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Kodaira-Spencer deformation theory of compact complex mani-

folds

If H2(M,O(T ′M)) = 0 e.g. when M is Fano,

then ∃ϖ : M → B ⊂ Cn ∼= H1(M,O(T ′M)) such that for Mt := ϖ−1(t)

{
∂Mt

∂t

∣∣∣∣
t=0

}
∼= H1(M,O(T ′M))

where ∂Mt
∂t is the infinitesimal generator, or the Cech coholomogy class

of the derivative of the coordinate changes.
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Study the Kähler geometry of deformations of Kähler manifolds

H.D. Cao, X.F. Sun, S.T. Yau, Y.Y. Zhang (2022, Math.Ann.) and

earlier works by Sun, Zhang :

The case when M0 =M is a Kähler-Einstein manifold.

F-Sun-Zhang (to appear in Kyoto J. Math.):

The case when M0 =M is a Fano manifold.

F (in press, Pure Applied Math Quaterly):

The case when M = M0 is a Fano manifold with a weighted soliton

(generalized Kähler-Ricci soliton).
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Preparatory results on eigenvalues of Hodge Laplacian

Let us recall the Kodaira vanishing.

Let (M, g) be a compact Kähler manifold,

(L, h) be an Hermitian line bundle over M .

For the ∂-Laplacian ∆L
∂
= ∂

∗
L∂ + ∂∂

∗
L

acting on an L-valued (0, q)-form η we have

(∆L
∂
η)j1···jq

= −gij∇L
i ∇jηj1···jq

−
q∑

β=1

(−1)βgij[∇L
i ,∇jβ

]η
jj1···̂jβ···jq

.
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Using the Ricci identity we obtain the following Bochner-Kodaira formula

(∆L
∂
η)Ij1···jq

= −gij∇L
i ∇jηj1···jq

+
q∑

β=1

gij(Rijβ
+ ψijβ

)ηj1···jβ−1jjβ+1···jq
.

Hence, if −KM + L is positive then

Hq(M,O(L)) = 0 for q > 0.

This is the proof of Kodaira vanishing.
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Let M be a Fano manifold of dimension m,

i.e. 2πc1(M) is represented by a Kähler form.

Let ω be a Kähler form in 2πc1(M), and

Ric−ω =
√
−1∂∂f ;

f is called the Ricci potential.

Let L = O be the trivial line bundle with the Hermitian metric ef .
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We write ∆f := ∆L
∂

for our choice of the Hermitian metric ef on L.

This is the same as considering the weighted volume form efωm for

(0, q)-forms,

and considering the weighted Hodge Laplacian ∆f = ∂
∗
f∂ + ∂ ∂

∗
f

acting on differential forms of type (0, q) where

∂
∗
f is the formal adjoint of ∂ with respect to

the weighted L2-inner product
∫
M(·, ·)efωm.
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For η ∈ A0,q(L) = A0,q(M), and then, by the Bochner-Kodaira formula

reads

(∆f η)j1···jq
= −gij∇i,f∇jηj1···jq

+
q∑

β=1

gij(Rijβ
− fijβ

)ηj1···jβ−1jjβ+1···jq

= −gij∇i,f∇jηj1···jq
+ q ηj1···jq

where

∇i,f = ∇i+ fi.
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Hence if ∆fη = λη then

λ(η, η)f = (∆fη, η)f = (∇′′η,∇′′η)f + q(η, η)f

and

λ ≥ q

.

If λ = q then ∇′′η = 0.

Since ∂η is the skew-symmetrization of ∇′′η it follows that ∂η = 0.

Moreover, since H
0,q
∂

(M) = 0 for q ≥ 1 on the Fano manifold M , η is

exact.
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Thus we have proved

Theorem A(FSZ)

Let M be a Fano manifold and ∆f be the weighted Hodge Laplacian as

above.

(1) If ∆fη = λη and η ̸= 0 for a (0, q)-form η then λ ≥ q.

(2) If, in (1), λ = q and η ̸= 0 then ∇′′η = 0.

In particular η is closed, and for q ≥ 1, η is exact,

and indeed, it is expressed as η = 1
q∂(∂

∗
fη).
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Theorem B(FSZ)

Let M be a Fano manifold and ∆f be the weighted Hodge Laplacian as

above.

(1) If ∆fη = λη for a (0, q)-form η and ∂η ̸= 0 then λ ≥ q+1.

(2) If, in (1), λ = q+1 then

(∂η)♯ := gijgi1j1 · · · giqjq ∇j ηj1···jq
∂

∂zi
∧

∂

∂zi1
∧ · · · ∧

∂

∂ziq
(1)

is a holomorphic section of ∧q+1T ′M .

Corollary C [F, around 1980]

(1) If ∆fu = λu for a non-constant complex-valued smooth function u

then λ ≥ 1.

(2) If, in (1), λ = 1 then (∂u)♯ is a holomorphic vector field.
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Kuranishi family

Let ϖ : M → B be a deformation of M0 := ϖ−1(0) =M .

Considering at t = 0, for t ∈ B small,

The small deformation is described by

φ(t) = φij(t)
∂

∂zi
⊗ dzj ∈ Ω0,1(T ′M)

satisfying 
∂φ(t)− 1

2[φ(t), φ(t)] = 0;

φ(0) = 0;
∂φ(t)
∂t |t=0 =: η.

where ∂η = 0 and [η] ∈ H
0,1
∂

(T ′M) ∼= H1(M,O(T ′M)).
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Choose a Kähler form ω in 2πc1(M) with the Ricci potential f as before.

