KPZ limit for interacting particle systems
—Supplementary materials—

Tadahisa Funaki

Waseda University

November 19th-+24th, 2020

Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020
Lecture No 2



Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation



Plan of this lecture

Supplementary materials

1 Brownian motion
2 Construction of space-time Gaussian white noise
3 (Additive) Linear SPDEs

4 (Finite-dimensional) SDEs, their invariant measures,
reversible measures

5 Martingales



1. Brownian motion

» Brownian motion is a fundamental object in stochastic
analysis. In our case, it will be used to construct
space-time Gaussian white noise. It also appears as an
invariant measure of KPZ equation.

[Definition] (Brownian motion) An R-valued process

B = (Bt)t>0 = (Bt(w))t>0 defined on a probability space

(Q, F,P) is called a Brownian motion if

(1) By =0 as.

(2) Bi(w) is continuous in t for Yw € Q

(3) Forevery 0=ty <"t; < --- <"t,,"n € N, the increments
{B:, — B:,_, }1<i<n are independent and distributed under
N(0,t; — t;_1) (i.e. Gaussian, mean 0, variance t; — t;_1).

A function X : Q — R which is F/B(R)-measurable is called a random
variable. A collection of R-valued random variables X = {X(t)}+>0
defined on a probability space (so that X(t) = X(t,w)) is called a
stochastic process or process.
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» The condition (3) is equivalent to
P(By; — B;,_, € Ai,1<i<n)
= dX1/ dxo - - / dxn | | p(ti — ti—1, xi)
~/Al A2 An E
for YAy, ..., A, € B(R), where p(t, x) is the heat kernel:
2
t,x)= ——e * /2t,
pt,x) = —o—
» Or under the transformation x; = y; — yi—1,1 < i < n with yp =0,
this is further equivalent to

P(B(t;) € Ai,1<i<n)

n
:/ d)/1/ d)/2--'/ dyn [ [ p(ti = tic1,yie1. vi)
A As A

for YAy, ..., A, € B(R), where

t>0, xeR.

1
p(t,x,y) = p(t,x —y) = me‘(“yw”, t>0,x,y€R.

> p(t,x,y) is called the transition probability (density) of the BM.



The distribution of Brownian motion on the path space
C := C([0,00),R) is called the Wiener measure.

In other words, the Wiener measure is the image measure
of P (on Q) under the map Q 3w+ B(w) = (Be(w))e=0 € C.

The property
E[(B: — Bs)’] = |t — 5]

i E[(B:— Bs)*" =C)Jt—s|", neN
roughly implies %—Hélder continuity of B; in t.
More precisely, the modulus of continuity of BM is given
by
lim sup B, — By

b—ti—=l0 \/2¢clogl/e

0<t1<tr<1

=1 as.



Brownian motion has a (diffusive) scale invariance:
B¢ := (cB;/c2)¢>0 has the same distribution as B for all

c#0.

B is a martingale, i.e., E[B:|F8] =B, if t > s >0 w.rt.
the natural filtration (F£)>0 of BM i.e. FfZ :=

0{Bs;0 <s <t} (— see below).

lts quadratic variation is given by (B), = t, i.e. B> —tis
a martingale (— see below).

B; is neither differentiable nor of bounded variation, so
that the (Stieltjes-)integral fot f(s,w)dBs can not be
defined in a usual sense.



Stochastic integral

» It is definable only in stochastic (It6's) sense. Roughly,

/Ot f(s,w)dBs := lim f(si—1,w)(Bs(w) — Bs,_,(w)),

|A\—>0

in L2(Q), WhereA:{Ozso <s<--<s,=t}isa
division of the interval [0, t] and |A| = max;(s; — si—1)-
> M, := fo s,w)dBs is a martingale (— see below).
» |t0 isometry:

t
£ = [ ElF(s)ds
0
» Or, the quadratic variation of M, is given by
t
(M), = / f2(s)ds
0

(i.e. M? — (M), is a martingale — E[M? — (M),] =0
— It6 isometry).



» The formal derivative Bt of B; (though it is not
differentiable) called the white noise is J-correlated:

E[B.B)] = 5(t —s) (= do(t —5)).

