Introduction to Algebraic Geometric Codes

Introduction

Initial ideas that led to algebraic geometric codes (AG codes) came from V. Goppa (early 1980s)

I will give a brief overview of AG codes, a review of basic notions on algebraic curves necessary to describe Goppa's construction of codes

Motivations

- Show codes that exceed the Gilbert-Varshamov bound
- Show that codes can be constructed from different mathematical objects

Reed-Solomon code

AG codes are a natural generalization of Reed-Solomon codes
$\mathbb{F}_{q}^{\times}:=\left\{\alpha_{1}, \ldots, \alpha_{q-1}\right\} ; L_{k}:=\left\{f \in \mathbb{F}_{q}[x] / \operatorname{deg} f \leq k-1\right\} \cup\{0\}$
The Reed-Solomon code is
$R S(k, q):=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{q-1}\right)\right) \in \mathbb{F}_{q}^{q-1} / f \in L_{k}\right\}$
$R S(k, q)$ is an $[q-1, k, n-k+1]_{q}$-code. (an MDS code!)
Since $1, x, \ldots, x^{k-1}$ forms a basis of L_{k}, the generator matrix for $R S(k, q)$ is:

$$
G=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{q-1} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{q-1}^{2} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \ldots & \alpha_{q-1}^{k-1}
\end{array}\right]
$$

Generalized Reed-Solomon code

For $1 \leq k \leq n \leq q$, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be distinct elements of \mathbb{F}_{q}
Let $v_{1}, v_{2}, \ldots, v_{n}$ be non-zero elements of \mathbb{F}_{q}
The code
$G R S(k, q):=\left\{\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \in \mathbb{F}_{q}^{n} / f \in L_{k}\right\}$
is the Generalized Reed-Solomon code.

If $\forall i, v_{i}=1$, we have the Reed-Solomon code.

The Generalized Reed-Solomon code is also an MDS code.

algebraic curves

K : field
$f(x, y) \in K[x, y]$
The affine curve defined by f over K is

$$
\chi_{f}:=\left\{(a, b) \in K^{2} / f(a, b)=0\right\} .
$$

We usually look at roots of f lying in the algebraic closure of K. In particular, if $K=\mathbb{F}_{q}$, we look at points (a, b) over $\mathbb{F}_{q^{m}}$ for some m, with $f(a, b)=0$

algebraic curves

Let K be a field. The projective plane $\mathbb{P}^{2}(K)$ is

$$
\mathbb{P}^{2}(K):=\left(K^{3} \backslash 0\right) / \sim
$$

where $\left(X_{0}, Y_{0}, Z_{0}\right) \sim\left(X_{1}, Y_{1}, Z_{1}\right)$ iff $\exists \alpha \in K^{\times}$such that $X_{1}=\alpha X_{0}, Y_{1}=\alpha Y_{0}, Z_{1}=\alpha Z_{0}$.
If χ_{f} is the affine curve defined by f of degree $=d$, the projective closure of χ_{f} is $\widehat{\chi_{f}}:=\left\{(a: b: c) \in \mathbb{P}^{2}(\bar{K}) / F(a, b, c)=0\right\}$ where $F(X, Y, Z):=Z^{d} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)$ is the homogenization of f.

Example: The affine curve defined by $y^{2}-x^{2}(x+1)$ is associated with the projective curve: $Y^{2} Z-X^{3}-X^{2} Z$. The projective curve defined by $X^{5}+Y^{5}-Z^{5}$ is associated with the affine curve with equation $x^{5}+y^{5}=1$

algebraic curves

An affine (resp. projective) curve is irreducible is $f(x, y)$ (resp. $F(X, Y, Z)$) cannot be written as the product of two non-constant polynomials.

A point $P(a: b: c)$ on an irreducible projective curve χ defined by $F(X, Y, Z)$ is singular if all the partial derivatives F_{X}, F_{Y}, F_{Z} vanish at P. Otherwise P is simple. The curve χ is non-singular or smooth is all its points are simple.

