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Codes over rings

Let R be a finite ring. (e.g. Zm := Z/mZ)

1) code: an R-submodule of Rn := {(x1, x2, . . . , xn) | xi ∈ R}

2) codeword: element of a code

3) Two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) are
orthogonal if their Euclidean inner product is zero. i.e.

x · y =
∑
i

xiyi = 0
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Self-dual codes

Let C be a code over a ring R.

1) dual of C:

C⊥ := {y ∈ Rn | x · y = 0,∀x ∈ C}

(Remark: C⊥ is a code.)

2) If C ⊆ C⊥, C is self-orthogonal.

3) If C = C⊥, C is self-dual.

F. Nemenzo Lecture: Codes over finite rings / Mass formulas (13 Dec 2023)



weight enumerators and MacWilliams identity

The weight distribution of a code is important. Let
A(x) =

∑n
i=0 Aixi and B(x) =

∑n
i=0 Bixi where Ai and Bi denote

the number of codewords of Hamming weight i in C and its dual
C⊥, respectively.

For binary linear codes the MacWilliams identities hold:

B(x) =
1

| C |
(1 + x)nA

(
1− x

1 + x

)
.
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non-linear codes with many codewords

Encoding and decoding using non-linear codes are more difficult
because such codes have no structure. But with given length and
minimum distance, we can sometimes get non-linear codes that are
larger than linear codes (with same length and distance).

For example, the largest linear binary code with length n = 16 and
d = 6 has dimension k = 7 (i.e. size = 128 codewords.). In fact, it
is known that there is no binary linear code [16, 8, 6]2.

But in 1967, a binary but non-linear (16, 256, 6) binary code was
found by Nordstrom and Robinson. The code has a high degree of
regularity and symmetry, and has twice as many codewords as the
best linear code with the same length 16 and minimum distance 6.
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larger families of codes

Generalizations of the Nordstrom-Robinson code were later found:

(1968) Preparata codes P(m) (for odd m ≥ 3) :
(2m+1, 22

m+1−2m−2, 6)

(1972) Kerdock codes K (m) (for odd m ≥ 3 ):

(2m+1, 22m+2, 2m − 2
m−1
2 )

Other generalizations: Goethals, Delsarte & Goethals, Hergert:

Goethals, Two dual families of nonlinear binary codes, Electronic Letters
10 (1974), 471-472.
Goethals, Nonlinear codes defined by quadratic forms over GF (2),
Inform. Control 31 (1976), 43-74.
Delsarte and Goethals, Alternating bilinear forms over GF (q), J. Combin.
Theory A 19 (1975), 26-50.
Hergert, On the Delsarte-Goethals codes and their formal duals, Discrete
Math. 83 (1990), 249-263.
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“duality” of Preparata and Kerdock codes

Interesting observations:

1) Preparata and Kerdock codes intersect at Nordstrom-Robinson

2) Being non-linear, Preparata and Kerdock codes cannot be dual
to each other. But

| P(m) | · | K (m) |= 22
m+1

.

3) The weight enumerators of P(m) and K (m) satisfy the

MacWilliams identity.

William Kantor:“just a mere coincidence!”

Berkelamp (ed.), Key Papers in the Development of Coding Theory, IEEE

Press, NY (1974).
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Codes over finite rings

No coincidence!

Recent interest in codes over rings is due to the discovery that the
non-linear binary codes (with good parameters) can be constructed
as images of codes over the finite ring Z4 := Z/4Z.

Thus, despite lack of structure, the non-linear binary codes have an
elementary construction
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Lee weight and Lee distance

A linear code of length n over Z4 is an additive subgroup of Zn
4.

The Lee weight wL of an element of Z4 is given by:

x 0 1 2 3
wL(x) 0 1 2 1

We extend wL to Zn
4:

wL(a) =
n∑

i=1

wL(ai )

for a = (a1, a2, . . . , an) ∈ Zn
4.
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Lee weight and Lee distance

The Lee distance dL(u, v) between u, v ∈ Zn
4 is

dL(u, v) := wL(u − v).

The Lee weight enumerator of a linear code C ⊂ Zn
4 is

LeeC (x , y) =
∑
u∈C

x2n−wL(u)ywL(u)

MacWilliams identity:

LeeC⊥(x , y) =
1

| C |
LeeC (x + y , x − y)
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Gray map

Definition. The Gray map ϕ : Z4 −→ Z2
2 is given by

0 7−→ 00, 1 7−→ 01, 2 7−→ 11, 3 7−→ 10.

