Codes over rings / Mass formulas

F. Nemenzo Lecture: Codes over finite rings / Mass formulas (13 Dec 202

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let R be a finite ring. (e.g. $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$)

1) **code**: an *R*-submodule of $R^n := \{(x_1, x_2, ..., x_n) \mid x_i \in R\}$

2) codeword: element of a code

3) Two vectors $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ are **orthogonal** if their Euclidean inner product is zero. i.e.

$$x \cdot y = \sum_{i} x_i y_i = 0$$

伺下 イラト イラト ニラ

Let C be a code over a ring R.

1) dual of C:

$$\mathcal{C}^{\perp} := \{ y \in \mathbb{R}^n \mid x \cdot y = 0, \forall x \in \mathcal{C} \}$$

(Remark: C^{\perp} is a code.)

2) If $C \subseteq C^{\perp}$, C is self-orthogonal.

3) If $C = C^{\perp}$, C is self-dual.

The weight distribution of a code is important. Let $A(x) = \sum_{i=0}^{n} A_i x_i$ and $B(x) = \sum_{i=0}^{n} B_i x_i$ where A_i and B_i denote the number of codewords of Hamming weight *i* in *C* and its dual C^{\perp} , respectively.

For binary linear codes the MacWilliams identities hold:

$$B(x) = \frac{1}{\mid C \mid} (1+x)^n A\left(\frac{1-x}{1+x}\right).$$

Encoding and decoding using non-linear codes are more difficult because such codes have no structure. But with given length and minimum distance, we can sometimes get non-linear codes that are larger than linear codes (with same length and distance).

For example, the largest linear binary code with length n = 16 and d = 6 has dimension k = 7 (i.e. size = 128 codewords.). In fact, it is known that there is no binary linear code $[16, 8, 6]_2$.

But in 1967, a binary but non-linear (16, 256, 6) binary code was found by Nordstrom and Robinson. The code has a high degree of regularity and symmetry, and has twice as many codewords as the best linear code with the same length 16 and minimum distance 6.

(4月) (日) (日) 日

larger families of codes

Generalizations of the Nordstrom-Robinson code were later found:

(1968) Preparata codes
$$P(m)$$
 (for odd $m \ge 3$) :
 $(2^{m+1}, 2^{2^{m+1}-2m-2}, 6)$
(1972) Kerdock codes $K(m)$ (for odd $m \ge 3$):
 $(2^{m+1}, 2^{2m+2}, 2^m - 2^{\frac{m-1}{2}})$

Other generalizations: Goethals, Delsarte & Goethals, Hergert:

Goethals, *Two dual families of nonlinear binary codes*, Electronic Letters **10** (1974), 471-472.

Goethals, *Nonlinear codes defined by quadratic forms over GF*(2), Inform. Control **31** (1976), 43-74.

Delsarte and Goethals, Alternating bilinear forms over GF(q), J. Combin. Theory A **19** (1975), 26-50.

Hergert, On the Delsarte-Goethals codes and their formal duals, Discrete Math. **83** (1990), 249-263.

(4 同) (日) (日) (日

"duality" of Preparata and Kerdock codes

Interesting observations:

1) Preparata and Kerdock codes intersect at Nordstrom-Robinson

2) Being non-linear, Preparata and Kerdock codes cannot be dual to each other. But

$$| P(m) | \cdot | K(m) | = 2^{2^{m+1}}.$$

3) The weight enumerators of P(m) and K(m) satisfy the

MacWilliams identity.

William Kantor: "just a mere coincidence!"

Berkelamp (ed.), Key Papers in the Development of Coding Theory, IEEE Press, NY (1974).

No coincidence!

Recent interest in codes over **rings** is due to the discovery that the non-linear binary codes (with good parameters) can be constructed as images of codes over the finite ring $\mathbb{Z}_4 := \mathbb{Z}/4\mathbb{Z}$.

Thus, despite lack of structure, the non-linear binary codes have an elementary construction

A linear code of length *n* over \mathbb{Z}_4 is an additive subgroup of \mathbb{Z}_4^n .

The **Lee weight** w_L of an element of \mathbb{Z}_4 is given by:

1

We extend w_L to \mathbb{Z}_4^n :

$$w_L(a) = \sum_{i=1}^n w_L(a_i)$$

for $a = (a_1, a_2, \ldots, a_n) \in \mathbb{Z}_4^n$.

