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Introduction

Initial ideas that led to algebraic geometric codes (AG codes) came
from V. Goppa (early 1980s)

I will give a brief overview of AG codes, a review of basic notions
on algebraic curves necessary to describe Goppa’s construction of
codes

Motivations

Show codes that exceed the Gilbert-Varshamov bound

Show that codes can be constructed from different
mathematical objects
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Reed-Solomon code

AG codes are a natural generalization of Reed-Solomon codes

F×
q := {α1, . . . , αq−1}; Lk := {f ∈ Fq[x ]/deg f ≤ k − 1} ∪ {0}

The Reed-Solomon code is
RS(k , q) := {(f (α1), . . . , f (αq−1)) ∈ Fq−1

q /f ∈ Lk}

RS(k , q) is an [q − 1, k, n − k + 1]q-code. (an MDS code!)

Since 1, x , . . . , xk−1 forms a basis of Lk , the generator matrix for
RS(k , q) is:

G =


1 1 . . . 1
α1 α2 . . . αq−1

α2
1 α2

2 . . . α2
q−1

...
...

...

αk−1
1 αk−1

2 . . . αk−1
q−1

 .
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Generalized Reed-Solomon code

For 1 ≤ k ≤ n ≤ q, let α1, α2, . . . , αn be distinct elements of Fq

Let v1, v2, . . . , vn be non-zero elements of Fq

The code

GRS(k , q) := {(v1f (α1), v2f (α2), . . . , vnf (αn)) ∈ Fn
q/f ∈ Lk}

is the Generalized Reed-Solomon code.

If ∀i , vi = 1, we have the Reed-Solomon code.

The Generalized Reed-Solomon code is also an MDS code.
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algebraic curves

K : field

f (x , y) ∈ K [x , y ]

The affine curve defined by f over K is

χf := {(a, b) ∈ K 2/f (a, b) = 0}.

We usually look at roots of f lying in the algebraic closure of K . In
particular, if K = Fq, we look at points (a, b) over Fqm for some
m, with f (a, b) = 0
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algebraic curves

Let K be a field. The projective plane P2(K ) is

P2(K ) := (K 3\0)/ ∼

where (X0,Y0,Z0) ∼ (X1,Y1,Z1) iff ∃α ∈ K× such that
X1 = αX0, Y1 = αY0, Z1 = αZ0.

If χf is the affine curve defined by f of degree = d , the projective
closure of χf is χ̂f := {(a : b : c) ∈ P2(K̄ )/F (a, b, c) = 0} where
F (X ,Y ,Z ) := Zd f

(
X
Z ,

Y
Z

)
is the homogenization of f .

Example: The affine curve defined by y2 − x2(x + 1) is associated
with the projective curve: Y 2Z − X 3 − X 2Z . The projective curve
defined by X 5 + Y 5 − Z 5 is associated with the affine curve with
equation x5 + y5 = 1
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algebraic curves

An affine (resp. projective) curve is irreducible is f (x , y) (resp.
F (X ,Y ,Z )) cannot be written as the product of two non-constant
polynomials.

A point P(a : b : c) on an irreducible projective curve χ defined by
F (X ,Y ,Z ) is singular if all the partial derivatives FX , FY , FZ
vanish at P. Otherwise P is simple.The curve χ is non-singular
or smooth is all its points are simple.

Example: Let χ be the curve defined by
F (X ,Y ,Z ) = X 5 + Y 5 + Z 5 over a field K . If char K ̸= 5 then χ
is non-singular. Otherwise, every point on χ is singular.

F. Nemenzo Lecture: AG codes(6 Dec 2023)



two examples: Klein quartic, Hermitian curves

Example. Let char K = 2, and χ be defined by

F (X ,Y ,Z ) = X 3Y + Y 3Z + Z 3X .

χ is non-singular. (Klein quartic)

Example. (Hermitian curve) Let q be a prime power and K = Fq2 ,
The curve χ defined by

F (X ,Y ,Z ) = Y qZ + YZq − X q+1

is non-singular. (Exercise: show that the number of points in
χ(Fq2) is q

3 + 1).
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genus of curve

Bezout’s Theorem. If f , g ∈ K [x , y ] are polynomials with degrees
df , dg with no non-constant common factors, then the affine
curves χf and χg intersect in at most df dg points. The projective
curves χ̂f and χ̂g intersect in exactly df dg points of P2(K̄ ) where
we consider multiplicity.

If χ̂f is a non-singular projective curve defined by f ∈ K [x , y ] of
degree d , the genus of χf (or χ̂f ) is

g := (d − 1)(d − 2)/2
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rational points

Let C be a projective curve defined by F (X ,Y ,Z ) over a field K .
If K ⊆ L, a field, an L-rational point on C is a point
(a : b : c) ∈ P2(L) such that F (a, b, c) = 0. The set of L-rational
points is denoted as C (L). The set C (K ) are simply rational
points.