» Heuristically, since E[B;Bs] =t As = G(t,s), taking the
derivative in t, we would have

E[BtBs] = 1(075](1') = 1[t7m)(5).
Next, taking the derivative in s,
E[BtBs] = %1%00)(5) = 0:(s) =d(t — s).
+45

—
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2. Construction of space-time Gaussian white noise

|

Take {¥x}3,: CONS of L2(D,dx), D C R or T9, and {BK}%2;:
independent 1D BMs, and consider a formal Fourier series:

%) = 3 BEv(x). (1)

(This doesn’t converge in L%(D).)

Then, by independence of BX and E[BKBE] = t A s, one would
expect to have that

E[W(t,x) = (tAS)u(x)tbi(y) = (£ A )3(x — y).
k=1

Thus, as we saw & 2 (t As) = §(t — s) to derive
E[B:B,] = 6(t — s), the time derivative W(t, x) := 2 W(t,x)
would have the covariance structure:

E[W/(t,x)W(s,y)] = 6(t — 5)(x — y). (2)

One can define W(t,-) as an H-valued process by properly taking a
Hilbert space H (D L2?(D)).



3. (Additive) Linear SPDEs
3.1. Regularity of solutions of linear SPDE on T9 or R?

» Consider the linear SPDE, dropping nonlinear term in
KPZ equation, on TY:

O:h=1Ah+ W(t,x), xeT

> Then, h(t,x) € C&° 2"~ Cz N C¥_6’%_5) a.s.

5>0
» In fact, regularity in x is seen as follows. Let

{0k}, { e }22; be normalized eigenfunctions (CONS of
L2(T9)) and corresponding eigenvalues of —A.
» Then it is well-known (Weyl's law): A\, ~ k*? as k — oc.
» We define Sobolev norms for s € R:

o0

Al[Es == (1 = B)°h, )z = > (1 4+ Me)*(h )

k=1



> h(t) := (h(t), k)2 satisfy SDEs (— see below):
dhk(t) = —%)\khk(t)dt + dBk(t)

with independent Brownian motions {By := (W(t), ¥k) 2 }«,
and this can be solved as (Duhamel’s formula)

t
hk(t):e_%“thk(o)—i—/ e M E=9)gB (s).
0

» Assuming h(0) = 0 for simplicity, by Itd isometry, we have

E [Hh(t)H%—IS] =E [Z(l +)\k)s /Ot e_)‘k(t—s)dsl

k
~3 A+M) 3 kD
K Ak K

Thus

E[Ih()|3s] <0 & 3(s—1)< -1 & s< 4,

» The linear SPDE is well-posed only when d =1 and in this case, we
have h € Ci—27(][0,00) x T) a.s. as we mentioned in Lecture No 1.



3.2 Higher order SPDEs (generalization of linear SPDEs)
» Let us consider linear stochastic PDEs (OU processes) on

R replacing 192 by A and dropping nonlinear term:

dch = Ah+ W(t,x), xeRq. (3)
> W(t, x) is the space-time Gaussian white noise on R¢.
> A=) 0<om q(x)D" with a, € C*(RY), m e N,
D> = (%)al e (%)ad for a = (a1,...,aq) € Z4.
» The coefficients satisfy the uniform ellipticity condition:

inf —1)m+t an(x)o® >0,
X,UE]R",\U\:I( ) | %m ( )J

where 0% = o{* -+ - 057 for 0 = (01, ...,04) € R,

» It is expected that “larger m" implies better regularity.



» The solution of (3) is defined in a generalized functions’
sense (by multiplying test functions ¢ € C§°(R)) or in a
mild form (via Duhamel’s principle):

h(t) = e”h(0) + / t et =AdW (s).

The last term is defined as a stochastic integral.
» We can show that, if 2m > d,

h(t, x) € Co~F=((0,00) x RY), as.,

— 2m—d — 2m—d
where o = =7—% and [ = =75

> If A= A, then mzlandCz:%,B:%.
This recovers the result in §3.1.



