Quantization and Chiral index

Si Li

YMSC, Tsinghua University

April 3, 2022

Tsinghua Workshop on Geometry and Mathematical Physics in honor of Prof Yau for his 73th birthday

Motivation: QFT and Index Theory

Topological quantum mechanics (TQM)

TQM leads to a path integral on the loop space

$$\int_{\mathsf{Map}(S^1,X)} e^{-S/\hbar} \quad \stackrel{\hbar \to 0}{\Longrightarrow} \quad \int_X (\mathsf{curvatures})$$

Topological nature implies the exact semi-classical limit $\hbar \rightarrow 0$, which localizes the path integral to constant loops.

- LHS= the analytic index expressed in physics
- ► RHS= the topological index.

This is the physics "derivation" of Atiyah-Singer Index Theorem.

Algebraic Index Theorem

Given a deformation quantization $\mathcal{A}_{\hbar}(M) = (\mathbb{C}^{\infty}(M)\llbracket\hbar\rrbracket, \star)$ on a symplectic manifold (X, ω) , there exists a unique linear map

 $\operatorname{Tr} : \mathcal{A}_{\hbar}(M) \to \mathbb{C}((\hbar))$

satisfying a normalization condition and the trace property

$$\mathsf{Tr}(f\star g)=\mathsf{Tr}(g\star f).$$

Then

$$\mathsf{Tr}(1) = \int_{\mathcal{M}} e^{\omega_{\hbar}/\hbar} \hat{A}(\mathcal{M}).$$

This is the simplest version of algebraic index theorem which was first formulated by **Fedosov** and **Nest-Tsygan** as the algebraic analogue of **Atiyah-Singer** index theorem.

In [**Grady-Li-L 2017,Gui-L-Xu 2020**] A rigorous connection between the effective BV quantization for topological quantum mechanics and the algebraic index theorem via a geometric description of low energy effective theory.

Algebraic index theory

Witten's "Index Theorem" on loop space

Replace S^1 by an elliptic curve *E*. (Witten: index of Dirac operators on loop space).

2d Chiral analogue of algebraic index?

Mirror Duality between Calabi-Yau Geometries


```
"count constant surfaces" ???
```

related to the variation of Hodge structures and its quantization.

Observables and Factorization algebras

A QFT is usually described by a manifold X and the data of fields Spacetime : $X \implies$ Fields : $\mathcal{E} = \Gamma(X, E)$.

▶ \mathcal{E} is the space (called fields) where we will do calculus $\int_{\mathcal{E}}$

$$\langle \mathcal{O}
angle := \int_{\mathcal{E}} \mathcal{O} e^{{m{\mathsf{S}}}/\hbar}$$
 "Path integral"

• Topology of X leads to new structures in ∞ -dim geometry

One algebraic structure associated to the topology of X is

observables=functions on fields

Given an open subset $U \subset X$, we can talk about

Obs(U) = observables supported in U

Example: δ -function.

Observables form an algebraic structure as follows: given disjoint open subset U_i contained in an open V: $\prod_i U_i \subset V$

we have a factorization product for observables

```
\bigotimes_{i} Obs(U_{i}) \to Obs(V).
```

- Physics: OPE (operator product expansion)
- Mathematics: factorization algebra.
 - Origin: Beilinson-Drinfeld in 2d CFT
 - **Costello-Gwilliam**: (perturbative renormalized) QFT.

Example: dim X = 1 (topological quantum mechanics)

 $\mathsf{QFT}\ \mathsf{in}\ \mathsf{dim}=1\ \mathsf{is}\ \mathsf{quantum}\ \mathsf{mechanics}.$

In the topological case, for any contractible open U, Obs(U) = A. The factorization product doesn't depend on the location and size:

$$A\otimes A\to A.$$

We find an (homotopy) associative algebra.

Example: dim X = 2 (chiral conformal field theory)

The factorization product of 2d chiral theory is holomorphic.

which is the 2d analogue of "associative product". We find ∞ -many binary operations $\mathcal{O}_{1(n)} \cdot \mathcal{O}_2$!

In this case, observable algebra forms a vertex algebra.