We can extend this to ϕ : Zn
4 7−→−→ Z2n

2 .

The map
ϕ : (Zn

4,wL) 7−→ (Z2n
2 ,wH)

is a isometry of metric spaces.

F. Nemenzo Lecture: Codes over finite rings / Mass formulas (13 Dec 2023)



The Z4-octacode

Let (O) (the octacode) be the linear (23, 256, 6) code over Z4

with generator matrix

G =


3 3 2 3 1 0 0 0
3 0 3 2 3 1 0 0
3 0 0 3 2 3 1 0
3 0 0 0 3 2 3 1

 .

The image ϕ((O) of the octacode under the Gray map is the
Nordstrom-Robinson code!

Hammons, Kumar, Calderbank, Sloane, Sole.“The Z4-linearity of

Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inform.

Theory 40 (1994), 301-319.
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duality between Preparata and Kerdock

Hammons, Kumar, Calderbank, Sloane, Sole:

The Preparata and Kerdock codes are Gray images of two cyclic
codes over Z4 that are duals of each other.

C −→ ϕ(C )
dual ↓

C⊥ −→ ϕ(C⊥).

Although ϕ(C ) and ϕ(C⊥) are non-linear, their weight
enumerators are related by the MacWilliams identity.
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Equivalent codes

Two codes of same length over Zps are equivalent if one can be
obtained from the other by permutation of coordinates, possibly
followed by multiplication of some coordinates by −1.

C1 ≈ C2 ⇐⇒ ∃ n × n matrix P such that

C1 = C2P := {cP | c ∈ C2}

where P has exactly one entry ±1 in every row and in every
column and all other entries are zero.
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Counting the number of codes (Mass formula)

The number of codes equivalent to a code C of length n is

|En|
|Aut(C)|

,

where En is the group of all sign-permutations and Aut(C) is the
automorphism group of C, i.e. the group of all sign-permutations
that send C to itself. Thus the number of distinct self-dual codes
over Zps of length n is given by

Nps (n) =
∑
[C]

2nn!

|Aut(C)|
=
∑
C

1,

where the first sum runs over all inequivalent self-dual codes [C].
We wish to find a more explicit formula for Nps (n). This is called
the mass formula.
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What is it for?

The mass formula

Nps (n) =
∑
[C]

|En|
|Aut(C)|

,

is important for the computation of the number of inequivalent
classes and classification of self-dual codes over Zps .
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What has been done?

In 1993, Conway and Sloane classified all self-dual codes over
Z4 up to length n = 9, without the aid of a mass formula.

Mass formula for self-dual codes over Z4 ( Gaborit. IEEE
Transactions Information Theory, 1996)

Classification of all self-dual Z4-codes with n ≤ 15 (Fields,
Gaborit, Leon, Pless. IEEE Transactions Information Theory,
1998)
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What has been done?

Mass formula for self-dual codes over Zp2 , odd prime p:
(Balmaceda, Betty, Nemenzo. Discrete Mathematics, 2008).

Theorem. Let p be an odd prime. If Np2(n) is the number of
distinct self-dual codes over Zp2 of length n then

Np2(n) =
∑

0≤k≤⌊ n
2⌋

σp(n, k) p
k(k−1)

2 ,

where σp(n, k) is the number of distinct self-orthogonal codes
over Fp of dimension k .

Classification of all self-dual codes over Z9 (for lengths n ≤ 8
for Z9, n ≤ 7 for Z25 and n ≤ 6 for Z49)
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How is classification done?

To count the number of inequivalent codes of given length n:

1 Set SUM = 0

2 Find a self-dual code C1 of length n

3 Compute |Aut(C1)|, SUM = SUM + 2nn!
|Aut(C1)|

4 For every j = 2, 3, . . ., find a self-dual code Cj , not equivalent
to C1, . . . , Cj−1, and compute |Aut(Cj)|, and
SUM = SUM + 2nn!

|Aut(C1)|
5 Compare SUM to mass formula. If SUM < mass formula, go

to step (4); if SUM = mass formula, done. There are j
inequivalent classes of codes.

