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1 Introduction

Econometrica did not publish many of the proofs in my paper Hansen (1982). These notes
provide the missing proofs about consistency of GMM (generalized method of moments)
estimators. Section 2 provides the required assumptions and proofs for a Law of Large
Numbers for Random Functions to hold. I present a theorem guaranteeing the almost sure
uniform convergence of the sample mean of a random function to its population counterpart.
In section 3 I establish the consistency of a GMM estimator as a direct application of the
theorem. By imposing a special structure on the form of the random function, in Section 4
I relax the assumption of a compact parameter space. I fill in some results on random sets
that emerge as the outcome of minimization in section 5. Finally in section 6, I study the
consistency of two-step estimation, where the first-step delivers a set of possible estimators
and the second step reduces the set to be used in estimating an identified parameter vector.

With minor editorial modification and elaboration, the proofs are very close to their
original form. I have made no attempt to connect them to the literature on nonlinear and
GMM estimation subsequent to the publication of Hansen (1982).

2 Law of Large Numbers for Random Functions

We begin giving some definitions and assumptions.
Let L be the space of continuous functions defined on a parameter space P , and let λ be

the sup norm on L. It is well known that the Law of Large Numbers applies to stochastic
processes that are stationary and ergodic. Recall that a stochastic process can be viewed as
an indexed (by calendar time) family of random variables. In this chapter we extend the Law

∗Helpful comments in preparing this were provided by Marine Carrasco, John Heaton, Jose Mazoy, Masao
Ogaki, Eric Renault, Azeem Shaikh, and Grace Tsiang.
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of Large Numbers to stationary and ergodic indexed families (by calendar time) of random
functions. A random function is a measurable mapping from the collection of states of the
world Ω into the space L of continuous functions. It is the natural extension of a random
variable.

We assume that the metric space of potential parameter values, β, is compact.

Assumption 2.1. (P, π) is a compact metric space.

Let (Ω,F , P r) denote the underlying probability space and φ the random function under
consideration.

Definition 2.1. A random function φ is a measurable function mapping Ω→ L.

Assumption 2.2. φ is a random function.

Sometimes we will suppress the dependence on ω ∈ Ω and just write φ (β). Under Assump-
tion 2.2, φ (β) is a random variable for each β in P . In fact, the measurability restriction
in Assumption 2.2 is equivalent to requiring that φ (β) be a random variable for each β in
P [see Billingsley (1978)].

We construct stochastic processes by using a transformation S : Ω→ Ω. Our development
follows Breiman (1968).

Definition 2.2. S is measure preserving if for any event Λ in F , Pr(Λ) = Pr[S−1(Λ)].

Definition 2.3. S is ergodic if for any event such that S−1(Λ) = Λ, Pr(Λ) is equal to zero
or one.1

Assumption 2.3. S is measure-preserving and ergodic.

The process of random functions is constructed using S.

φt(ω, β) = φ
[
St(ω), β

]
The stochastic process {φt(·, β) : t ≥ 0} is stationary and ergodic for each β [see Proposition
6.9 and Proposition 6.18 in Breiman (1968)]. The notation

∑
T (φ) denotes the random

function given by∑
T [φ (ω, β)] = φ [S (ω) , β] + φ [S2 (ω) , β] + ...+ φ

[
ST (ω) , β

]
.

To obtain a Law of Large Numbers for φ we require that φ has finite first moments and
be continuous in a particular sense.

Definition 2.4. A random function φ has finite first moments if E |φ (β)| <∞ for all β ∈ P.

Assumption 2.4. φ has finite first moments.

1Event for which S−1(Λ) = Λ are referred to as invariant events.
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The following notation is used to define a modulus of continuity for a random function:

Modφ (δ, β) = sup {|φ (β)− φ (β∗)| : β∗ ∈ P and π(β, β∗) < δ} .

Since P is compact, P is separable. Consequently, a dense sequence {βj : j ≥ 1} can be used
in place of P in evaluating the supremum. In this case, Modφ (δ, β) is a random variable
for each positive value of δ and each β in P. Also, Modφ (δ, β) ≥Modφ (δ∗, β) if δ is greater
than δ∗. Since φ maps into L,

lim
δ↓0

Modφ (δ, β) = 0 for all ω ∈ Ω and all β ∈ P. (1)

Definition 2.5. A random function φ is first-moment continuous if for each β ∈ P,

lim
δ↓0

E [Modφ (δ, β)] = 0.