An important class of quantities are correlation functions of observables. They capture "global" information of the theory.
▶ Local correlation

$\langle \mathcal{O}_1(x_1)\cdots \mathcal{O}_i(x_i)\cdots \mathcal{O}_n(x_n)\rangle, \quad x_i \in X.$

It is singular when points collide, hence a function on

$$\operatorname{Conf}_n(X) := \{x_1, \cdots, x_n \in X | x_i \neq x_j \text{ for } i \neq j\}.$$

Many interesting non-local information is hidden in

$$\int_{\mathcal{Z}\subset \operatorname{Conf}_n(X)} \langle \mathcal{O}_1(x_1)\cdots \mathcal{O}_i(x_i)\cdots \mathcal{O}_n(x_n)\rangle$$

which might be divergent and require further renormalization.

Batalin-Vilkovisky (BV) Quantization formalism

Homological methods (such as BRST-BV) arises in physics as a general method to quantize theories with gauge symmetries.

BV algebra

A Batalin-Vilkovisky (BV) algebra is a pair (\mathcal{A}, Δ) where

- \mathcal{A} is a \mathbb{Z} -graded commutative associative unital algebra.
- $\Delta : \mathcal{A} \to \mathcal{A}$ is a linear operator of degree 1 such that $\Delta^2 = 0$.
- ▶ The **BV bracket** $\{-,-\}$: $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ by

 $\{a,b\}:=\Delta(ab)-(\Delta a)b-(-1)^{|a|}a\Delta b,\ a,b\in\mathcal{A}.$

 $\{-,-\}$ satisfies a version of graded Leibnitz rule.

Example (Polyvector fields)

The space of smooth polyvector fields with a divergence operator

$$(\mathsf{PV}^{ullet}(X) = \Gamma(X, \wedge^{ullet} T_X), \quad \Delta = \mathsf{divergence})$$

is a BV algebra.

BV quantization formalism

Roughly speaking, BV quantization in QFT leads to

- Factorization algebra Obs of observables.
- $(C_{\bullet}(Obs), d)$: a chain complex via algebraic structures of Obs.
- A BV algebra (\mathcal{A}, Δ) with a BV- $\int \text{map } \int_{BV} : \mathcal{A} \to \mathbb{C}$.
- ► A C [[ħ]]-linear map satisfying

 $\langle - \rangle : C_{\bullet}(\mathrm{Obs}) \to \mathcal{A}((\hbar))$

satisfies quantum master equation (QME)

$$(d + \hbar \Delta) \langle - \rangle = 0.$$
 (QME)

This means it is a chain map intertwining d and $\hbar\Delta$.

• Partition function: $Index = \int_{BV} \langle 1 \rangle.$

Example: Topological Quantum Mechanics (TQM)

Local observables: Weyl algebra

$$\mathrm{Obs}_{1d} = \mathcal{W}_{2n} = \left(\mathbb{C}\llbracket p_i, q^i \rrbracket \llbracket \hbar \rrbracket, \star\right)$$

• $(C_{\bullet}(Obs_{1d}), b) =$ the Hochschild chain complex.

BV algebra (A_{1d}, Δ) = (Ω̂•(ℝ²ⁿ), L_Π). Here Π = Poisson tensor. In physics, this describes the geometry of zero modes.

$$\langle -\rangle_{1d} : C_{\bullet}(\mathcal{W}_{2n}) \to \mathcal{A}_{1d}((\hbar)) \text{ where}$$

$$\langle \mathcal{O}_{0} \otimes \mathcal{O}_{1} \cdots \otimes \mathcal{O}_{m} \rangle_{1d} \qquad \mathcal{O}_{i} \in \mathcal{W}_{2n}$$

$$= \int_{t_{0}=0 < t_{1} < \cdots < t_{m} < 1} \left\langle \mathcal{O}_{0}(\varphi(t_{0})) \mathcal{O}_{1}^{(1)}(\varphi(t_{1})) \cdots \mathcal{O}_{m}^{(1)}(\varphi(t_{m})) \right\rangle_{free}$$

It satisfies

QME $(b + \hbar \Delta) \langle - \rangle_{1d} = 0$

Here b is the Hochschild differential.