Example: Let χ be the curve defined by $F(X, Y, Z)=X^{5}+Y^{5}+Z^{5}$ over a field K. If char $K \neq 5$ then χ is non-singular. Otherwise, every point on χ is singular.

two examples: Klein quartic, Hermitian curves

Example. Let char $K=2$, and χ be defined by

$$
F(X, Y, Z)=X^{3} Y+Y^{3} Z+Z^{3} X
$$

χ is non-singular. (Klein quartic)
Example. (Hermitian curve) Let q be a prime power and $K=\mathbb{F}_{q^{2}}$, The curve χ defined by

$$
F(X, Y, Z)=Y^{q} Z+Y Z^{q}-X^{q+1}
$$

is non-singular. (Exercise: show that the number of points in $\chi\left(\mathbb{F}_{q^{2}}\right)$ is $\left.q^{3}+1\right)$.

genus of curve

Bezout's Theorem. If $f, g \in K[x, y]$ are polynomials with degrees d_{f}, d_{g} with no non-constant common factors, then the affine curves χ_{f} and χ_{g} intersect in at most $d_{f} d_{g}$ points. The projective curves $\widehat{\chi_{f}}$ and $\widehat{\chi_{g}}$ intersect in exactly $d_{f} d_{g}$ points of $\mathbb{P}^{2}(\bar{K})$ where we consider multiplicity.

If $\widehat{\chi f}$ is a non-singular projective curve defined by $f \in K[x, y]$ of degree d, the genus of χ_{f} (or $\widehat{\chi_{f}}$) is

$$
g:=(d-1)(d-2) / 2
$$

rational points

Let C be a projective curve defined by $F(X, Y, Z)$ over a field K. If $K \subseteq L$, a field, an L-rational point on C is a point $(a: b: c) \in \mathbb{P}^{2}(L)$ such that $F(a, b, c)=0$. The set of L-rational points is denoted as $C(L)$. The set $C(K)$ are simply rational points.

Example: Let C be defined by $X^{2}+Y^{2}=Z^{2}$. Then
$(3: 4: 5)=(3 / 5: 4 / 5: 1)$ is a \mathbb{Q}-rational point on C. The points (3:2i: $\sqrt{5}$) and $(3:-2 i: \sqrt{5})$ are \mathbb{C}-rational points on C.

Frobenius automorphism, degree of points

The Frobenius automorphism is the map $\sigma_{q, n}: \mathbb{F}_{q^{n}} \longrightarrow \mathbb{F}_{q^{n}}$ defined by $\alpha \longmapsto \alpha^{q}$.

If C is a projective curve over \mathbb{F}_{q}, the action of $\sigma_{q, n}$ on $C\left(\mathbb{F}_{q^{n}}\right)$ is $\sigma_{q, n}((a: b: c:)):=\left(a^{q}: b^{q}: c^{q}\right)$. Action on affine curves is similarly defined.

Let C be a non-singular projective curve. A point of degree n on C over \mathbb{F}_{q} is a set $P=\left\{P_{0}, P_{1}, \ldots, P_{n-1}\right\}$ of n distinct points such that $P_{i}=\sigma_{q, n}^{i}\left(P_{0}\right)$ for $i=1,2, \ldots, n-1$.

intersection divisors, divisors on curves

By Bezout's Theorem, two curves C_{1}, C_{2} over \mathbb{F}_{q} defined by polynomials of degrees d_{1}, d_{2} will intersect in $d_{1} d_{2}$ points. These $d_{1} d_{2}$ points can be grouped into points of varying degrees, the sum of degrees is $d_{1} d_{2}$. i.e. $C_{1} \cap C_{2}=P_{1}+P_{2}+\ldots+P_{l}$ with $d_{1} d_{2}=\operatorname{deg} P_{1}+\operatorname{deg} P_{2}+\ldots \operatorname{deg} P_{l}$. The intersection divisor of C_{1} and C_{2} is $C_{1} \cap C_{2}$.