Assumption 2.5. φ is first-moment continuous.

Since Modφ (δ, β) is decreasing in δ, we have the following result.

Lemma 2.1 (DeGroot (1970) page 206). Under Assumptions 2.1 and 2.2, φ is first-moment
continuous if, and only if, for each β ∈ P there is δβ > 0 such that

E [Modφ (δβ, β)] <∞.

Proof. The if part of the proof follows from the Dominated Convergence Theorem and (1).
The only if part is immediate.

Since S is ergodic, a natural candidate for the limit of time series averages of φ is E (φ) .
To establish the Law of Large Numbers for Random Functions, we use: i) the pointwise
continuity of E (φ), ii) a pointwise Law of Large Numbers for {(1/T )

∑
T (φ) (β)} for each

β in P, and iii) a pointwise Law of Large Numbers for {(1/T )
∑

T [Modφ (δ, β)]} for each β
in P and positive δ. We establish these approximation results in three lemmas prior to our
proof of the Law of Large Numbers for Random Functions. We then demonstrate our main
result by showing that the assumption of a compact parameter space (P, π) can be used to
obtain an approximation that is uniform.

Lemma 2.2 establishes the continuity of E (φ) .

Lemma 2.2. Suppose Assumptions 2.1, 2.2, 2.4 and 2.5 are satisfied. Then there is positive-
valued function δ∗ (β, j) satisfying

|E [φ (β∗)]− E [φ (β)]| < 1/j

for all β∗ ∈ P such that π (β∗, β) < δ∗ (β, j) and all integer j ≥ 1.
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Proof. Since φ is first-moment continuous, there is a function δ∗ (β, j) such that

E (Modφ [β, δ∗ (β, j)]) < 1/j.

Note, however, that

|Eφ (β∗)− Eφ (β)| ≤ E |φ (β∗)− φ (β)|
≤ E [Modφ(β, δ∗) (β, j)]
< 1/j

for all β∗ ∈ P such that π (β, β∗) < δ∗ (β, j) .

Since P is compact, it can be shown that δ∗ (β, j) in Lemma 2.2 can be chosen independent
of β. In other words, E (φ) is uniformly continuous.

For each element β in P, φ (β) is a random variable with a finite absolute first moment.
Thus the Law of Large Numbers applies pointwise as stated in the following lemma.

Lemma 2.3. Suppose Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied. Then there is an
integer-valued function T ∗ (ω, β, j) and an indexed set Λ∗ (β) ∈ F such that Pr {Λ∗ (β)} = 1
and ∣∣∣(1/T )

∑
T

[φ (β)]− E [φ (β)]
∣∣∣ < 1/j (2)

for all β ∈ P , T ≥ T ∗ (ω, β, j), ω ∈ Λ∗ (β), and j ≥ 1.

Proof. Since S is measure-preserving and ergodic, {(1/T )
∑

T [φ (β)] : T ≥ 1} converges to
E [φ (β)] on a set Λ∗ (β) ∈ F satisfying Pr {Λ∗ (β)} = 1.

The Law of Large Numbers also applies to time series averages of Modφ (β, δ) . Since the
mean of Modφ (β, δ) can be made arbitrarily small by choosing δ to be small, we can control
the local variation of time series averages of the random function φ.

Lemma 2.4. Suppose Assumptions 2.1, 2.2, 2.3 and 2.5 are satisfied. There exists an
integer-valued function T+ (ω, β, j), a positive function δ+ (β, j) and an indexed set Λ+ (β) ∈
F such that Pr {Λ+ (β)} = 1 and∣∣∣(1/T )

∑
T

[φ (β)− φ (β∗)]
∣∣∣ < 1/j (3)

for all β∗ ∈ P such that π (β, β∗) < δ+ (β, j), T ≥ T+ (ω, β, j), ω ∈ Λ+ (β) and j ≥ 1.

