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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of this lecture

Supplementary materials

1 Brownian motion

2 Construction of space-time Gaussian white noise

3 (Additive) Linear SPDEs

4 (Finite-dimensional) SDEs, their invariant measures,
reversible measures

5 Martingales
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1. Brownian motion

▶ Brownian motion is a fundamental object in stochastic
analysis. In our case, it will be used to construct
space-time Gaussian white noise. It also appears as an
invariant measure of KPZ equation.

[Definition] (Brownian motion) An R-valued process
B = (Bt)t≥0 = (Bt(ω))t≥0 defined on a probability space
(Ω,F ,P) is called a Brownian motion if

(1) B0 = 0 a.s.
(2) Bt(ω) is continuous in t for ∀ω ∈ Ω
(3) For every 0 = t0 <

∀ t1 < · · · <∀ tn,
∀n ∈ N, the increments

{Bti − Bti−1
}1≤i≤n are independent and distributed under

N(0, ti − ti−1) (i.e. Gaussian, mean 0, variance ti − ti−1).

A function X : Ω→ R which is F/B(R)-measurable is called a random
variable. A collection of R-valued random variables X = {X (t)}t≥0

defined on a probability space (so that X (t) = X (t, ω)) is called a
stochastic process or process.
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5 trials of BMs 2D BM
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▶ The condition (3) is equivalent to

P(Bti − Bti−1 ∈ Ai , 1 ≤ i ≤ n)

=

∫
A1

dx1

∫
A2

dx2 · · ·
∫
An

dxn

n∏
i=1

p(ti − ti−1, xi )

for ∀A1, . . . ,An ∈ B(R), where p(t, x) is the heat kernel:

p(t, x) :=
1√
2πt

e−x2/2t , t > 0, x ∈ R.

▶ Or under the transformation xi = yi − yi−1, 1 ≤ i ≤ n with y0 = 0,
this is further equivalent to

P(B(ti ) ∈ Ai , 1 ≤ i ≤ n)

=

∫
A1

dy1

∫
A2

dy2 · · ·
∫
An

dyn

n∏
i=1

p(ti − ti−1, yi−1, yi )

for ∀A1, . . . ,An ∈ B(R), where

p(t, x , y) := p(t, x − y) =
1√
2πt

e−(x−y)2/2t , t > 0, x , y ∈ R.

▶ p(t, x , y) is called the transition probability (density) of the BM.
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▶ The distribution of Brownian motion on the path space
C := C ([0,∞),R) is called the Wiener measure.

▶ In other words, the Wiener measure is the image measure
of P (on Ω) under the map Ω ∋ ω 7→ B(ω) = (Bt(ω))t≥0 ∈ C.

▶ The property

E [(Bt − Bs)
2] = |t − s|

or
E [(Bt − Bs)

2n] = Cn|t − s|n, n ∈ N

roughly implies 1
2
-Hölder continuity of Bt in t.

▶ More precisely, the modulus of continuity of BM is given
by

lim sup
t2−t1=ε↓0
0≤t1<t2≤1

|Bt2 − Bt1|√
2ε log 1/ε

= 1 a.s.
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▶ Brownian motion has a (diffusive) scale invariance:
Bc := (cBt/c2)t≥0 has the same distribution as B for all
c ̸= 0.

▶ Bt is a martingale, i.e., E [Bt |FB
s ] = Bs if t ≥ s ≥ 0 w.r.t.

the natural filtration (FB
t )t≥0 of BM i.e. FB

t :=
σ{Bs ; 0 ≤ s ≤ t} (→ see below).

▶ Its quadratic variation is given by ⟨B⟩t = t, i.e. B2
t − t is

a martingale (→ see below).

▶ Bt is neither differentiable nor of bounded variation, so
that the (Stieltjes-)integral

∫ t

0
f (s, ω)dBs can not be

defined in a usual sense.
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Stochastic integral

▶ It is definable only in stochastic (Itô’s) sense. Roughly,∫ t

0

f (s, ω)dBs := lim
|∆|→0

n∑
i=1

f (si−1, ω)
(
Bsi (ω)− Bsi−1

(ω)
)
,

in L2(Ω), where ∆ = {0 = s0 < s1 < · · · < sn = t} is a
division of the interval [0, t] and |∆| = maxi(si − si−1).