The **Lee distance** $d_L(u, v)$ between $u, v \in \mathbb{Z}_4^n$ is

$$d_L(u,v) := w_L(u-v).$$

The **Lee weight enumerator** of a linear code $C \subset \mathbb{Z}_4^n$ is

$$Lee_C(x, y) = \sum_{u \in C} x^{2n - w_L(u)} y^{w_L(u)}$$

MacWilliams identity:

$$Lee_{C^{\perp}}(x,y) = \frac{1}{\mid C \mid} Lee_{C}(x+y,x-y)$$

Definition. The **Gray map** $\phi : \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^2$ is given by

$$0\longmapsto 00,\ 1\longmapsto 01,\ 2\longmapsto 11,\ 3\longmapsto 10.$$

We can extend this to $\phi : \mathbb{Z}_4^n \longmapsto \mathbb{Z}_2^{2n}$.

The map

$$\phi: (\mathbb{Z}_4^n, w_L) \longmapsto (\mathbb{Z}_2^{2n}, w_H)$$

is a isometry of metric spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Let (\mathcal{O}) (the **octacode**) be the linear (2³, 256, 6) code over \mathbb{Z}_4 with generator matrix

$$G = \begin{bmatrix} 3 & 3 & 2 & 3 & 1 & 0 & 0 & 0 \\ 3 & 0 & 3 & 2 & 3 & 1 & 0 & 0 \\ 3 & 0 & 0 & 3 & 2 & 3 & 1 & 0 \\ 3 & 0 & 0 & 0 & 3 & 2 & 3 & 1 \end{bmatrix}$$

The image $\phi((\mathcal{O})$ of the octacode under the Gray map is the Nordstrom-Robinson code!

Hammons, Kumar, Calderbank, Sloane, Sole. "The \mathbb{Z}_4 -linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Trans. Inform. Theory **40** (1994), 301-319.

伺下 イラト イラト ニラ

Hammons, Kumar, Calderbank, Sloane, Sole:

The Preparata and Kerdock codes are Gray images of two cyclic codes over \mathbb{Z}_4 that are duals of each other.

$$egin{array}{ccc} C & \longrightarrow & \phi(C) \ dual & \downarrow & \ C^{\perp} & \longrightarrow & \phi(C^{\perp}). \end{array}$$

Although $\phi(C)$ and $\phi(C^{\perp})$ are non-linear, their weight enumerators are related by the MacWilliams identity.

Two codes of same length over \mathbb{Z}_{p^s} are *equivalent* if one can be obtained from the other by permutation of coordinates, possibly followed by multiplication of some coordinates by -1.

 $\mathcal{C}_1 \approx \mathcal{C}_2 \Longleftrightarrow \exists n \times n \text{ matrix } P \text{ such that}$

$$\mathcal{C}_1 = \mathcal{C}_2 P := \{ cP \mid c \in \mathcal{C}_2 \}$$

where P has exactly one entry ± 1 in every row and in every column and all other entries are zero.

Counting the number of codes (Mass formula)

The number of codes *equivalent* to a code C of length n is

where E_n is the group of all sign-permutations and Aut(C) is the automorphism group of C, i.e. the group of all sign-permutations that send C to itself. Thus the number of *distinct* self-dual codes over \mathbb{Z}_{p^s} of length n is given by

$$N_{p^s}(n) = \sum_{[\mathcal{C}]} \frac{2^n n!}{|Aut(\mathcal{C})|} = \sum_{\mathcal{C}} 1,$$

where the first sum runs over all inequivalent self-dual codes [C]. We wish to find a more explicit formula for $N_{p^s}(n)$. This is called the **mass formula**.

The mass formula

$$N_{\rho^s}(n) = \sum_{[\mathcal{C}]} \frac{|E_n|}{|Aut(\mathcal{C})|},$$

is important for the computation of the number of inequivalent classes and classification of self-dual codes over \mathbb{Z}_{p^s} .

同ト・ヨト・ヨト

- In 1993, Conway and Sloane classified all self-dual codes over \mathbb{Z}_4 up to length n = 9, without the aid of a mass formula.
- Mass formula for self-dual codes over Z₄ (Gaborit. *IEEE Transactions Information Theory*, 1996)
- Classification of all self-dual \mathbb{Z}_4 -codes with $n \leq 15$ (Fields, Gaborit, Leon, Pless. *IEEE Transactions Information Theory*, 1998)

・ 「「・ ・ 」 ・ ・ 」 ・ ・ 「」

What has been done?