Proof. Since φ is first-moment continuous, Modφ (β, 1/n) has a finite first moment for some
positive integer n. Since S is measure-preserving and ergodic, {(1/T )

∑
T [Modφ (β, 1/j)] : T ≥ 1}

converges to E [Modφ (β, 1/j)] on a set Λ− (β, j) satisfying Pr {Λ− (β, j)} = 1 for j ≥ n. Let

Λ+ (β) =
⋂
j≥n

Λ− (β, j) .
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Then Λ+ (β) is measurable and Pr {Λ+ (β)} = 1.
For each j, choose [1/δ+ (β, j)] to equal some integer greater than or equal to n such that

E
(
(Modφ

[
β, δ+ (β, j)

])
< 1/ (2j) .

Since {(1/T )
∑

T{Modφ [β, δ+ (β, j)] : T ≥ 1} converges almost surely to E (Modφ [β, δ+ (β, j)])
on Λ+ (β) , there exists an integer-valued function T+ (ω, β, j) such that∣∣∣(1/T )

∑
T

(
Modφ

[
β, δ+ (β, j)

])
− E

(
Modφ

[
β, δ+ (β, j)

])∣∣∣ < 1/2j

for T ≥ T+ (ω, β, j) . Therefore,

(1/T )
∣∣∣∑

T
[φ (β)− φ (β∗)]

∣∣∣ < (1/T )
∑

T

(
Modφ

[
β, δ+ (β, j)

])
< 1/j

for all β∗ ∈ P such that π (β, β∗) < δ+ (β, j), T ≥ T+ (ω, β, j) , ω ∈ Λ+ (β), and j ≥ 1.

Our main result establishes the almost sure convergence of time series averages of random
functions. Suppose φ1 and φ2 are two random functions. Then

λ (φ1, φ2) = sup
β∈P
|φ1 (β)− φ2 (β)|

is a measure of distance between these functions that depends on the sample point. Since
P is separable, it suffices to take the supremum over a countable dense sequence. Hence
λ (φ1, φ2) is a random variable (measurable function). Almost sure convergence of sequences
of random functions is defined using the metric λ.

Definition 2.6. A sequence {φj : j ≥ 1} of random functions converges almost surely to a
random function φ0 if {λ (φj, φ0) : j ≥ 1} converges almost surely to zero.

We now combine the conclusions from Lemmas 2.2, 2.3 and 2.4 to obtain a Law of Large
Numbers for random functions. The idea is to exploit that fact that P is compact to move
from pointwise to uniform convergence. Notice that in these three lemmas, Λ+,Λ∗, T+ and
T ∗ all depend on β. In proving this Law of Large Numbers, we will use compactness to show
how the dependence on the parameter value can be eliminated.

Theorem 2.1. Suppose Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 are satisfied. Then
{(1/T )

∑
T (φ) : T ≥ 1} converges almost surely to E (φ) .

Proof. Let
Q (β, j) = {β∗ ∈ P : π (β, β∗) < min

{
δ∗ (β, j) , δ+ (β, j)

}
.

Then for each j ≥ 1,

P =
⋃
β∈P

Q (β, j) .
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Since P is compact a finite number of βi can be selected so that

P =

N(j)⋃
i≥1

Q (βi, j)

where N (j) is integer-valued and {βi : i ≥ 1} is a sequence in P. Construct

Λ =
⋂
i≥1

[
Λ∗ (βi)

⋂
Λ+ (βi)

]
.

Then Λ ∈ F and Pr (Λ) = 1. Let

T (ω, j) = max{T ∗ (ω, β1, j) , T
∗ (ω, β2, j) , ..., T

∗ [ω, βN(j), j
]
,

T+ (ω, β1, j) , T
+ (ω, β2, j) , ..., T

+
[
ω, βN(j), j

]
}.

For T ≥ T (ω, j) , Lemmas 2.2, 2.3 and 2.4 imply that

∣∣∣(1/T )
∑

T
[φ (β)]− E [φ (β)]

∣∣∣ ≤ (1/T )
∣∣∣∑

T
[φ (β)]−

∑
T

[φ (βi)]
∣∣∣

+
∣∣∣(1/T )

∑
T

[φ (βi)]− E [φ (βi)]
∣∣∣+ |E [φ (βi)]− E [φ (β)]|

< 3/j

where βi is chosen so that β ∈ Q (βi, j) for some 1 ≤ i ≤ N (j) . Hence

λ
[
(1/T )

∑
T

(φ) , Eφ
]
≤ 3/j

for T ≥ T (ω, j) and ω ∈ Λ. Therefore, {λ [(1/T )
∑

T (φ) , Eφ] : T ≥ 1} converges to zero on
Λ.

