, \frac{1}{2}-}([0, \infty) \times \mathbb{T})$ a.s. as we mentioned in Lecture No 1 .
3.2 Higher order SPDEs (generalization of linear SPDEs)
- Let us consider linear stochastic PDEs (OU processes) on \mathbb{R}^{d} replacing $\frac{1}{2} \partial_{\star}^{2}$ by A and dropping nonlinear term:

$$
\begin{equation*}
\partial_{t} h=A h+\dot{W}(t, x), \quad x \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

- $\dot{W}(t, x)$ is the space-time Gaussian white noise on \mathbb{R}^{d}.
- $A=\sum_{|\alpha| \leq 2 m} a_{\alpha}(x) D^{\alpha}$ with $a_{\alpha} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right), m \in \mathbb{N}$,

$$
D^{\alpha}=\left(\frac{\partial}{\partial x^{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x^{d}}\right)^{\alpha_{d}} \text { for } \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{Z}_{+}^{d} \text {. }
$$

- The coefficients satisfy the uniform ellipticity condition:

$$
\inf _{x, \sigma \in \mathbb{R}^{d},|\sigma|=1}(-1)^{m+1} \sum_{|\alpha|=2 m} a_{\alpha}(x) \sigma^{\alpha}>0,
$$

where $\sigma^{\alpha}=\sigma_{1}^{\alpha_{1}} \cdots \sigma_{d}^{\alpha_{d}}$ for $\sigma=\left(\sigma_{1}, \ldots, \sigma_{d}\right) \in \mathbb{R}^{d}$.

- It is expected that "larger m " implies better regularity.
- The solution of (3) is defined in a generalized functions' sense (by multiplying test functions $\varphi \in C_{0}^{\infty}(\mathbb{R})$) or in a mild form (via Duhamel's principle):

$$
h(t)=e^{t A} h(0)+\int_{0}^{t} e^{(t-s) A} d W(s)
$$

The last term is defined as a stochastic integral.

- We can show that, if $2 m>d$,

$$
h(t, x) \in C^{\alpha-, \beta-}\left((0, \infty) \times \mathbb{R}^{d}\right), \quad \text { a.s. }
$$

where $\alpha=\frac{2 m-d}{4 m}$ and $\beta=\frac{2 m-d}{2}$.

- If $A=\Delta$, then $m=1$ and $\alpha=\frac{2-d}{4}, \beta=\frac{2-d}{2}$.

This recovers the result in $\S 3.1$.

- The necessity of the condition " $2 m>d$ " can be seen from

$$
\begin{aligned}
& E\left[\left\{\int_{0}^{t} e^{(t-s) A} d W(s)\right\}^{2}\right]=\int_{0}^{t} d s \int_{\mathbb{R}^{d}} p^{2}(t-s, x, y) d y \\
& \quad=\int_{0}^{t} p(2 s, x, x) d s \sim \int_{0}^{t} s^{-\frac{d}{2 m}} d s<\infty \quad \text { iff } \quad d<2 m
\end{aligned}
$$

where $p(t, x, y)$ is the kernel of the integral operator $e^{t A}$ (cf. F, Osaka J. Math, 1991)

- For the first line, we applied the Itô isometry for the stochastic integrals w.r.t. $W(t)$:
$E\left[\left\{\int_{0}^{t} \int_{\mathbb{R}^{d}} \varphi(s, y, \omega) d W(s, y)\right\}^{2}\right]=E\left[\int_{0}^{t} d s \int_{\mathbb{R}^{d}} \varphi^{2}(s, y, \omega) d y\right]$.

4. (Finite-dimensional) SDEs, its invariant measures, reversible measures
4.1 Stochastic differential equations (SDEs)

- Let the followings be given:

$$
\begin{aligned}
& \alpha=\left(\alpha_{i j}(x)\right)_{i, j=1}^{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}(d \times d \text { matrices }) \\
& b=\left(b_{i}(x)\right)_{i=1}^{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\left(\text { vector field on } \mathbb{R}^{d}\right) \\
& B_{t}=\left(B_{t}^{j}\right)_{j=1}^{d}: d \text {-dimensional Brownian motion }
\end{aligned}
$$

- Consider SDE for $X_{t}=\left(X_{t}^{i}\right)_{i=1}^{d} \in \mathbb{R}^{d}$:

$$
d X_{t}=\alpha\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t
$$

or componentwisely written as

$$
d X_{t}^{i}=\sum_{j=1}^{d} \alpha_{i j}\left(X_{t}\right) d B_{t}^{j}+b_{i}\left(X_{t}\right) d t, \quad 1 \leq i \leq d
$$