 Mass formula for self-dual codes over Z_{p²}, odd prime p: (Balmaceda, Betty, Nemenzo. Discrete Mathematics, 2008).

Theorem. Let *p* be an odd prime. If $N_{p^2}(n)$ is the number of distinct self-dual codes over \mathbb{Z}_{p^2} of length *n* then

$$N_{p^2}(n) = \sum_{0 \le k \le \lfloor \frac{n}{2} \rfloor} \sigma_p(n,k) p^{\frac{k(k-1)}{2}},$$

where $\sigma_p(n, k)$ is the number of distinct self-orthogonal codes over \mathbf{F}_p of dimension k.

Classification of all self-dual codes over Z₉ (for lengths n ≤ 8 for Z₉, n ≤ 7 for Z₂₅ and n ≤ 6 for Z₄₉)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

To count the number of inequivalent codes of given length *n*:

- ② Find a self-dual code C_1 of length n
- Sompute $|Aut(\mathcal{C}_1)|$, $SUM = SUM + \frac{2^n n!}{|Aut(\mathcal{C}_1)|}$
- For every j = 2, 3, ..., find a self-dual code C_j , not equivalent to $C_1, ..., C_{j-1}$, and compute $|Aut(C_j)|$, and $SUM = SUM + \frac{2^n n!}{|Aut(C_1)|}$
- Compare SUM to mass formula. If SUM < mass formula, go to step (4); if SUM = mass formula, done. There are j inequivalent classes of codes.</p>

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^8 8!}{|Aut(\mathcal{C})|} = 1$$

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^8 8!}{|Aut(\mathcal{C})|} = 1 + 224$$

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^{8}8!}{|Aut(\mathcal{C})|} = 1 + 224 + 4480$$

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^8 8!}{|Aut(\mathcal{C})|} = 1 + 224 + 4480 + 20160$$

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^8 8!}{|Aut(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680 +896 + 8960 + 53760 + 215040 + 40320 +322560 + 645120 + 645120 + 322560 + 645120 = 2952881$$

Classify self-dual codes of length n = 8 over \mathbb{Z}_9 :

$$N_{9}(8) = \sum_{0 \le k \le 4} \sigma_{3}(8, k) 3^{\frac{k(k-1)}{2}}$$

= 1 + 1120 + 36400 \cdot 3 + 44800 \cdot 3^{3} + 2240 \cdot 3^{6}
= **2952881**

We can also compute

$$\sum \frac{2^8 8!}{|Aut(C)|} = 1 + 224 + 4480 + 20160 + 26880 + 1680 +896 + 8960 + 53760 + 215040 + 40320 +322560 + 645120 + 645120 + 322560 + 645120 = 2952881$$

Therefore there are 16 inequivalent self-dual codes of length 8 over \mathbb{Z}_9 .

A code ${\mathcal C}$ of length n over ${\mathbb Z}_{p^3}$ has a generator matrix which can be written as

$$G = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pI_l & pB_3 & pB_4 \\ 0 & 0 & p^2I_m & p^2C_4 \end{bmatrix} = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix}$$

 $I_i: i \times i$ identity matrix $A_3 = A_{30} + pA_{31}$ $B_4 = B_{40} + pB_{41}$ $A_4 = A_{40} + pA_{41} + p^2A_{42}$ A_2, B_3, C_4, A_{ij} and B_{ij} have entries from $\{0, 1, \dots, p-1\}$ Columns have sizes k, l, m and h, with n = k + l + m + h. C has $p^{3k+2l+m}$ codewords. The dual code \mathcal{C}^{\perp} is of type $\{h, m, l\}$ and has $p^{3h+2m+l}$ codewords.

Thus: whenever $C = C^{\perp}$, k = h and l = m.

A self-dual code then is of even length n = 2(k + l).