3 Consistency of the GMM Estimator

We apply Theorem 2.1 to obtain an approximation result for a GMM estimator as defined
in Hansen (1982). So far, the results obtained in the previous section have been for the
case of random functions that map into R. The GMM estimator works by making sample
analogues of population orthogonality conditions close to zero. We will map the assumptions
in this note to those in Hansen (1982) and show that the consistency of the GMM estimator
(Theorem 2.1 in Hansen (1982)) is an application of Theorem 2.1 above.

First, construct a stochastic process by using the transformation S : Ω→ Ω. Let,

xt(ω) = x
[
St(ω)

]
6



where xt(ω) has p components as in Hansen (1982).
Assumption 2.3 from the previous section ensures that this process is stationary and

ergodic, which is Assumption 2.1 in Hansen (1982). Hansen (1982) restricts the parameter
space to be a separable metric space (Assumption 2.2). This is implied by assumption 2.1
above, since a compact space is separable.

To represent the population orthogonality conditions we will consider a function f :
Rp × P → Rr. The random function φ in section 2 is given by:

φ(ω, β) = f [x(ω), β]. (4)

Hansen (1982) requires that f (·, β) is Borel measurable for each β in P and f (x, ·) is
continuous on P for each x in Rp (Assumption 2.3). Given construction (4), these restrictions
imply Assumption 2.2.

Assumption 2.4 in the GMM paper requires that Ef (x, β) exists and is finite for all
β ∈ P and Ef (x, β0) = 0. The first part of this assumption is equivalent to Assumption 2.4
given construction (4) of the random function φ. To match the GMM paper, we impose the
identification restriction:

Assumption 3.1. The equation
Eφ(β) = 0 (5)

is satisfied on P if, and only if β = β0.

Finally, as in Assumption 2.5 of Hansen (1982) we introduce a sequence of weighting
matrices:

Assumption 3.2. The sequence of random matrices {AT : T ≥ 1} converges almost surely
to a constant matrix A0 where (A0)′A0 has full rank.

We now have all the ingredients to state the following corollary to Theorem 2.1.

Corollary 3.1. (Theorem 2.1 in Hansen (1982)) Suppose that Assumptions 2.1, 2.2, 2.3,
2.4, 2.5, 3.1 and 3.2 are satisfied. Then

bT = arg min
β∈P

[
1

T

T∑
t=1

f (xt, β)

]′
(AT )′AT

[
1

T

T∑
t=1

f (xt, β)

]
converges almost surely to β0.

Proof. Theorem 2.1 implies that the objective function for the minimization problem con-
verges uniformly to the continuous function:

g0(β) = Ef (xt, β)′ (A0)′A0Ef (xt, β) (6)

with probability one. Assumptions 3.1 and 3.2 guarantee that the limiting objective g0 has a
unique minimizer at β0 with a minimized objective equal to zero. The conclusion follows.
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4 Parameter Separation

We now explore an alternative consistency argument that avoids assuming a compact param-
eter space. Instead we suppose that we have estimation equations with a special separable
structure. We take as our starting point:

EXh(β) = 0. (7)

where the random matrix X is a general function of the data and is r by m. This matrix
may in fact contain nonlinear transformations of the data. The key restriction is that it does
not depend on unknown parameters.

Assumption 4.1. P is a locally compact metric space.

We presume that the parameter vector β0 can be identified from the moment condition
7. We will sharpen this assumption in what follows.

Assumption 4.2. h : P → Γ ⊂ Rm is a homeomorphism.2

Neither P nor Γ is necessarily compact. While we can estimate EX in large samples,
approximation errors get magnified if Γ is unbounded as β ranges over the parameter space.

Prior to studying the estimation problem that interests us, we first consider an auxiliary
problem. Define:

γ0 = h(β0).

Consider estimating γ0 by solving:

c̃T = arg min
γ∈Γ

γ′
[

1
T

∑
T (X)

]′
AT
′AT

[
1
T

∑
T (X)

]
γ

1 + |γ|2

The scaling by 1 + |γ|2 limits the magnitude of the approximation error. With this in mind
we form Γ∗ to be the closure of the bounded set:

Γ̂ =

{
γ√

1 + |γ|2
: γ ∈ Γ

}
.