▶ Mt :=
∫ t

0
f (s, ω)dBs is a martingale (→ see below).

▶ Itô isometry:

E [M2
t ] =

∫ t

0

E [f 2(s)]ds

▶ Or, the quadratic variation of Mt is given by

⟨M⟩t =
∫ t

0

f 2(s)ds

(i.e. M2
t − ⟨M⟩t is a martingale → E [M2

t − ⟨M⟩t ] = 0
→ Itô isometry).
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▶ The formal derivative Ḃt of Bt (though it is not
differentiable) called the white noise is δ-correlated:

E [ḂtḂs ] = δ(t − s) (= δ0(t − s)).

▶ Heuristically, since E [BtBs ] = t ∧ s = G (t, s), taking the
derivative in t, we would have

E [ḂtBs ] = 1(0,s](t) = 1[t,∞)(s).

Next, taking the derivative in s,

E [ḂtḂs ] =
d
ds
1[t,∞)(s) = δt(s) = δ(t − s).
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2. Construction of space-time Gaussian white noise

▶ Take {ψk}∞k=1: CONS of L2(D, dx), D ⊂ Rd or Td , and {Bk
t }∞k=1:

independent 1D BMs, and consider a formal Fourier series:

W (t, x) =
∞∑
k=1

Bk
t ψk(x). (1)

(This doesn’t converge in L2(D).)

▶ Then, by independence of Bk and E [Bk
t B

k
s ] = t ∧ s, one would

expect to have that

E [W (t, x)W (s, y)] =
∞∑
k=1

(t ∧ s)ψk(x)ψk(y) = (t ∧ s)δ(x − y).

▶ Thus, as we saw ∂
∂s

∂
∂t (t ∧ s) = δ(t − s) to derive

E [ḂtḂs ] = δ(t − s), the time derivative Ẇ (t, x) := ∂
∂tW (t, x)

would have the covariance structure:

E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y). (2)

▶ One can define W (t, ·) as an H-valued process by properly taking a
Hilbert space H (⊃ L2(D)).
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3. (Additive) Linear SPDEs

3.1. Regularity of solutions of linear SPDE on Td or Rd

▶ Consider the linear SPDE, dropping nonlinear term in
KPZ equation, on Td :

∂th = 1
2
∆h + Ẇ (t, x), x ∈ Td .

▶ Then, h(t, x) ∈ C
2−d
4

−, 2−d
2

−
(
:= ∩

δ>0
C

2−d
4

−δ, 2−d
2

−δ
)
a.s.

▶ In fact, regularity in x is seen as follows. Let
{ψk}∞k=1, {λk}∞k=1 be normalized eigenfunctions (CONS of
L2(Td)) and corresponding eigenvalues of −∆.

▶ Then it is well-known (Weyl’s law): λk ∼ k2/d as k →∞.
▶ We define Sobolev norms for s ∈ R:

∥h∥2Hs := ((1−∆)sh, h)L2 =
∞∑
k=1

(1 + λk)
s(h, ψk)

2
L2 .
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▶ hk(t) := (h(t), ψk)L2 satisfy SDEs (→ see below):

dhk(t) = − 1
2λkhk(t)dt + dBk(t)

with independent Brownian motions {Bk := (W (t), ψk)L2}k ,
and this can be solved as (Duhamel’s formula)

hk(t) = e−
1
2λk thk(0) +

∫ t

0

e−
1
2λk (t−s)dBk(s).

▶ Assuming h(0) = 0 for simplicity, by Itô isometry, we have

E
[
∥h(t)∥2Hs

]
= E

[∑
k

(1 + λk)
s

∫ t

0

e−λk (t−s)ds

]

∼
∑
k

(1 + λk)
s

λk
∼
∑
k

k
2
d (s−1)

Thus

E
[
∥h(t)∥2Hs

]
<∞ ⇔ 2

d (s − 1) < −1 ⇔ s < 2−d
2 .

