Introduction to Algebraic Geometric Codes

Initial ideas that led to algebraic geometric codes (AG codes) came from V. Goppa (early 1980s)

I will give a brief overview of AG codes, a review of basic notions on algebraic curves necessary to describe Goppa's construction of codes

Motivations

- Show codes that exceed the Gilbert-Varshamov bound
- Show that codes can be constructed from different mathematical objects

Reed-Solomon code

AG codes are a natural generalization of Reed-Solomon codes

$$\mathbb{F}_q^{ imes} := \{ lpha_1, \dots, lpha_{q-1} \}; \ \mathcal{L}_k := \{ f \in \mathbb{F}_q[x] / \mathsf{deg} \ f \leq k-1 \} \cup \{ 0 \}$$

The Reed-Solomon code is $RS(k,q) := \{(f(\alpha_1), \dots, f(\alpha_{q-1})) \in \mathbb{F}_q^{q-1} / f \in L_k\}$ RS(k,q) is an $[q-1, k, n-k+1]_q$ -code. (an MDS code!) Since $1, x, \dots, x^{k-1}$ forms a basis of L_k , the generator matrix for RS(k,q) is:

$$G = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_{q-1} \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_{q-1}^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_{q-1}^{k-1} \end{bmatrix}.$$

For $1 \leq k \leq n \leq q$, let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be distinct elements of \mathbb{F}_q

Let v_1, v_2, \ldots, v_n be non-zero elements of \mathbb{F}_q

The code

 $GRS(k,q) := \{ (v_1 f(\alpha_1), v_2 f(\alpha_2), \dots, v_n f(\alpha_n)) \in \mathbb{F}_q^n / f \in L_k \}$

is the Generalized Reed-Solomon code.

If $\forall i, v_i = 1$, we have the Reed-Solomon code.

The Generalized Reed-Solomon code is also an MDS code.

K: field $f(x, y) \in K[x, y]$

The **affine curve** defined by f over K is

$$\chi_f := \{(a, b) \in K^2/f(a, b) = 0\}.$$

We usually look at roots of f lying in the algebraic closure of K. In particular, if $K = \mathbb{F}_q$, we look at points (a, b) over \mathbb{F}_{q^m} for some m, with f(a, b) = 0

Let *K* be a field. The **projective plane** $\mathbb{P}^2(K)$ is

$$\mathbb{P}^2(K) := (K^3 ackslash 0) / \sim$$

where $(X_0, Y_0, Z_0) \sim (X_1, Y_1, Z_1)$ iff $\exists \alpha \in K^{\times}$ such that $X_1 = \alpha X_0$, $Y_1 = \alpha Y_0$, $Z_1 = \alpha Z_0$.

If χ_f is the affine curve defined by f of degree = d, the **projective** closure of χ_f is $\widehat{\chi_f} := \{(a:b:c) \in \mathbb{P}^2(\overline{K})/F(a,b,c) = 0\}$ where $F(X, Y, Z) := Z^d f\left(\frac{X}{Z}, \frac{Y}{Z}\right)$ is the homogenization of f.

Example: The affine curve defined by $y^2 - x^2(x+1)$ is associated with the projective curve: $Y^2Z - X^3 - X^2Z$. The projective curve defined by $X^5 + Y^5 - Z^5$ is associated with the affine curve with equation $x^5 + y^5 = 1$

An affine (resp. projective) curve is **irreducible** is f(x, y) (resp. F(X, Y, Z)) cannot be written as the product of two non-constant polynomials.

A point P(a : b : c) on an irreducible projective curve χ defined by F(X, Y, Z) is **singular** if all the partial derivatives F_X , F_Y , F_Z vanish at P. Otherwise P is **simple**. The curve χ is **non-singular** or **smooth** is all its points are simple.

Example: Let χ be the curve defined by $F(X, Y, Z) = X^5 + Y^5 + Z^5$ over a field K. If char $K \neq 5$ then χ is non-singular. Otherwise, every point on χ is singular.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Example. Let char K = 2, and χ be defined by

$$F(X, Y, Z) = X^3Y + Y^3Z + Z^3X.$$

 χ is non-singular. (Klein quartic)

Example. (Hermitian curve) Let q be a prime power and $K = \mathbb{F}_{q^2}$, The curve χ defined by

$$F(X,Y,Z) = Y^q Z + Y Z^q - X^{q+1}$$

is non-singular. (Exercise: show that the number of points in $\chi(\mathbb{F}_{q^2})$ is q^3+1).

Bezout's Theorem. If $f, g \in K[x, y]$ are polynomials with degrees d_f , d_g with no non-constant common factors, then the affine curves χ_f and χ_g intersect in at most $d_f d_g$ points. The projective curves $\widehat{\chi_f}$ and $\widehat{\chi_g}$ intersect in exactly $d_f d_g$ points of $\mathbb{P}^2(\overline{K})$ where we consider multiplicity.

If $\widehat{\chi_f}$ is a non-singular projective curve defined by $f \in K[x, y]$ of degree d, the **genus** of χ_f (or $\widehat{\chi_f}$) is

$$g := (d-1)(d-2)/2$$

Let C be a projective curve defined by F(X, Y, Z) over a field K. If $K \subseteq L$, a field, an L-rational point on C is a point $(a : b : c) \in \mathbb{P}^2(L)$ such that F(a, b, c) = 0. The set of L-rational points is denoted as C(L). The set C(K) are simply rational points.