Example: Let C be defined by X 2 + Y 2 = Z 2. Then
(3 : 4 : 5) = (3/5 : 4/5 : 1) is a Q-rational point on C . The points
(3 : 2i :

√
5) and (3 : −2i :

√
5) are C-rational points on C .
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Frobenius automorphism, degree of points

The Frobenius automorphism is the map σq,n : Fqn −→ Fqn

defined by α 7−→ αq.

If C is a projective curve over Fq, the action of σq,n on C (Fqn) is
σq,n((a : b : c :)) := (aq : bq : cq). Action on affine curves is
similarly defined.

Let C be a non-singular projective curve. A point of degree n on
C over Fq is a set P = {P0,P1, . . . ,Pn−1} of n distinct points
such that Pi = σi

q,n(P0) for i = 1, 2, . . . , n − 1.
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intersection divisors, divisors on curves

By Bezout’s Theorem, two curves C1, C2 over Fq defined by
polynomials of degrees d1, d2 will intersect in d1d2 points. These
d1d2 points can be grouped into points of varying degrees, the sum
of degrees is d1d2. i.e. C1 ∩ C2 = P1 + P2 + . . .+ Pl with
d1d2 = deg P1 + deg P2 + . . . deg Pl . The intersection divisor of
C1 and C2 is C1 ∩ C2.

Let C be a curve over Fq. A divisor D on C over Fq is a sum of
the form ΣnPP where nP ∈ Z and each P is a point (of arbitrary
degree) on C . The degree of the divisor D is deg D := Σnpdeg P.
The support of the divisor D is supp D := {P | nP ̸= 0}.

If nP ≥ 0 ∀P, D is called an effective divisor, and we write D ≥ 0.
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rational functions on C

Let the C be a projective curve over Fq defined by F (X ,Y ,Z ). A
rational function on C is a ratio g(X ,Y ,X )/h(X ,Y ,Z ) of two
homogeneous polynomials g , h ∈ Fq[X ,Y ,Z ] of the same degree.
We define the equivalence relation ∼ on rational functions:
g0/h0 ∼ g1/h1 if and only if g0h1 − g1h0 is in the principal ideal
< F > generated by F in Fq[X ,Y ,Z ]. The field Fq(C ) of
rational functions on C is the set

({g/h | g , h ∈ Fq[X ,Y ,Z ], homogeneous of same degree}∪{0})/ ∼

Let C be a curve over Fq and let f = g/h be a rational function
on C . The divisor of f is defined as div(f ) :=

∑
P −

∑
Q, where∑

P is the intersection divisor C ∩ Cg and
∑

Q is the intersection
divisor C ∩ Ch;
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space of rational functions

Let C be a non-singular projective curve over Fq and D a divisor
on C . The space of rational functions associated to D is

L(D) := {f ∈ Fq(C ) | div (f ) + D ≥ 0} ∪ {0}.

Riemann-Roch Theorem. If χ be a non-singular projective curve
over Fq, with genus = g , and D, a divisor on χ, then the
dimension L(D) as a vector space over Fq is ≥ deg D + 1− g . If
deg D > 2g − 2 then dim L(D) = deg D + 1− g .
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AG codes

Let F×
q = {α1, . . . , αq−1} and consider the projective line

P1(Fq) = {(a : 1) | a ∈ Fq} ∪ {(1 : 0)}. Set Pi := (αi : 1) and
D := (k − 1)P∞ where P∞ = (1 : 0).

The space L(D) of rational functions associated to D is Lk .

RS(k , q) = {(f (P1), . . . , f (Pq−1)) | f ∈ L(D)}

Goppa’s generalization: Let χ be a projective non-singular plane
curve over Fq, and D a divisor on χ. Let P = (P1,P2, . . . ,Pn) be
a set of n distinct F-rational points on the curve. The algebraic
geometric code associated to χ, P and D is

C (χ,P,D) := {(f (P1), . . . , f (Pn)) | f ∈ L(D)} ⊂ Fn
q.
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parameters of AG code

Parameters of C (χ,P,D):
length=n
dimension C is dim L(D)

Theorem. Let χ be a non-singular projective curve over Fq, with
genus g . Let P be a set of n distinct Fq-rational points on χ, and
let D be a divisor on χ such that 2g − 2 < deg D < n. Then
C (χ,P,D) is a linear code of length n, dimension =
deg D + 1− g and minimum distance d where d ≥ n − deg D.
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