- More precisely, X_{t} is defined by means of the stochastic integral equation:

$$
X_{t}^{i}=X_{0}^{i}+\sum_{j=1}^{d} \int_{0}^{t} \alpha_{i j}\left(X_{s}\right) d B_{s}^{j}+\int_{0}^{t} b_{i}\left(X_{s}\right) d s, \quad 1 \leq i \leq d
$$

- Similarly to ODEs, if the coefficients α, b are (globally) Lipschitz continuous, the SDE has a unique (strong $=$ pathwise) solution, that is, $\left(\mathcal{F}_{t}^{B}\right)$-adapted (measurable) solution, where $\mathcal{F}_{t}^{B}:=\sigma\left\{B_{s} ; 0 \leq s \leq t\right\}$ is the natural filtration of BM.
- Define the generator associated with the SDE as

$$
L f(x)=\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial f}{\partial x_{i}},
$$

where $a_{i j}(x):=\sum_{k=1}^{d} \alpha_{i k}(x) \alpha_{j k}(x)$ or $a=\alpha \alpha^{*}$ as a matrix.

- For $f \in C^{2}\left(\mathbb{R}^{d}\right)$, by Itô's formula (especially with Itô correction term $\frac{1}{2} \cdots$) noting $d B_{t}^{i} d B_{t}^{j}=\delta^{i j} d t$, we have

$$
\begin{aligned}
d f\left(X_{t}\right) & =\sum_{i} \partial_{x_{i}} f\left(X_{t}\right) d X_{t}^{i}+\frac{1}{2} \sum_{i, j} \partial_{x_{i}} \partial_{x_{j}} f\left(X_{t}\right) d X_{t}^{i} d X_{t}^{j} \\
& =\sum_{i} \partial_{x_{i}} f\left(X_{t}\right) d X_{t}^{i}+\frac{1}{2} \sum_{i, j} \partial_{x_{i}} \partial_{x_{j}} f\left(X_{t}\right) \sum_{k} \alpha_{i k}\left(X_{t}\right) \alpha_{j k}\left(X_{t}\right) d t \\
& =L f\left(X_{t}\right) d t+\sum_{i, j} \partial_{x_{i}} f\left(X_{t}\right) \alpha_{i j}\left(X_{t}\right) d B_{t}^{j} .
\end{aligned}
$$

- This means (Dynkin's formula)

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} L f\left(X_{s}\right) d s+M_{t}(f),
$$

where

$$
M_{t}(f):=\sum_{i, j} \int_{0}^{t} \partial_{x_{i}} f\left(X_{s}\right) \alpha_{i j}\left(X_{s}\right) d B_{s}^{j}
$$

is given as a stochastic integral, so that it is a martingale (\rightarrow see below).
4.2 Martingale problem

- In particular, under the law \mathbb{P} of $X=\left(X_{t}\right)_{t \geq 0}$ on the path space $\mathcal{C}=C\left([0, \infty), \mathbb{R}^{d}\right)$,

$$
f\left(w_{t}\right)-f\left(x_{0}\right)-\int_{0}^{t} L f\left(w_{s}\right) d s
$$

is a martingale (w.r.t. the natural filtration) for every
$f \in C^{2}\left(\mathbb{R}^{d}\right)$, where $w=\left(w_{t}\right)_{t \geq 0}$ denotes an element of \mathcal{C}.

- A probability measure \mathbb{P} on \mathcal{C}, which has this property, is called the solution of L-martingale problem.
- [Stroock-Varadhan] If $a(x)=\left(a_{i j}(x)\right)$ is (bounded and) continuous and uniformly positive definite, and b is (bounded and) measurable, then the L-martingale problem has a unique solution.
4.3 Invariant measures, reversible measures
- μ : invariant measure

$$
\underset{\mathrm{def}}{\Longleftrightarrow} E^{\mu}\left[f\left(X_{0}\right)\right]=E^{\mu}\left[f\left(X_{t}\right)\right], \quad{ }^{\forall} f \in C_{b}\left(\mathbb{R}^{d}\right)
$$

i.e., law of X_{t} is invariant in t.
E^{μ} means the initial distribution of $X_{t}=\mu$.