Assumption 2.2 and 2.3 guarantees that

1

T

∑
T

(X)→ EX

provided that X has a finite first moment.

Assumption 4.3. The matrix X has a finite first moment and EXγ = 0 on Γ∗ if, and only
if γ = γ0√

1+|γ0|2
.

2h is continuous, one-to-one, and has a continuous inverse.
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Since we have added in the closure points, this is a stronger condition than the usual
identification condition using moment conditions.

Theorem 4.1. Suppose that Assumptions 2.2, 2.3, 3.2, 4.1, 4.2, and 4.3 are satisfied. Then
c̃T converges to γ0 almost surely.

Proof. First transform the problems to be:

ĉT = arg min
γ∗∈Γ∗

γ∗′
[

1

T

∑
T

(X)

]′
AT
′AT

[
1

T

∑
T

(X)

]′
γ∗.

Since the objective function converges uniformly almost surely, the sequence of minimizers
ĉT converges to:

γ0√
1 + |γ0|2

= arg min
γ∗∈Γ∗

γ∗′(EX)′A0
′A0(EX)γ∗.

Since Γ̂ is locally compact, for sufficiently large T , ĉT is in the set Γ̂. Thus:

c̃T =
ĉT√

1− |ĉT |2

for sufficiently large T . The conclusion follows from the convergence of ĉT .

While the auxiliary estimator is of interest in its own right, we will now use the auxiliary
estimator as a bound for:

cT = arg min
γ∈Γ

γ′
[

1

T

∑
T

(X)

]′
AT
′AT

[
1

T

∑
T

(X)

]
γ.

As we will see,
|cT | ≤ |c̃T | (8)

because the scaling of the objective function for the auxiliary estimator implicitly rewards
magnitude.

Theorem 4.2. Suppose that Assumptions 2.2, 2.3, 3.2, 4.1, 4.2, and 4.3 are satisfied. Then
cT converges to γ0 almost surely.

Proof. There are two inequalities implied by the minimization problems used to construct
cT and c̃T :

(cT )′
[

1

T

∑
T

(X)

]′
AT
′AT

[
1

T

∑
T

(X)

]
(cT ) ≤ (c̃T )′

[
1

T

∑
T

(X)

]′
AT
′AT

[
1

T

∑
T

(X)

]
(c̃T )

and

(cT )′
[

1
T

∑
T (X)

]′
AT
′AT

[
1
T

∑
T (X)

]
(cT )

1 + |cT |2
≥

(c̃T )′
[

1
T

∑
T (X)

]′
AT
′AT

[
1
T

∑
T (X)

]
(c̃T )

1 + |c̃T |2
.
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Bound (8) follows because to achieve the second inequality, the left-hand side must have a
smaller denominator.

Since ĉT converges to γ0, it follows that for sufficiently large T , |cT | ≤ |γ0|+ 1 and hence
the estimator cT is eventually in the compact set given by the closure of:

{γ ∈ Γ : |γ| ≤ |γ0|+ 1} . (9)

Since the objective converges uniformly almost surely on this compact set and the limiting
objective has a unique minimizer at γ0, the conclusion follows except that we used the closure
of the set (9) and not Γ. Since Γ is locally compact, for T sufficiently large minimizers over
the set (9) will eventually be in Γ.

Finally to produce an estimator of β0 we solve:

cT = h(bT ).

Notice that we may equivalently define bT as:

bT = arg min
β∈P

h(β)′
[

1

T

∑
T

(X)

]′
AT
′AT

[
1

T

∑
T

(X)

]
h(β).

Corollary 4.1. Suppose that Assumptions 2.3, 3.2, 4.1, 4.2, and 4.3 are satisfied. Then bT
converges to β0 almost surely.

Proof. This follows from the fact that h is one-to-one with a continuous inverse.

Theorem 2.2 in Hansen (1982) is a special case of the latter corollary. That paper assumes
(Assumption 2.6) that

f (xt, β) =
[
C0(xt) C1(xt)

] [ 1
λ (β)

]
.

Thus to see the relation, we may set

Xt =
[
C0(xt) C1(xt)

]
,

and

h(β) =

[
1

λ(β)

]
.