F. Nemenzo Lecture: Codes over finite rings / Mass formulas (13 Dec 2023)



An example

Classify self-dual codes of length n = 8 over Z9:

N9(8) =
∑

0≤k≤4

σ3(8, k)3
k(k−1)

2

= 1 + 1120 + 36400 · 3 + 44800 · 33 + 2240 · 36

= 2952881

We can also compute∑ 288!

|Aut(C)|
= 1

+ 224 + 4480 + 20160 + 26880 + 1680

+896 + 8960 + 53760 + 215040 + 40320

+322560 + 645120 + 645120 + 322560 + 645120

= 2952881

Therefore there are 16 inequivalent self-dual codes of length 8 over
Z9.
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Codes over Zp3, for primes p

A code C of length n over Zp3 has a generator matrix which can be
written as

G =

 Ik A2 A3 A4

0 pIl pB3 pB4

0 0 p2Im p2C4

 =

 A
pB
p2C


Ii : i × i identity matrix
A3 = A30 + pA31

B4 = B40 + pB41

A4 = A40 + pA41 + p2A42

A2, B3, C4, Aij and Bij have entries from {0, 1, . . . , p − 1}
Columns have sizes k , l , m and h, with n = k + l +m + h.
C has p3k+2l+m codewords.
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Self-dual codes over Zp3

The dual code C⊥ is of type {h,m, l} and has p3h+2m+l codewords.

Thus: whenever C = C⊥, k = h and l = m.

A self-dual code then is of even length n = 2(k + l).
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Self-dual codes over Zp3

We can characterize self-dual codes:

Proposition. Let C be a code over Zp3 . Then C is a self-dual code
if and only if k = h, l = m and the following hold:

AAt ≡ 0 (mod p3) (1)

ABt ≡ 0 (mod p2) (2)

BBt ≡ 0 (mod p) (3)

AC t ≡ 0 (mod p). (4)

(We shall examine conditions (1)-(4) further, in terms of the
matrices over Zp.)
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Constructing self-dual codes from below

Proposition. Let p be an odd prime. A self-dual code over Zp3

can be induced from a self-dual code C1 over Zp; there are pk(
n
2
−1)

self-dual codes over Zp3 corresponding to each subspace of C1 of
dimension k (0 ≤ k ≤ n

2 ).

Proposition. Let p = 2. Define ε as follows: 1) if 1⃗n ∈ A and
8 | n, then ε = 1; 2) if 1⃗n ̸∈ A, then ε = 0. Any self-dual code over
Z23 is induced from a self-dual code C1 over Z2. There are
2kl+k2+ε self-dual codes over Z23 corresponding to each subspace
of dimension k (0 ≤ k ≤ n

2 ) of C1.
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The number of underlying self-dual codes over Zp

Lemma. (Pless, 1965) Let p be an odd prime and σp(n, k) the
number of self-orthogonal codes of even length n and dimension k
over Zp. Then :

1 If (−1)
n
2 is a square,

σp(n, k) =
(pn−k − pn/2−k + pn/2 − 1)

∏k−1
i=1 (p

n−2i − 1)∏k
i=1(p

i − 1)
, k ≥ 1.

2 If (−1)
n
2 is not a square ,

σp(n, k) =
(pn−k + pn/2−k − pn/2 − 1)

∏k−1
i=1 (p

n−2i − 1)∏k
i=1(p

i − 1)
, k ≥ 1.
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The number of subspaces

Lemma. Let V be an n-dimensional vector space over the integers
modulo p. The number ρ(n, k) of subspaces T ⊂ V of dimension
k ≤ n is given by

ρ(n, k) =
(pn − 1)(pn − p)...(pn − pk−1)

(pk − 1)(pk − p)...(pk − pk−1)
.
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Mass formula for Zp3

Theorem. Let Np3(n) denote the number of distinct self-dual
codes of even length n over Zp3 . (Nagata, Nemenzo, Wada.
Designs, Codes and Cryptography, 2009).

1. If p is odd then

Np3(n) =
(
1 +

(−1

p

) n
2

) n
2−1∏
i=1

pn−2i − 1

pi − 1

n
2∑

k=0

(
k−1∏
i=0

pn−i − 1

pk−i − 1

)
pk(

n
2−1).

2. If n ≡ 2, 6 (mod 8) then

N8(n) =

n
2−1∑
k=0

(
k−1∏
i=0

2n−2i−2 − 1

2i+1 − 1

) n
2−2∏
i=k

2n−2i−2 − 1

2i+1−k − 1

 2
kn
2 .
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Mass formula

3. If n ≡ 4 (mod 8) then

N8(n) =

n
2−1∑
k=0

(
k−1∏
i=0

2n−2i−2 − 2
n
2−i−1 − 2

2i+1 − 1

) n
2−2∏
i=k

2n−2i−2 − 1

2i+1−k − 1

 2
kn
2 .