Example: Let C be defined by $X^2 + Y^2 = Z^2$. Then (3:4:5) = (3/5:4/5:1) is a Q-rational point on C. The points (3:2*i*: $\sqrt{5}$) and (3:-2*i*: $\sqrt{5}$) are C-rational points on C.

14 E N 14 E N

The **Frobenius automorphism** is the map $\sigma_{q,n} : \mathbb{F}_{q^n} \longrightarrow \mathbb{F}_{q^n}$ defined by $\alpha \longmapsto \alpha^q$.

If *C* is a projective curve over \mathbb{F}_q , the action of $\sigma_{q,n}$ on $C(\mathbb{F}_{q^n})$ is $\sigma_{q,n}((a:b:c:)) := (a^q:b^q:c^q)$. Action on affine curves is similarly defined.

Let *C* be a non-singular projective curve. A **point of degree** *n* **on** *C* **over** \mathbb{F}_q is a set $P = \{P_0, P_1, \ldots, P_{n-1}\}$ of *n* distinct points such that $P_i = \sigma_{q,n}^i(P_0)$ for $i = 1, 2, \ldots, n-1$.

A B M A B M

By Bezout's Theorem, two curves C_1 , C_2 over \mathbb{F}_q defined by polynomials of degrees d_1, d_2 will intersect in d_1d_2 points. These d_1d_2 points can be grouped into points of varying degrees, the sum of degrees is d_1d_2 . i.e. $C_1 \cap C_2 = P_1 + P_2 + \ldots + P_l$ with $d_1d_2 = \deg P_1 + \deg P_2 + \ldots \deg P_l$. The **intersection divisor** of C_1 and C_2 is $C_1 \cap C_2$.

Let *C* be a curve over \mathbb{F}_q . A **divisor** *D* on *C* over \mathbb{F}_q is a sum of the form $\Sigma n_P P$ where $n_P \in \mathbb{Z}$ and each *P* is a point (of arbitrary degree) on *C*. The **degree** of the divisor *D* is deg $D := \Sigma n_p \text{deg } P$. The **support** of the divisor *D* is supp $D := \{P \mid n_P \neq 0\}$.

If $n_P \ge 0 \ \forall P$, D is called an **effective divisor**, and we write $D \ge 0$.

• • = • • = •

rational functions on C

Let the *C* be a projective curve over \mathbb{F}_q defined by F(X, Y, Z). A **rational function on** *C* is a ratio g(X, Y, X)/h(X, Y, Z) of two homogeneous polynomials g, $h \in \mathbb{F}_q[X, Y, Z]$ of the same degree. We define the equivalence relation \sim on rational functions: $g_0/h_0 \sim g_1/h_1$ if and only if $g_0h_1 - g_1h_0$ is in the principal ideal < F > generated by *F* in $\mathbb{F}_q[X, Y, Z]$. The **field** $\mathbb{F}_q(C)$ of **rational functions on** *C* is the set

 $(\{g/h \mid g, h \in \mathbb{F}_q[X, Y, Z], homogeneous of same degree} \cup \{0\})/ \sim$

Let *C* be a curve over \mathbb{F}_q and let f = g/h be a rational function on *C*. The **divisor of** *f* is defined as $\operatorname{div}(f) := \sum P - \sum Q$, where $\sum P$ is the intersection divisor $C \cap C_g$ and $\sum Q$ is the intersection divisor $C \cap C_h$;

高 と く ヨ と く ヨ と

Let *C* be a non-singular projective curve over \mathbb{F}_q and *D* a divisor on *C*. The **space of rational functions associated to** *D* is

$$L(D):=\{f\in \mathbb{F}_q(C)\mid \text{div } (f)+D\geq 0\}\cup \{0\}.$$

Riemann-Roch Theorem. If χ be a non-singular projective curve over \mathbb{F}_q , with genus = g, and D, a divisor on χ , then the dimension L(D) as a vector space over \mathbb{F}_q is $\geq \deg D + 1 - g$. If deg D > 2g - 2 then dim $L(D) = \deg D + 1 - g$.

AG codes

Let $\mathbb{F}_q^{\times} = \{\alpha_1, \dots, \alpha_{q-1}\}$ and consider the projective line $\mathbb{P}^1(\mathbb{F}_q) = \{(a:1) \mid a \in \mathbb{F}_q\} \cup \{(1:0)\}.$ Set $P_i := (\alpha_i : 1)$ and $D := (k-1)P_{\infty}$ where $P_{\infty} = (1:0).$

The space L(D) of rational functions associated to D is L_k .

$$RS(k,q) = \{ (f(P_1), \dots, f(P_{q-1})) \mid f \in L(D) \}$$

Goppa's generalization: Let χ be a projective non-singular plane curve over F_q , and D a divisor on χ . Let $P = (P_1, P_2, \ldots, P_n)$ be a set of n distinct \mathbb{F} -rational points on the curve. The **algebraic geometric code associated to** χ , P and D is

$$C(\chi, P, D) := \{(f(P_1), \ldots, f(P_n)) \mid f \in L(D)\} \subset \mathbb{F}_q^n.$$

• • = • • = •

Parameters of $C(\chi, P, D)$: length=n dimension C is dim L(D)

Theorem. Let χ be a non-singular projective curve over \mathbb{F}_q , with genus g. Let P be a set of n distinct \mathbb{F}_q -rational points on χ , and let D be a divisor on χ such that $2g - 2 < \deg D < n$. Then $C(\chi, P, D)$ is a linear code of length n, dimension = $\deg D + 1 - g$ and minimum distance d where $d \ge n - \deg D$.

• = • • = •