In addition to Assumptions 2.1 to 2.6, for which we have already provided a mapping with
the assumptions of this paper, Theorem 2.2 in Hansen (1982) requires that the parameter
space be locally compact, that λ be a homeomorphism and an identification assumption.
These are implied by Assumptions 4.1, 4.2, and 4.3 in this note, respectively.
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5 Random sets

So far, the discussion has been bit casual about the the minimizers of GMM objectives. We
address this gap by viewing the collection of the compact subsets of (P, π) as a metric space
and appealing to some known results about the corresponding collection of Borel sets.

Let K be the family of nonempty compact subsets of P . The Hausdorff metric δ on the
collection of compact sets in (P, π) is:

δ(K1, K2) = max {ρ(K1, K2), ρ(K2, K1)}

where
ρ(K1, K2) = sup

β∈K1

inf
α∈K2

π(α, β)

Definition 5.1. A random set Θ is a Borel measurable mapping from Ω→ K.

Lemma 5.1. Suppose Assumption 2.1 is satisfied, φ is a random function (Assumption 2.2),
and Θ is a random set. Let ∆ denote the set of minimizers of φ over the set Θ. Then ∆ is
a random set.

Proof. Let {βn} be a countable dense subset of P , and let O be any open subset of P . Define

φ̃(ω, n, j) =

{
+∞ if

{
β ∈ P : π(β, βn) < 1

j

}
∩O ∩Θ(ω) = ∅

φ(ω, βn) otherwise
.

From Debreu (1967) (page 355), the set

O =

{
K ∈ K :

{
β ∈ P : π(β, βn) <

1

j

}
∩O ∩K 6= ∅

}
is open. Since Θ is Borel measurable,

{ω ∈ Ω : Θ(ω) ∈ O} =

{
ω ∈ Ω :

{
β ∈ P : π(β, βn) <

1

j

}
∩O ∩Θ(ω) 6= ∅

}
is measurable, and similarly the complement set{

ω ∈ Ω :

{
β ∈ P : π(β, βn) <

1

j

}
∩O ∩Θ(ω) = ∅

}
is measurable. Moreover, φ̃(·, n, j) is a Borel measurable function as a mapping onto the
extended real numbers.

By the continuity of φ(ω, ·),

B(ω,O) = inf
n

lim
j→∞

φ̃(ω, n, j) = inf
O∩Θ(ω)

φ(ω, β).
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is Borel measurable since we can express it as a limit of an infimum over a countable collection
of Borel measurable functions. Notice that

{ω ∈ Ω : O ∩∆(ω) 6= ∅} = {ω ∈ Ω : B(ω,O) = B(ω, P )} .

Both B(·, O) and B(·, P ) are Borel measurable, and as a consequence it follows that the set
on left-hand side is measurable. Construct the open set (of compact sets):

Õ = {K ∈ K : O ∩K 6= ∅} ,

and note that
{ω ∈ Ω : O ∩∆(ω) 6= ∅} = {ω ∈ Ω : ∆(ω) ∈ Õ}.

From Debreu (1967) (page 355), the finding that this set is measurable for any open set O
implies that ∆ is Borel measurable.3

So far I have been rather informal about the construction of a GMM estimator. I have
not proved that in finite samples there is a unique minimizer. There are two strategies
to add formality at the level of generality reflected in Corollary 3.1. One possibility is to
study consistency using the Hausdorff metric, even though we know that in the limit the
set of minimizers converges to a singleton set {β0}. Another possibility is to introduce
a measurable selection rule. For instance if P is a subset of Rq, measurable selection rules
include coordinate-by-coordinate lexicographic minimization or maximization over a compact
subset of Rq.4

To see the value of allowing for a random set to be used in a minimization problem,
suppose that the parameter space P is a subset of Rq. Partition an element of Rq: β′ =
(β1
′, β2

′) and suppose that

π(β, α) = max {π1(α1, β1), π2(α2, β2)} .

Using P and the partitioning we form two new parameter spaces:

P1 =

{
β1 :

[
β1

β2

]
∈ P for some β2

}
P2 =

{
β2 :

[
β1

β2

]
∈ P for some β1

}
(10)

When P is compact, so are P1 and P2.
Let b1 be a random vector that takes on values in P1, and form the random set

Θ(ω) =

{
β ∈ P : β =

[
b1(ω)
β2

]
for some β2 ∈ P2

}
.