We can characterize self-dual codes:

Proposition. Let C be a code over \mathbb{Z}_{p^3} . Then C is a self-dual code if and only if k = h, l = m and the following hold:

$$AA^t \equiv 0 \pmod{p^3} \tag{1}$$

$$AB^t \equiv 0 \pmod{p^2} \tag{2}$$

$$BB^t \equiv 0 \pmod{p} \tag{3}$$

$$AC^t \equiv 0 \pmod{p}.$$
 (4)

(We shall examine conditions (1)-(4) further, in terms of the matrices over \mathbb{Z}_p .)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proposition. Let *p* be an odd prime. A self-dual code over \mathbb{Z}_{p^3} can be induced from a self-dual code C_1 over \mathbb{Z}_p ; there are $p^{k(\frac{n}{2}-1)}$ self-dual codes over \mathbb{Z}_{p^3} corresponding to each subspace of C_1 of dimension k ($0 \le k \le \frac{n}{2}$).

Proposition. Let p = 2. Define ε as follows: 1) if $\vec{1}_n \in A$ and 8 | n, then $\varepsilon = 1$; 2) if $\vec{1}_n \notin A$, then $\varepsilon = 0$. Any self-dual code over \mathbb{Z}_{2^3} is induced from a self-dual code \mathcal{C}_1 over \mathbb{Z}_2 . There are $2^{kl+k^2+\varepsilon}$ self-dual codes over \mathbb{Z}_{2^3} corresponding to each subspace of dimension k ($0 \le k \le \frac{n}{2}$) of \mathcal{C}_1 .

伺下 イラト イラト ニラ

Lemma. (Pless, 1965) Let p be an odd prime and $\sigma_p(n, k)$ the number of self-orthogonal codes of even length n and dimension k over \mathbb{Z}_p . Then :

• If
$$(-1)^{\frac{n}{2}}$$
 is a square,

$$\sigma_p(n,k) = \frac{(p^{n-k} - p^{n/2-k} + p^{n/2} - 1)\prod_{i=1}^{k-1}(p^{n-2i} - 1)}{\prod_{i=1}^{k}(p^i - 1)}, \quad k \ge 1.$$

2 If $(-1)^{\frac{n}{2}}$ is not a square ,

$$\sigma_p(n,k) = \frac{(p^{n-k} + p^{n/2-k} - p^{n/2} - 1)\prod_{i=1}^{k-1}(p^{n-2i} - 1)}{\prod_{i=1}^{k}(p^i - 1)}, \quad k \ge 1.$$

Lemma. Let V be an n-dimensional vector space over the integers modulo p. The number $\rho(n, k)$ of subspaces $T \subset V$ of dimension $k \leq n$ is given by

$$\rho(n,k) = \frac{(p^n-1)(p^n-p)...(p^n-p^{k-1})}{(p^k-1)(p^k-p)...(p^k-p^{k-1})}.$$

Mass formula for \mathbb{Z}_{p^3}

Theorem. Let $N_{p^3}(n)$ denote the number of distinct self-dual codes of even length *n* over \mathbb{Z}_{p^3} . (Nagata, Nemenzo, Wada. *Designs, Codes and Cryptography*, 2009).

1. If p is odd then

$$N_{p^{3}}(n) = \left(1 + \left(\frac{-1}{p}\right)^{\frac{n}{2}}\right) \prod_{i=1}^{\frac{n}{2}-1} \frac{p^{n-2i}-1}{p^{i}-1} \sum_{k=0}^{\frac{n}{2}} \left(\prod_{i=0}^{k-1} \frac{p^{n-i}-1}{p^{k-i}-1}\right) p^{k(\frac{n}{2}-1)}.$$

2. If $n \equiv 2, 6 \pmod{8}$ then

$$N_{8}(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2}-1}{2^{i+1}-1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2}-1}{2^{i+1-k}-1} \right) 2^{\frac{kn}{2}}$$

伺 ト イヨ ト イヨ ト

Mass formula

3. If
$$n \equiv 4 \pmod{8}$$
 then

$$N_8(n) = \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} - 2^{\frac{n}{2}-i-1} - 2}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}}.$$

4. If
$$n \equiv 0 \pmod{8}$$
 then

$$\begin{split} \mathcal{N}_8(n) &= \sum_{k=0}^{\frac{n}{2}-1} \left(\prod_{i=0}^{k-1} \frac{2^{n-2i-2} + 2^{\frac{n}{2}-i-1} - 2}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-2} \frac{2^{n-2i-2} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}} \\ &+ \sum_{k=1}^{\frac{n}{2}} \left(\prod_{i=0}^{k-2} \frac{2^{n-2i-3} + 2^{\frac{n}{2}-i-2} - 1}{2^{i+1} - 1} \right) \left(\prod_{i=k}^{\frac{n}{2}-1} \frac{2^{n-2i} - 1}{2^{i+1-k} - 1} \right) 2^{\frac{kn}{2}+1} \end{split}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲ のへぐ

A (partial) classification of self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 . Designs, Codes and Cryptography 41 (Nov 2006):

• n = 2. There is only one self-dual code over \mathbb{Z}_8 of length 2.

$$G_2 = \begin{pmatrix} 2 & 2 \\ 0 & 4 \end{pmatrix}$$

• n = 4. There is only one self-dual code over \mathbb{Z}_8 of length 4.

$$G_4 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

A (partial) classification of self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 by Gulliver, et.al.