4. If n ≡ 0 (mod 8) then

N8(n) =

n
2−1∑
k=0

(
k−1∏
i=0

2n−2i−2 + 2
n
2−i−1 − 2

2i+1 − 1

) n
2−2∏
i=k

2n−2i−2 − 1

2i+1−k − 1

 2
kn
2

+

n
2∑

k=1

(
k−2∏
i=0

2n−2i−3 + 2
n
2−i−2 − 1

2i+1 − 1

) n
2−1∏
i=k

2n−2i − 1

2i+1−k − 1

 2
kn
2 +1.
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A (partial) classification of self-dual codes over Z8 and Z9

by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Z8 and Z9.
Designs, Codes and Cryptography 41 (Nov 2006):

n = 2. There is only one self-dual code over Z8 of length 2.

G2 =

(
2 2
0 4

)
n = 4. There is only one self-dual code over Z8 of length 4.

G4 =


2 0 0 2
0 2 2 0
0 0 4 0
0 0 0 4
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A (partial) classification of self-dual codes over Z8 and Z9

by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over Z8 and Z9.
Designs, Codes and Cryptography 41 (Nov 2006):

n = 6. One self-dual code over Z8 of length 6.

G4 =



2 0 0 0 0 2
0 2 0 0 2 0
0 0 2 2 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4
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Example: self-dual codes over Z8 with n = 6, k = 2, l = 1.

We start with a self-dual binary code

[
A
B

]
=

 1 0 1 1 1 0
0 1 1 1 0 1
0 0 1 1 0 0


with

A2 =

(
1
1

)
, A30 =

(
1
1

)
, A40 =

(
1 0
0 1

)
.
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Example: self-dual codes over Z8 with n = 6, k = 2, l = 1.

C =


1 0 1 1 + 2x 1 + 2y + 4z 2 + 4z ′

0 1 1 3− 2x 2 + 4(z ′ + y + y ′) 1 + 2y ′ + 4z ′′

0 0 2 2 4(1− x) 4x
0 0 0 4 4 4

 ,

where x , y , y ′, z , z ′, and z ′′ are arbitrary elements of F2.

The code C is self-dual over Z8.
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What has been done?

Mass formula for Zp3 : (Nagata, Nemenzo, Wada. Designs,
Codes and Cryptography, 2009).

Construction of codes, mass formula for

Zps , odd p: (Nagata, Nemenzo, Wada. Proc.ACCT2008,
2009).

Z16: (Nagata, Nemenzo, Wada. Lecture Notes in Computer
Science, 2009).

Z2s : (Nagata, Nemenzo, Wada. Designs, Codes and
Cryptography, 2013).

Together with the Chinese Remainder Theorem, one can classify
self-dual codes over Zm.

F. Nemenzo Lecture: Codes over finite rings / Mass formulas (13 Dec 2023)



What has been done?

Mass formula for self-dual codes over finite chain rings:

F2m + uF2m , u
2 = 0, with classification (Betsumiya, Ling,

Nemenzo. Discrete Mathematics, 2004).

Fq + uFq + u2Fq, u
3 = 0, with classification (Betty, Nemenzo,

Vasquez. Journal of Applied Math. and Computing, 2017).

Mass formula for self-orthogonal codes over rings:

Zp2 , Z8 (Betty, Munemasa)

Fq + uFq, u
2 = 0, with classification (Betty, Galvez, Nemenzo.

European Journal of Pure and Applied Mathematics, 2020).
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what next

Classification for Zps codes of moderate lengths; develop
efficient methods for computing automorphism groups

Other rings: Galois rings, finite chain rings, Frobenius rings

another track: Generalization of Hammons, et. al. result for
other ring settings
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coding theory = pure mathematics + applied maths

combinatorics, algebra, number theory, geometry

geometry: AG codes

connections with constructing lattices (e.g. Nebe, An even
unimodular 72-dimensional lattice of minimum 8. J. Reine
und Angew. Math 673 (2012)/. Construction of Leech lattice
from Z4 codes- Bonnecaze, Sole, Calderbank. Quaternary
quadratic residue codes and unimodular lattices. IEEE Trans.
Information Theory 41 (1995).

connections to designs (e.g. Kaski, Österg̊ard. Non-existence
of projective planes of order 10. Classification Algorithms for
Codes and Designs. Springer (2006)).

connections to combinatorics (e.g. MDS codes and mutually
orthogonal latin squares and arcs in projective geometry)

connections to number theory (modular forms) (Minjia Shi,
Younglu Choie, Anuradha Sharma, and Patrick Sole. Codes
and Modular Forms. World Scientific (2019)
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