▶ The linear SPDE is well-posed only when d = 1 and in this case, we
have h ∈ C

1
4−, 12−([0,∞)×T) a.s. as we mentioned in Lecture No 1.
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3.2 Higher order SPDEs (generalization of linear SPDEs)

▶ Let us consider linear stochastic PDEs (OU processes) on
Rd replacing 1

2
∂2x by A and dropping nonlinear term:

∂th = Ah + Ẇ (t, x), x ∈ Rd . (3)

▶ Ẇ (t, x) is the space-time Gaussian white noise on Rd .

▶ A =
∑

|α|≤2m aα(x)D
α with aα ∈ C∞

b (Rd), m ∈ N,

Dα =
(

∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd

for α = (α1, . . . , αd) ∈ Zd
+.

▶ The coefficients satisfy the uniform ellipticity condition:

inf
x,σ∈Rd ,|σ|=1

(−1)m+1
∑

|α|=2m

aα(x)σ
α > 0,

where σα = σα1
1 · · ·σ

αd
d for σ = (σ1, . . . , σd) ∈ Rd .

▶ It is expected that “larger m” implies better regularity.
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▶ The solution of (3) is defined in a generalized functions’
sense (by multiplying test functions φ ∈ C∞

0 (R)) or in a
mild form (via Duhamel’s principle):

h(t) = etAh(0) +

∫ t

0

e(t−s)AdW (s).

The last term is defined as a stochastic integral.

▶ We can show that, if 2m > d ,

h(t, x) ∈ Cα−,β−((0,∞)× Rd), a.s.,

where α = 2m−d
4m

and β = 2m−d
2

.

▶ If A = ∆, then m = 1 and α = 2−d
4
, β = 2−d

2
.

This recovers the result in §3.1.

15 / 29



▶ The necessity of the condition “2m > d” can be seen
from

E

[{∫ t

0

e(t−s)AdW (s)

}2
]
=

∫ t

0

ds

∫
Rd

p2(t − s, x , y)dy

=

∫ t

0

p(2s, x , x)ds ∼
∫ t

0

s−
d
2m ds <∞ iff d < 2m,

where p(t, x , y) is the kernel of the integral operator etA

(cf. F, Osaka J. Math, 1991)
▶ For the first line, we applied the Itô isometry for the

stochastic integrals w.r.t. W (t):

E

[{∫ t

0

∫
Rd

φ(s, y , ω)dW (s, y)

}2
]
= E

[∫ t

0

ds

∫
Rd

φ2(s, y , ω)dy

]
.
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4. (Finite-dimensional) SDEs, its invariant measures, reversible
measures

4.1 Stochastic differential equations (SDEs)

▶ Let the followings be given:

α = (αij(x))
d
i ,j=1 : Rd → Rd×d (d × d matrices)

b = (bi(x))
d
i=1 : Rd → Rd (vector field on Rd)

Bt = (B j
t )

d
j=1 : d-dimensional Brownian motion

▶ Consider SDE for Xt = (X i
t )

d
i=1 ∈ Rd :

dXt = α(Xt)dBt + b(Xt)dt,

or componentwisely written as

dX i
t =

d∑
j=1

αij(Xt)dB
j
t + bi(Xt)dt, 1 ≤ i ≤ d
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▶ More precisely, Xt is defined by means of the stochastic
integral equation:

X i
t = X i

0 +
d∑

j=1

∫ t

0

αij(Xs)dB
j
s +

∫ t

0

bi(Xs)ds, 1 ≤ i ≤ d .

▶ Similarly to ODEs, if the coefficients α, b are (globally)
Lipschitz continuous, the SDE has a unique (strong =
pathwise) solution, that is, (FB

t )-adapted (measurable)
solution, where FB

t := σ{Bs ; 0 ≤ s ≤ t} is the natural
filtration of BM.