Let C be a curve over \mathbb{F}_{q}. A divisor D on C over \mathbb{F}_{q} is a sum of the form $\sum n_{P} P$ where $n_{P} \in \mathbb{Z}$ and each P is a point (of arbitrary degree) on C. The degree of the divisor D is deg $D:=\Sigma n_{p} \mathrm{deg} P$. The support of the divisor D is supp $D:=\left\{P \mid n_{P} \neq 0\right\}$.

If $n_{P} \geq 0 \forall P, D$ is called an effective divisor, and we write $D \geq 0$.

Let the C be a projective curve over \mathbb{F}_{q} defined by $F(X, Y, Z)$. A rational function on C is a ratio $g(X, Y, X) / h(X, Y, Z)$ of two homogeneous polynomials $g, h \in \mathbb{F}_{q}[X, Y, Z]$ of the same degree. We define the equivalence relation \sim on rational functions: $g_{0} / h_{0} \sim g_{1} / h_{1}$ if and only if $g_{0} h_{1}-g_{1} h_{0}$ is in the principal ideal $<F>$ generated by F in $\mathbb{F}_{q}[X, Y, Z]$. The field $\mathbb{F}_{q}(C)$ of rational functions on C is the set
$\left(\left\{g / h \mid g, h \in \mathbb{F}_{q}[X, Y, Z]\right.\right.$, homogeneous of same degree $\left.\} \cup\{0\}\right) / \sim$

Let C be a curve over \mathbb{F}_{q} and let $f=g / h$ be a rational function on C. The divisor of f is defined as $\operatorname{div}(f):=\sum P-\sum Q$, where $\sum P$ is the intersection divisor $C \cap C_{g}$ and $\sum Q$ is the intersection divisor $C \cap C_{h}$;

Let C be a non-singular projective curve over \mathbb{F}_{q} and D a divisor on C. The space of rational functions associated to D is

$$
L(D):=\left\{f \in \mathbb{F}_{q}(C) \mid \operatorname{div}(f)+D \geq 0\right\} \cup\{0\}
$$

Riemann-Roch Theorem. If χ be a non-singular projective curve over \mathbb{F}_{q}, with genus $=g$, and D, a divisor on χ, then the dimension $L(D)$ as a vector space over \mathbb{F}_{q} is $\geq \operatorname{deg} D+1-g$. If $\operatorname{deg} D>2 g-2$ then $\operatorname{dim} L(D)=\operatorname{deg} D+1-g$.

AG codes

Let $\mathbb{F}_{q}^{\times}=\left\{\alpha_{1}, \ldots, \alpha_{q-1}\right\}$ and consider the projective line $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)=\left\{(a: 1) \mid a \in \mathbb{F}_{q}\right\} \cup\{(1: 0)\}$. Set $P_{i}:=\left(\alpha_{i}: 1\right)$ and $D:=(k-1) P_{\infty}$ where $P_{\infty}=(1: 0)$.

The space $L(D)$ of rational functions associated to D is L_{k}. $R S(k, q)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{q-1}\right)\right) \mid f \in L(D)\right\}$

Goppa's generalization: Let χ be a projective non-singular plane curve over F_{q}, and D a divisor on χ. Let $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a set of n distinct \mathbb{F}-rational points on the curve. The algebraic geometric code associated to χ, P and D is

$$
C(\chi, P, D):=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in L(D)\right\} \subset \mathbb{F}_{q}^{n} .
$$

parameters of AG code

Parameters of $C(\chi, P, D)$:
length $=n$
dimension C is $\operatorname{dim} L(D)$
Theorem. Let χ be a non-singular projective curve over \mathbb{F}_{q}, with genus g. Let P be a set of n distinct \mathbb{F}_{q}-rational points on χ, and let D be a divisor on χ such that $2 g-2<\operatorname{deg} D<n$. Then $C(\chi, P, D)$ is a linear code of length n, dimension $=$ $\operatorname{deg} D+1-g$ and minimum distance d where $d \geq n-\operatorname{deg} D$.