In this case, we have the Kuranishi family described by

φ(t) =
∑

|I|=1

tIφI +
∑

|I|≥2

tIφI



∂φ(t) = 1
2[φ(t), φ(t)];

∂
∗
fφ(t) = 0;

For |I| = 1, φI is ∆f-harmonic, so η =
∑

|I|=1 t
IφI
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Theorem D(FSZ)

Let M be a Fano manifold, ω a Kähler form in 2πc1(M),

and {Mt} be the Kuranishi family of the deformation of complex struc-
tures described as above.

Then ω is a Kähler form on Mt for any t.

Proof of Theorem D: Consider

φ⌟ω := φikdz
k ∧

√
−1gijdz

j + φijdz
j ∧

√
−1gikdz

k

= −
√
−1(φjk − φkj)dz

j ∧ dzk

= −
√
−1 ψj k dz

j ∧ dzk,

For the Kuranishi family above, we can show

∆f(φ⌟ω) =
1

2
φ⌟ω.

Combining this with Theorem A, we obtain φ⌟ω = 0.
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Since dω = 0 it is sufficient to show ω is Jt invariant.

But

ω is Jt invariant

⇐⇒
φkj := gikφ

i
j is symmetric in j and k

(since T ′′Mt is spanned by ∂

∂zj
− φij(t)

∂
∂zi

).

⇐⇒
φ⌟ω = 0.

This completes the proof of Theorem D.
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Theorem E(FSZ) In Theorem D, the Ricci potential of (Mt, ω) is given

by

f + logdet(1− φ(t)φ(t))

up to an additive constant, more precisely,

Ric(Mt, ω) = ω+
√
−1∂t∂t(f + logdet(1− φ(t)φ(t)))

where Ric(Mt, ω) denotes the Ricci form with respect to the complex

structure Jt on Mt.

Remark: In the case when M0 is a Kähler-Einstein manifold,

Theorem E has been obtained by Cao-Sun-Yau-Zhang who gave

a necessary and sufficient condition for the existence of Kähler-Einstein

metrics on small deformations of a Fano Kähler-Einstein manifolds.
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Application to weighted solitons on Fano manifolds

Let M be a Fano manifold. i.e. c1(M) > 0, so a Kähler class.

The Kähler form ω is expressed as

ω =
√
−1 gij dz

i ∧ dzj.

Let T ⊂ Aut(M) be a toral subgroup,

and assume that ω is T -invariant.

Since M is Fano and simply connected, the T -action is Hamiltonian

with respect to ω, and we have a canonically normalized moment map

µω :M → t∗.
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Let ∆ := µω(M) be the moment polytope.

Then ∆ is independent of ω ∈ 2πc1(M).

Let v be a positive smooth function on ∆.

Regarding µ as coordinates on ∆ using the action angle coordinates, we

may sometimes write v(µ) instead of v.

The pull-back µ∗ωv is a smooth function on M , and for this we write

v(µω) = µ∗ωv = v ◦ µω.
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We say that a Kähler metric ω in 2πc1(M) a weighted v-soliton or

simply v-soliton if

Ric(ω)− ω =
√
−1∂∂ log v(µω)

where Ric(ω) = −i∂∂ logωm is the Ricci form.

We also call ω simply a weighted soliton when it is v-soliton for some

v, or when v is obvious from the context.
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Examples of weighted solitons:

(1) v(µ) = e⟨µ,ξ⟩ for some ξ ∈ t induces a Kähler-Ricci soliton,

(2) v(µ) = ⟨µ, ξ⟩ + a for some positive constant a induces a Mabuchi

soliton,

(3) v(µ) = (⟨µ, ξ⟩+ a)−m−2, m = dimCM , induces a Sasaki-Einstein

metric on the U(1)-bundle of KM .
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The Kuranishi family we consider in this talk is described by a family of

vector valued 1-forms parametrized by t ∈ B

φ(t) =
k∑
i=1

tiφi+
∑

|I|≥2

tIφI ∈ A0,1(T ′M)

such that 
∂φ(t) = 1

2[φ(t), φ(t)];

∂
∗
f φ(t) = 0;

φ1, · · · , φk form a basis of the space of all

T ′M-valued ∆f-harmonic (0,1)-forms

where ∆f = ∂
∗
f∂+∂ ∂

∗
f is the weighted Hodge Laplacian with ∂

∗
f the for-

mal adjoint of ∂ with respect to the weighted L2-inner product
∫
M(·, ·)efωm.
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Recall that Futaki-Sun-Zhang showed that the Kähler form ω onM0 =M

remains to be a Kähler form on Mt.

Theorem F

Suppose that M0 has a weighted v-soliton. Consider the Kuranishi family

with f = log v(µω) as above.

Then, shrinking B if necessary, the following statements are equivalent.

(1) Mt has a weighted v-soliton for all t ∈ B.

(2) T is included in Aut(Mt), and for the centralizer AutT (Mt) of T in

Aut(Mt), dimAutT (Mt) = dimAutT (M0) for all t ∈ B.

(3) T is included in Aut(Mt), and the identity component AutT0(Mt) of

AutT (Mt) is isomorphic to AutT0(M0) for all t ∈ B.
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Happy 75th birthday of Prof. Yau.

Thank you for your attention.
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