» The necessity of the condition “2m > d" can be seen
from

E[{/Ot(tSAdW H /ds/Rd (t —s,x,y)dy

t
:/ (2sxx)ds~/52mds<oo iff  d<2m,
0 0

where p(t, x, y) is the kernel of the integral operator e*
(cf. F, Osaka J. Math, 1991)

» For the first line, we applied the It6 isometry for the
stochastic integrals w.r.t. W(t):

E [{/;/Rd w(&yM)dW(s,y)ﬂ =E [/Ot dS/Rd @2(S,y,w)dy} :



4. (Finite-dimensional) SDEs, its invariant measures, reversible
measures

4.1 Stochastic differential equations (SDEs)

» Let the followings be given:
a = (a;(x)){—; - RY — R (d x d matrices)
b= (bi(x))2, : RY — RY (vector field on R?)
B; = (B{)J‘-’:1 . d-dimensional Brownian motion
» Consider SDE for X, = (X/)_, € RY:
dX; = a(X;)dB: + b(X;)dt,

or componentwisely written as

d
dX] = aj(X:)dBl + bi(X)dt, 1<i<d

j=1



More precisely, X; is defined by means of the stochastic
integral equation:

d t t
_X5'+Z/O a,-,-(xs)dB;'+/O bi(X.)ds, 1<i<d.
j=1

Similarly to ODEs, if the coefficients a, b are (globally)
Lipschitz continuous, the SDE has a unique (strong =
pathwise) solution, that is, (FZ)-adapted (measurable)
solution, where FB := 0{B,;0 < s < t} is the natural
filtration of BM.

Define the generator associated with the SDE as

d
1 o%f
-2 Z aX,'BXJ + Z b 8)( ’

d
where aji(x) = > au(x)aj(x) or a = aa* as a matrix.
k=1




» For f € C?(R?), by It&’s formula (especially with 1t

correction term - --) noting dBidB] = §Udt, we have

df (Xe) =D 0 F(Xe)dX] + 3 ) 00 F(Xe)dX[dX]
i ij
=3 0 F(X)dX] + 3 0,0 F(Xe) > ain(Xe)oui(Xe)dt
i ij k
= LF(Xe)dt + Y 0 f(Xe)aj(Xe)dBL.
iJ

» This means (Dynkin's formula)

f(Xe) = f(Xo) + /t Lf(Xs)ds + M(f),

where

M,(f) = Z /O tax,f(xs)a,j(xs)ng

is given as a stochastic integral, so that it is a martingale
(— see below).



4.2 Martingale problem

» In particular, under the law P of X = (X;):>0 on the path
space C = C([0, c0), RY),

f(we) — f(x0) — /Ot Lf(ws)ds

is a martingale (w.r.t. the natural filtration) for every
f € C3(RY), where w = (w;);>0 denotes an element of C.

» A probability measure P on C, which has this property, is
called the solution of L-martingale problem.

» [Stroock-Varadhan] If a(x) = (a;(x)) is (bounded and)
continuous and uniformly positive definite, and b is
(bounded and) measurable, then the L-martingale
problem has a unique solution.



4.3 |nvariant measures, reversible measures

» 4 invariant measure
= EMFO6)] = E1[F(X)], 7F € Gy(RY)

i.e., law of X; is invariant in t.
E* means the initial distribution of X; = p

» Invariant measure appears as a limit law of X; as t — oo,
so it is important to study.

» 1i: reversible measure

= E'f(X)g(X)] = E"[g(X)f (X)), "f.g

i.e., law of (Xp, X;) = law of (X;, Xp).

» This (combined with Markov property) implies reversibility:
For every T > 0, laws on the path space C([0, T],R9) of
two processes {X;}tcpo,7] and {X7_;}scpo, 7] are the same.

» reversible = invariant



» 1 infinitesimally invariant

s EMLA(Xo)] = / LF(x)u(dx) = 0, *F € D(L)(> C2(RY))

def

» 1 infinitesimally reversible

— [ gL (x)u(dx) = / F(x)Lg(x)u(dx), *F.g € D(L)

def Rd Rd

» invariant = infinitesimally invariant
» Indeed, by Dynkin's formula (or Itd's formula as we saw)

0 = EMM(f)] = /tE“[Lf(Xs)]ds

martingale by invariance /

Take the derivative in t, then we have the inf. invariance:

0 = E*[LF(X0)]



» Converse is also known. i.e.
“invariance < inf. invariance” under some condition,
e.g., Echeveria’s result (under the well-posedness of
the martingale problem).

