Universal property

Recall that for a complex of sheaves $\rightarrow \mathcal{F}^{i} \longrightarrow \mathcal{F}^{i+1} \longrightarrow \mathcal{F}^{i+2} \longrightarrow$ de diti we require d'+' o d'= 0. Then we define cohomology sheaves $H'(F^*) = \ker(d')/\operatorname{in}(d^{i-1})$ Write C= Mod(Gx). Then complexes Com(C) form a category, and Ht is a functor $Com(C) \rightarrow Vect, vector spaces / C$

To make this work, we define morphisms f* to be commutative diagrams as follows.

Then we have $H'(f^*)$ for $i \in \mathbb{Z}$. When these are isomorphisms, we say f^* is a quasi-isomorphism In particular, then we have $H'(f^*) \cong H'(G^*)$. Then To construct the derived category.

Idea To construct the derived category, quasi-isomorphisms are made into isomorphisms.

This is implemented by functors as follows.

Def The derived category D(C) is a category with a functor $Q: Com(C) \rightarrow D(C)$ such that

D Q has property €
(2) Any Functor P with property €
factors miquely through Q
that is there exists a commutative diggram Com(C) = D

QJ, TR D(C)

First properties of D(C)

By the characterization above, we always have $Cohomology functors H^{L}: D(C) \to C$ Note these arise by taking $P = HH^1 Com(C) \rightarrow C$ The functor Q allows us to consider objects in Com(C) as objects in D(C) (with same cohomology H12) Note We may furthermore consider an object AEC as an object of Com(C) as follows $\rightarrow \bigcirc \rightarrow \land \land \land) \rightarrow$ ith place and thence of D(C). For this, we write A[-i]

Recall the following Def a resolution F of a sheaf G is a sequence $f' \rightarrow F' \rightarrow such that$ This corresponds to a morphism $G \rightarrow F^*$ in Com(C) induced by r. By exactness, this is a grasi-iso. Viewing it as a morphism in D(C) via P, it becomes an iso by property (*)

Ex Taking resolutions $f_{1,1}^{*}, f_{2}^{*}$ of G we have G^{\rightarrow} f_{1} in D(C), thence $f_{1} \cong f_{2}$

Homotopy category Comr(C)

This is useful for constructing D(C). We consider morphisms in Com(C) "up to homotopy equivalence". This is an algebraic version of a notion from topology.

Def For $A^*, B^* \in Con(C)$ and $f^*, g^* \in Mor(A^*, B^*)$ say homotopy equivalent $f \land g$ if have morphisms $h^i: A^i \rightarrow B^{i-1}$ such that $f^i - g^i = h^{i+1} d_A^i + d_B^{i-1} h^i$

Def homotopy category Comn(C), same objects as Com(C), same morphisms modulo equivirelation ~.

Construction of D(C)

Def derived category D(C). Objects: same as Com(C) morphisms: diagrams as follows in Comn(C) up to an equivalence relation given below

where "q" indicates a quasi-isomorphism.

Ren These diagrams are sometimes called "roofs"

Rem Think of the morphism $A^* \rightarrow B^*$ in D(C) as like a formal fraction $g^*/F^* = g^*F^{*-1}$ In particular, we want to take the following diagrams to correspond to quasitiso f^* and its inverse

For this remark to make sense, we need to give a notion of composition of morphisms First, we take two "roofs" Ci to be equivalent if they can be "joined" by a further root, that is there exists a commutative diagram

 $A^{*} \subset X$

where the composition $C^* \rightarrow C^*_1 \rightarrow A^*$ is a quasi-isomorphism. Now we have:

Morphisms in D(C)

When C = Coh(X), morphism sets between objects A[k] for AEC may be calculated using Ext-groups, that is $Hom_{D(c)}(A, B[k]) = Ext_{X}^{k}(A, B)$ for $A, B \in C$ Indeed we may construct endofunctors [j], jEZ of Com(C) which descend to D(C) such that A[i][j] = A[i+j]. Thence we have $Hom_{D(C)}(A[j], B[k]) = E_{Xt} (A, B) for A, B \in C$ Rem To calculate Hom between other objects, we may use "spectral sequences"

Complexes in D(C)

From the definition, $\#J(AE-I) = \{A \ if j=i \\ O \ otherwise \}$

For $E \in D(C)$ with $H(V(E) = same, E \cong AEi]$

However, not all objects are of this form. $E_X \text{ For } E = \bigoplus_{i \in \mathbb{Z}} A^i(-i) \text{ we have } H^i(E) = A^j$

Indeed, objects of D(C) are not determined by their cohomology. Note This is true in Com(C) too, for instance $\rightarrow 0 \rightarrow k + k \rightarrow 0 \rightarrow has trivial H^*$. Ex Take $E \in D(C)$ with $H^{j}(E) = 0$ for $j \neq 0, 1$ Then we have objects and morphisms in Con(C) as follows.

Note that f,g are not quasi-isos, but they induce quasi-isos as follows

 $F_0 \xrightarrow{4} H^{\circ}(E) = kord \dots H'(E)EI \xrightarrow{4} F_1$

In D(C) therefore we have morphisms $H^{\circ}(E) \rightarrow E \rightarrow H'(E)EI$

It turns out, using a structure on D(C)called "distinguished triangles" that E is determined by $H^{\circ}(E)$, $H^{\prime}(E)$, and on element (up to scale) of

 $Hom_{D(X)}(H'(\varepsilon), H^{\circ}(\varepsilon)[2]) = Ext_{\chi}^{2}(H'(\varepsilon), H^{\circ}(\varepsilon))$

So, in this example and more generally, an object of D(C) is determined by its homology, plus some further data.