- Invariant measure appears as a limit law of X_{t} as $t \rightarrow \infty$, so it is important to study.
- μ : reversible measure

$$
\underset{\text { def }}{\Longleftrightarrow} E^{\mu}\left[f\left(X_{0}\right) g\left(X_{t}\right)\right]=E^{\mu}\left[g\left(X_{0}\right) f\left(X_{t}\right)\right], \quad{ }^{\forall} f, g
$$

i.e., law of $\left(X_{0}, X_{t}\right)=\operatorname{law}$ of $\left(X_{t}, X_{0}\right)$.

- This (combined with Markov property) implies reversibility: For every $T>0$, laws on the path space $C\left([0, T], \mathbb{R}^{d}\right)$ of two processes $\left\{X_{t}\right\}_{t \in[0, T]}$ and $\left\{X_{T-t}\right\}_{t \in[0, T]}$ are the same.
- reversible \Rightarrow invariant
- μ : infinitesimally invariant

$$
\Longleftrightarrow \underset{\mathrm{def}}{\Longleftrightarrow} E^{\mu}\left[L f\left(X_{0}\right)\right]=\int_{\mathbb{R}^{d}} L f(x) \mu(d x)=0,{ }^{\forall} f \in \mathcal{D}(L)\left(\supset C_{b}^{2}\left(\mathbb{R}^{d}\right)\right)
$$

- μ : infinitesimally reversible

$$
\stackrel{\text { def }}{\Longleftrightarrow} \int_{\mathbb{R}^{d}} g(x) L f(x) \mu(d x)=\int_{\mathbb{R}^{d}} f(x) L g(x) \mu(d x),{ }^{\forall} f, g \in \mathcal{D}(L)
$$

- invariant \Rightarrow infinitesimally invariant
- Indeed, by Dynkin's formula (or Itô's formula as we saw)

$$
0 \underset{\text { martingale }}{=} E^{\mu}\left[M_{t}(f)\right]_{\text {by invariance }}^{=} \int_{0}^{t} E^{\mu}\left[L f\left(X_{s}\right)\right] d s
$$

Take the derivative in t, then we have the inf. invariance:

$$
0=E^{\mu}\left[L f\left(X_{0}\right)\right]
$$

- Converse is also known. i.e.
"invariance \Leftrightarrow inf. invariance" under some condition, e.g., Echeveria's result (under the well-posedness of the martingale problem).
- reversible \Rightarrow inf. reversible
- "reversible \Leftrightarrow inf. reversible" under some condition, e.g., Fukushima-Stroock's result
- Example: $V \in C^{1}\left(\mathbb{R}^{d}\right)$ is given, and consider

$$
\begin{aligned}
& d X_{t}=-\frac{1}{2} \nabla V\left(X_{t}\right) d t+d B_{t} \\
& L=\frac{1}{2} \Delta-\frac{1}{2} \nabla V \cdot \nabla \quad\left(=\frac{1}{2} \sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}-\frac{1}{2} \sum_{i=1}^{d} \frac{\partial V}{\partial x_{i}} \frac{\partial}{\partial x_{i}}\right) \\
& L^{*} \Phi=\frac{1}{2} \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(\frac{\partial \Phi}{\partial x_{i}}+\frac{\partial V}{\partial x_{i}} \Phi\right)=0 \quad \text { for } \Phi=e^{-V}
\end{aligned}
$$

- Dirichlet form approach:

$$
\begin{aligned}
\mathcal{D}(f, g) & :=\frac{1}{2} \int \nabla f \cdot \nabla g e^{-v} d x \\
& =-\int f L g e^{-v} d x \\
& =-\int g L f e^{-v} d x,
\end{aligned}
$$

- In particular, reversibility of $\mu=e^{-V} d x$ for X_{t} follows.
- Taking a matrix $A=\left(\alpha_{i j}\right)_{1 \leq i, j \leq d}$, we modify the Dirichlet form as

$$
\begin{aligned}
\tilde{\mathcal{D}}(f, g) & :=\frac{1}{2} \int A \nabla f \cdot A \nabla g e^{-v} d x \\
& =-\int f \tilde{L} g e^{-v} d x,
\end{aligned}
$$

where

$$
\tilde{L} g=\frac{1}{2} A^{*} A \Delta g-\frac{1}{2} A^{*} A \nabla V \cdot \nabla g .
$$

- (Fluctuation-dissipation relation) The corresponding SDE is changed as

$$
d Y_{t}=-\frac{1}{2} A^{*} A \nabla V\left(Y_{t}\right) d t+A d B_{t}
$$

- $\mu=e^{-V} d x$ is reversible also for Y_{t}.
- This will be applied in Lecture 3.
- In SPDEs, this idea is applied for