Dougherty, Gulliver and Wong. Self-dual codes over \mathbb{Z}_8 and \mathbb{Z}_9 . Designs, Codes and Cryptography 41 (Nov 2006):

• n = 6. One self-dual code over \mathbb{Z}_8 of length 6.

$$G_4 = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

(4 同) 4 日) 4 日) - 日

We start with a self-dual binary code

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

with

$$A_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, A_{30} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, A_{40} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

• • = • • = •

Example: self-dual codes over \mathbb{Z}_8 with n = 6, k = 2, l = 1.

$$\mathcal{C} = egin{bmatrix} 1 & 0 & 1 & 1+2x & 1+2y+4z & 2+4z' \ 0 & 1 & 1 & 3-2x & 2+4(z'+y+y') & 1+2y'+4z'' \ 0 & 0 & 2 & 2 & 4(1-x) & 4x \ 0 & 0 & 0 & 4 & 4 & 4 \ \end{pmatrix},$$

where x, y, y', z, z', and z'' are arbitrary elements of \mathbf{F}_2 .

The code C is self-dual over \mathbb{Z}_8 .

What has been done?

 Mass formula for Z_p³: (Nagata, Nemenzo, Wada. Designs, Codes and Cryptography, 2009).

Construction of codes, mass formula for

- \mathbb{Z}_{p^s} , odd *p*: (Nagata, Nemenzo, Wada. *Proc.ACCT2008*, 2009).
- Z₁₆: (Nagata, Nemenzo, Wada. *Lecture Notes in Computer Science*, 2009).
- ℤ_{2^s}: (Nagata, Nemenzo, Wada. Designs, Codes and Cryptography, 2013).

Together with the Chinese Remainder Theorem, one can classify self-dual codes over \mathbb{Z}_m .

(日) (日) (日) (日)

Mass formula for self-dual codes over finite chain rings:

- **F**_{2^m} + u**F**_{2^m}, u² = 0, with classification (Betsumiya, Ling, Nemenzo. *Discrete Mathematics*, 2004).
- $\mathbf{F}_q + u\mathbf{F}_q + u^2\mathbf{F}_q$, $u^3 = 0$, with classification (Betty, Nemenzo, Vasquez. *Journal of Applied Math. and Computing*, 2017).

Mass formula for self-orthogonal codes over rings:

- \mathbb{Z}_{p^2} , \mathbb{Z}_8 (Betty, Munemasa)
- $\mathbf{F}_q + u\mathbf{F}_q$, $u^2 = 0$, with classification (Betty, Galvez, Nemenzo. European Journal of Pure and Applied Mathematics, 2020).

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Classification for \mathbb{Z}_{p^s} codes of moderate lengths; develop efficient methods for computing automorphism groups
- Other rings: Galois rings, finite chain rings, Frobenius rings
- another track: Generalization of Hammons, et. al. result for other ring settings

伺下 イラト イラト

coding theory = pure mathematics + applied maths

combinatorics, algebra, number theory, geometry

- geometry: AG codes
- connections with constructing lattices (e.g. Nebe, An even unimodular 72-dimensional lattice of minimum 8. J. Reine und Angew. Math 673 (2012)/. Construction of Leech lattice from Z₄ codes- Bonnecaze, Sole, Calderbank. Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Information Theory 41 (1995).
- connections to designs (e.g. Kaski, Östergård. Non-existence of projective planes of order 10. Classification Algorithms for Codes and Designs. Springer (2006)).
- connections to **combinatorics** (e.g. MDS codes and mutually orthogonal latin squares and arcs in projective geometry)
- connections to number theory (**modular forms**) (Minjia Shi, Younglu Choie, Anuradha Sharma, and Patrick Sole. Codes and Modular Forms. World Scientific (2019)