» reversible = inf. reversible

> ‘“reversible < inf. reversible” under some condition,
e.g., Fukushima-Stroock's result



» Example: V € C}(R?) is given, and consider

dX; = —3VV(X;)dt + dB;

d
9% oV 8
L=1a-1vV.V (—;zaxgzzax,.ax,.)
d

* 1 9 od ov -V
L¢=§Zax,(ax-+37,¢):0 for & = e
i=1

» Dirichlet form approach:

D(f,g)

» In particular, reversibility of 1 = e~"dx for X, follows.



v

Taking a matrix A = (ajj)1<ij<d, we modify the Dirichlet
form as

" 1
D(f,g) =5 /AVf -AVgeVdx

= —/f[ge*\/dx7

where . 1 1
[g = A"ADg ~ JAAVV - Vg.
(Fluctuation-dissipation relation) The corresponding SDE
is changed as

1
dY, = — S A"AVV(Y,)dt + AdB:.

p = e~ Vdx is reversible also for Y;.

This will be applied in Lecture 3.

In SPDEs, this idea is applied for

TDGL (time-dependent Ginzburg-Landau) equation:
non-conservative type <— conservative type

Stoch Allen-Cahn equation <— Stoch Cahn-Hilliard eq



5. Martingales
5.1. Definition

» (Q,F,P): Probability space
» (F:) = (Ft)e>o: filtration (or reference family)
<— - Each F; is a sub o-filed of F

def

- increasing in t,ie. 0 <s<t=— F; C F;

- right continuous, i.e., For 't > 0, F, = Fi.,

where Fioy 1= (oo Fete
» X = (X¢)t>0: a stochastic process such that, for Yw € Q,

t € [0,00) — X;(w) € R is right continuous and has left
limits at each t. Such process is called cadlag (continue a
droite limites a gauche).



[Definition] X is called (F;)-martingale, if it satisfies

(1) (F:)-adapted: For Yt > 0, X, is F,-measurable (in w).
(2) Integrable: For ¢t > 0, E[|X:|] < oo.

(3) For 0 <%s <"t, E[X;|Fs] = X; a.s.

In (3), if E[X;|Fs] > X; a.s. holds, X is called sub-martingale.
If E[X:|Fs] < Xs a.s., it is called super-martingale. O

» Note that (3) <= E[X;, A] = E[X;, A] for every A € F,
where E[X, A] := [, XdP.

» For martingales/sub-martingales, Doob's (maximal)
inequality, Burkholder's inequality, Doob's optional
sampling theorem, Sub-martingale convergence theorem,
Doob-Meyer decomposition of sub-martingales are known.
(— lkeda-Watanabe, Karatzas-Shreve, Revuz-Yor, Le Gall)



. Useful properties

(Dynkin's formula) Let L be the generator of (jump)
Markov process n; on X. For a function f on X,

M(F) = )~ [ Lf(n)ds (or— ()

is a martingale (with respect to natural filtration).
(cross variation) For functions f, g on X, the
cross-variation of M;(f) and M,(g) is given by

). Mgy~ | (L(fe) — F Lg — g LF}(ny)ds

ie., M(F)M(g) — (M(f), M(g)): is a martingale.
Taking f = g, this implies that the quadratic variation of
M.(f) is given by

o) = [ (Lr =2 L))o
i.e., M(f)? — (M(f)); is a martingale.



» Note that two different definitions of quadratic variation
are known for jump process M;(f). The other one is

[M()]: = |A|'|mOZ{Mt, - M,_,(F)}2,

where A = {0 =ty < t; < --- < t, = t} is a division of
the interval [0, t] and |A| = maxi<j<n |t — ti_1].

» In general, [M(f)]; # (M(f)); in case with jumps.