TDGL (time-dependent Ginzburg-Landau) equation: non-conservative type \longleftrightarrow conservative type Stoch Allen-Cahn equation \longleftrightarrow Stoch Cahn-Hilliard eq
5. Martingales
5.1. Definition

- (Ω, \mathcal{F}, P) : Probability space
- $\left(\mathcal{F}_{t}\right) \equiv\left(\mathcal{F}_{t}\right)_{t \geq 0}$: filtration (or reference family) \Longleftrightarrow def \quad. Each \mathcal{F}_{t} is a sub σ-filed of \mathcal{F}
- increasing in t, i.e. $0 \leq s<t \Longrightarrow \mathcal{F}_{s} \subset \mathcal{F}_{t}$
- right continuous, i.e., For ${ }^{\forall} t \geq 0, \mathcal{F}_{t}=\mathcal{F}_{t+}$, where $\mathcal{F}_{t+}:=\bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}$
- $X=\left(X_{t}\right)_{t \geq 0}$: a stochastic process such that, for ${ }^{\forall} \omega \in \Omega$, $t \in[0, \infty) \mapsto X_{t}(\omega) \in \mathbb{R}$ is right continuous and has left limits at each t. Such process is called càdlàg (continue à droite limites à gauche).
[Definition] X is called $\left(\mathcal{F}_{t}\right)$-martingale, if it satisfies
(1) $\left(\mathcal{F}_{t}\right)$-adapted: For ${ }^{\forall} t \geq 0, X_{t}$ is \mathcal{F}_{t}-measurable (in ω).
(2) Integrable: For ${ }^{\forall} t \geq 0, E\left[\left|X_{t}\right|\right]<\infty$.
(3) For $0 \leq^{\forall} s<^{\forall} t, E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s} \quad$ a.s.
$\ln (3)$, if $E\left[X_{t} \mid \mathcal{F}_{s}\right] \geq X_{s}$ a.s. holds, X is called sub-martingale.
If $E\left[X_{t} \mid \mathcal{F}_{s}\right] \leq X_{s}$ a.s., it is called super-martingale.
- Note that $(3) \Longleftrightarrow E\left[X_{t}, A\right]=E\left[X_{s}, A\right]$ for every $A \in \mathcal{F}_{s}$, where $E[X, A]:=\int_{A} X d P$.
- For martingales/sub-martingales, Doob's (maximal) inequality, Burkholder's inequality, Doob's optional sampling theorem, Sub-martingale convergence theorem, Doob-Meyer decomposition of sub-martingales are known. (\rightarrow Ikeda-Watanabe, Karatzas-Shreve, Revuz-Yor, Le Gall)
5.2. Useful properties
- (Dynkin's formula) Let L be the generator of (jump) Markov process η_{t} on \mathcal{X}. For a function f on \mathcal{X},

$$
M_{t}(f):=f\left(\eta_{t}\right)-\int_{0}^{t} L f\left(\eta_{s}\right) d s \quad\left(\text { or }-f\left(\eta_{0}\right)\right)
$$

is a martingale (with respect to natural filtration).

- (cross variation) For functions f, g on \mathcal{X}, the cross-variation of $M_{t}(f)$ and $M_{t}(g)$ is given by

$$
\langle M(f), M(g)\rangle_{t}=\int_{0}^{t}\{L(f g)-f L g-g L f\}\left(\eta_{s}\right) d s
$$

i.e., $M_{t}(f) M_{t}(g)-\langle M(f), M(g)\rangle_{t}$ is a martingale.

- Taking $f=g$, this implies that the quadratic variation of $M_{t}(f)$ is given by

$$
\langle M(f)\rangle_{t}=\int_{0}^{t}\left\{L f^{2}-2 f L f\right\}\left(\eta_{s}\right) d s
$$

i.e., $M_{t}(f)^{2}-\langle M(f)\rangle_{t}$ is a martingale.

- Note that two different definitions of quadratic variation are known for jump process $M_{t}(f)$. The other one is

$$
[M(f)]_{t}=\lim _{|\Delta| \rightarrow 0} \sum_{i=1}^{n}\left\{M_{t_{i}}(f)-M_{t_{i-1}}(f)\right\}^{2}
$$

where $\Delta=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=t\right\}$ is a division of the interval $[0, t]$ and $|\Delta|=\max _{1 \leq i \leq n}\left|t_{i}-t_{i-1}\right|$.

- In general, $[M(f)]_{t} \neq\langle M(f)\rangle_{t}$ in case with jumps.