▶ Define the generator associated with the SDE as

Lf (x) = 1
2

d∑
i ,j=1

aij(x)
∂2f

∂xi∂xj
+

d∑
i=1

bi(x)
∂f
∂xi
,

where aij(x) :=
d∑

k=1

αik(x)αjk(x) or a = αα∗ as a matrix.
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▶ For f ∈ C 2(Rd), by Itô’s formula (especially with Itô

correction term 1
2
· · · ) noting dB i

tdB
j
t = δijdt, we have

df (Xt) =
∑
i

∂xi f (Xt)dX
i
t +

1
2

∑
i,j

∂xi∂xj f (Xt)dX
i
t dX

j
t

=
∑
i

∂xi f (Xt)dX
i
t +

1
2

∑
i,j

∂xi∂xj f (Xt)
∑
k

αik(Xt)αjk(Xt)dt

= Lf (Xt)dt +
∑
i,j

∂xi f (Xt)αij(Xt)dB
j
t .

▶ This means (Dynkin’s formula)

f (Xt) = f (X0) +

∫ t

0

Lf (Xs)ds +Mt(f ),

where

Mt(f ) :=
∑
i ,j

∫ t

0

∂xi f (Xs)αij(Xs)dB
j
s

is given as a stochastic integral, so that it is a martingale
(→ see below).
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4.2 Martingale problem

▶ In particular, under the law P of X = (Xt)t≥0 on the path
space C = C ([0,∞),Rd),

f (wt)− f (x0)−
∫ t

0

Lf (ws)ds

is a martingale (w.r.t. the natural filtration) for every
f ∈ C 2(Rd), where w = (wt)t≥0 denotes an element of C.

▶ A probability measure P on C, which has this property, is
called the solution of L-martingale problem.

▶ [Stroock-Varadhan] If a(x) = (aij(x)) is (bounded and)
continuous and uniformly positive definite, and b is
(bounded and) measurable, then the L-martingale
problem has a unique solution.
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4.3 Invariant measures, reversible measures

▶ µ: invariant measure

⇐⇒
def

Eµ[f (X0)] = Eµ[f (Xt)],
∀f ∈ Cb(Rd)

i.e., law of Xt is invariant in t.
Eµ means the initial distribution of Xt = µ.

▶ Invariant measure appears as a limit law of Xt as t →∞,
so it is important to study.

▶ µ: reversible measure

⇐⇒
def

Eµ[f (X0)g(Xt)] = Eµ[g(X0)f (Xt)],
∀f , g

i.e., law of (X0,Xt) = law of (Xt ,X0).
▶ This (combined with Markov property) implies reversibility:

For every T > 0, laws on the path space C ([0,T ],Rd) of
two processes {Xt}t∈[0,T ] and {XT−t}t∈[0,T ] are the same.

▶ reversible ⇒ invariant
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▶ µ: infinitesimally invariant

⇐⇒
def

Eµ[Lf (X0)] =

∫
Rd

Lf (x)µ(dx) = 0, ∀f ∈ D(L)(⊃ C 2
b (Rd))

▶ µ: infinitesimally reversible

⇐⇒
def

∫
Rd

g(x)Lf (x)µ(dx) =

∫
Rd

f (x)Lg(x)µ(dx), ∀f , g ∈ D(L)

▶ invariant ⇒ infinitesimally invariant

▶ Indeed, by Dynkin’s formula (or Itô’s formula as we saw)

0 =
martingale

Eµ[Mt(f )] =
by invariance

∫ t

0

Eµ[Lf (Xs)]ds

Take the derivative in t, then we have the inf. invariance:

0 = Eµ[Lf (X0)]
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▶ Converse is also known. i.e.
“invariance ⇔ inf. invariance” under some condition,
e.g., Echeveria’s result (under the well-posedness of
the martingale problem).

▶ reversible ⇒ inf. reversible

▶ “reversible ⇔ inf. reversible” under some condition,
e.g., Fukushima-Stroock’s result
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▶ Example: V ∈ C 1(Rd) is given, and consider

dXt = − 1
2∇V (Xt)dt + dBt

L = 1
2∆−

1
2∇V · ∇

(
= 1

2

d∑
i=1

∂2

∂x2
i
− 1

2

d∑
i=1

∂V
∂xi

∂
∂xi

)

L∗Φ =
1

2

d∑
i=1

∂
∂xi

(
∂Φ
∂xi

+ ∂V
∂xi

Φ
)
= 0 for Φ = e−V

▶ Dirichlet form approach:

D(f , g) :=1

2

∫
∇f · ∇g e−V dx

=−
∫

f Lg e−V dx

=−
∫

g Lf e−V dx ,

▶ In particular, reversibility of µ = e−Vdx for Xt follows.
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▶ Taking a matrix A = (αij)1≤i ,j≤d , we modify the Dirichlet
form as

D̃(f , g) :=1

2

∫
A∇f · A∇g e−V dx

=−
∫

f L̃g e−V dx ,

where
L̃g =

1

2
A∗A∆g − 1

2
A∗A∇V · ∇g .

▶ (Fluctuation-dissipation relation) The corresponding SDE
is changed as

dYt = −
1

2
A∗A∇V (Yt)dt + AdBt .

▶ µ = e−Vdx is reversible also for Yt .
▶ This will be applied in Lecture 3.
▶ In SPDEs, this idea is applied for

TDGL (time-dependent Ginzburg-Landau) equation:
non-conservative type ←→ conservative type

Stoch Allen-Cahn equation ←→ Stoch Cahn-Hilliard eq
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5. Martingales

5.1. Definition

▶ (Ω,F ,P): Probability space

▶ (Ft) ≡ (Ft)t≥0: filtration (or reference family)
⇐⇒
def
・ Each Ft is a sub σ-filed of F
・ increasing in t, i.e. 0 ≤ s < t =⇒ Fs ⊂ Ft

・ right continuous, i.e., For ∀t ≥ 0, Ft = Ft+,
where Ft+ :=

∩
ε>0Ft+ε

▶ X = (Xt)t≥0: a stochastic process such that, for ∀ω ∈ Ω,
t ∈ [0,∞) 7→ Xt(ω) ∈ R is right continuous and has left
limits at each t. Such process is called càdlàg (continue à
droite limites à gauche).
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[Definition] X is called (Ft)-martingale, if it satisfies

(1) (Ft)-adapted: For
∀t ≥ 0, Xt is Ft-measurable (in ω).

(2) Integrable: For ∀t ≥ 0, E [|Xt |] <∞.

(3) For 0 ≤∀s <∀t, E [Xt |Fs ] = Xs a.s.

In (3), if E [Xt |Fs ] ≥ Xs a.s. holds, X is called sub-martingale.
If E [Xt |Fs ] ≤ Xs a.s., it is called super-martingale.

▶ Note that (3) ⇐⇒ E [Xt ,A] = E [Xs ,A] for every A ∈ Fs ,
where E [X ,A] :=

∫
A
XdP .

▶ For martingales/sub-martingales, Doob’s (maximal)
inequality, Burkholder’s inequality, Doob’s optional
sampling theorem, Sub-martingale convergence theorem,
Doob-Meyer decomposition of sub-martingales are known.
(→ Ikeda-Watanabe, Karatzas-Shreve, Revuz-Yor, LeGall)
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5.2. Useful properties

▶ (Dynkin’s formula) Let L be the generator of (jump)
Markov process ηt on X . For a function f on X ,

Mt(f ) := f (ηt)−
∫ t

0

Lf (ηs)ds (or− f (η0))

is a martingale (with respect to natural filtration).
▶ (cross variation) For functions f , g on X , the

cross-variation of Mt(f ) and Mt(g) is given by

⟨M(f ),M(g)⟩t =
∫ t

0

{L(fg)− f Lg − g Lf }(ηs)ds

i.e., Mt(f )Mt(g)− ⟨M(f ),M(g)⟩t is a martingale.
▶ Taking f = g , this implies that the quadratic variation of

Mt(f ) is given by

⟨M(f )⟩t =
∫ t

0

{Lf 2 − 2f Lf }(ηs)ds

i.e., Mt(f )
2 − ⟨M(f )⟩t is a martingale.
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▶ Note that two different definitions of quadratic variation
are known for jump process Mt(f ). The other one is

[M(f )]t = lim
|∆|→0

n∑
i=1

{Mti (f )−Mti−1
(f )}2,

where ∆ = {0 = t0 < t1 < · · · < tn = t} is a division of
the interval [0, t] and |∆| = max1≤i≤n |ti − ti−1|.

▶ In general, [M(f )]t ̸= ⟨M(f )⟩t in case with jumps.
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