3Debreu provides a formal analysis, but attributes the result to an unpublished theorem of Dubins and
Ornstein.

4See also Jennrich (1969), Lemma 2. Jennrich, however, does not consider the role of random parameter
spaces in establishing the existence of estimators that are Borel measurable.
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It is convenient to view the construction of b1 as the first-step of a two-step estimation
problem. The second step selects an estimator from the random set Θ(ω). For a given open
set O, let O1 denote the subset:

O1 =

{
β1 ∈ P1 :

[
β1

β2

]
∈ O for some β2 ∈ P2

}
.

Given β1 ∈ O1, there exists a β2 and a “rectangular neighborhood” containing

[
β1

β2

]
contained

in O. We may use this rectangular neighborhood to construct a neighbor of β1 in P1 and
hence O1 is open in P1. Then

{ω ∈ Ω : b1(ω) ∈ O1} = {ω ∈ Ω : Θ(ω) ∩O 6= ∅}

is measurable implying that the constructed random set is Borel measurable.
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6 Two-step estimation

To formulate two-step or recursive GMM estimation, partition the function f as:

f(x, β) =

[
f1(x, β1)
f2(x, β)

]
.

Notice that first component of f , f1, depends only β1. Use

E [f1(Xt, β1,0)] = 0

to identify and estimate β1,0. Then Corollary 3.1 could be used to justify the consistency of
the resulting GMM estimator {bT,1} for estimating β1,0 using the parameter space P1 given
in (10). The second set of moment restrictions:

E [f2(Xt, β)] = 0

may be used to construct an estimator of β2,o using the initial estimator for β1,0. We represent
such an estimation approach using a block diagonal construction of the selection matrix AT :

AT =

[
A11,T 0

0 A22,T

]
where the rows are partitioned in accordance with the parameter vector β and columns in
accordance with the function f .

The following result extends 3.1 to apply to a recursive procedure.

Theorem 6.1. (Theorem 2.3 in Hansen (1982)) Suppose that Assumptions 2.1, 2.2, 2.3,
2.4, 2.5, 3.1 and 3.2 are satisfied. In addition suppose that

i) {b1,T} converges almost surely to βo,1.

ii) For any β ∈ P and any sequence {β1,j : j = 1, 2, ...} in P1 that converges to β1, there
exists a sequence {(β1,j

′, β2,j
′)′ : j = 1, 2, ...} in P that converges to β.5

Then

∆T = arg min
β∈ΘT

[
1

T

T∑
t=1

f (xt, β)

]′
(AT )′AT

[
1

T

T∑
t=1

f (xt, β)

]
converges almost surely to {β0} where

ΘT =

{
β ∈ P : β =

[
b1,T

β2

]
for some β2 ∈ P2

}
5We may be weaken this restriction to apply to some subset of P containing β0 when the parameter space

is augmented to include closure points required for compactness.
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Proof. For any ε > 0, form an open ball O of β0 with radius ε. Let

δ =
1

3
min
P−O

g0(β)

where g0 is given by (6). Note that the minimizer is attained because P − N is compact,
δ > 0, and g0 is continuous and has a unique minimizer β0 over the compact set P with
g(β0) = 0. In particular, the uniqueness follows from Assumptions 3.1 and 3.2. Since is g0

is continuous at β0, we may shrink the radius of the ball to ε∗ < ε in order that

g0(β) ≤ δ

for all β in this smaller ball O∗.
For sufficiently large T ,

ΘT ∩O∗ 6= ∅.

Let

gT (β) =

[
1

T

T∑
t=1

f (xt, β)

]′
AT
′AT

[
1

T

T∑
t=1

f (xt, β)

]
The sequence of functions {gT} converges uniformly almost surely to g0 as implied by The-
orem 2.1 and Assumption 3.2. For sufficiently large T , β ∈ P −O and α ∈ ΘT ∩O∗,

gT (β) > g0(β)− δ ≥ 2δ ≥ g0(α) + δ ≥ gT (α).

It follows that ∆T ⊂ O. Since we are free to make the radius ε as small as possible, the
conclusion follows.
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