Ref: [Gui-L-Xu, 2020]

$\bigcirc \rightarrow x$

These data glues [**Fedosov**] to give a Weyl bundle $\mathcal{W}(X) \to X$.

- [Grady-Li-L]: BV quantum master equation is equivalent to Fedosov's flat connection on $\mathcal{W}(X)$.
- ► <->_{1d} leads to a trace map on deformation quantized algebra, as explicitly described by [Feigin-Felder-Shoikhet].
- ► [Grady-Li-L, Gui-L-Xu]: BV quantization of TQM gives

$$\langle 1
angle = \int_X e^{\omega_\hbar/\hbar} \hat{A}(X).$$

2d Chiral Conformal Field Theory

1d TQM	2d Chiral CFT
S^1	Σ
Associative algebra	Vertex operator algebra

Associative product

Operator product expansion

A chiral σ -model

$$\varphi:\Sigma\to X$$

 $\mathcal{V}(X)$

 $\stackrel{\downarrow}{X}$

will produce a bundle $\mathcal{V}(X)$ of chiral vertex operator algebras

This is the chiral analogue of Weyl bundle in TQM.

Theorem (L)

The BV quantization of the 2d chiral model is equivalent to solving a flat connection on the vertex algebra bundle $\mathcal{V}(X)$

$$D = d + \frac{1}{\hbar} \left[\oint \mathcal{L}, - \right], \quad D^2 = 0$$

where $\mathcal{L} \in \Omega^1(X, \mathcal{V}(X))$ and $\oint \mathcal{L}$ is the associated chiral vertex operator fiberwise.

- ► This is the chiral analogue of Fedosov connection.
- BRST reduction of chiral models falls into this setup

$$\oint \mathcal{L} = \mathsf{BRST}$$
 operator.

Ref: [L] Vertex algebras and quantum master equation.

Elliptic chiral homology

- In [Zhu, 1994], Zhu studied the space of genus 1 conformal block (the 0-th elliptic chiral homology) and establish the modular invariance for certain class of VOA.
- Beilinson and Drinfeld define the chiral homology for general algebraic curves using the Chevalley-Cousin complex.
- Recently, [Ekeren-Heluani,2018,2021]: an explicit complex expressing the 0th and 1st elliptic chiral homology.

Intuitively, the chiral differential in the chiral complex can be viewed as a 2d chiral analogue of the Hochschild differential *b*.

We briefly review the construction of Beilinson and Drinfeld.

- $\mathcal{M}(X)$: category of (right) \mathcal{D} -modules on $X = \Sigma$
- $\mathcal{M}(X^{\mathcal{S}})$: category of (right) \mathcal{D} -modules on $X^{\mathcal{S}}$

 $M \in \mathcal{M}(X^{\mathcal{S}})$ is rule that assigns to each finite index set $I \in \mathcal{S}$

a right
$$\mathcal{D}$$
 – module $M_{X'}$ on X' .

(satisfying some compatibility conditions.)

There is an exact fully faithful embedding

$$\Delta^{(S)}_*:\mathcal{M}(X)\hookrightarrow\mathcal{M}(X^{\mathcal{S}})$$

defined by $(\Delta_*^{(S)}M)_{X'} := \Delta_*^{(I)}M$, where $\Delta^{(I)} : X \hookrightarrow X'$. The category $\mathcal{M}(X^S)$ carries a tensor structure \otimes^{ch} and a chiral algebra \mathcal{A} is a Lie algebra object via Δ_*^S . We consider the Chevalley-Eilenberg complex

$$(\mathcal{C}(\mathcal{A}), d_{\mathrm{CE}}) = (\oplus \mathrm{Sym}^{\bullet}_{\otimes^{\mathrm{ch}}}(\Delta^{(S)}_*\mathcal{A}[1]), d_{\mathrm{CE}}),$$

 $\langle - \rangle$

which is a complex in $\mathcal{M}(X^{\mathcal{S}})$.

The chiral homology (complex) $C^{ch}(X, A)$ is defined by $R\Gamma_{DR}(X^{S}, C(A))$, where

Dolbeault Resolution

Chevalley-Eilenberg

 $\mathbb{R}\Gamma_{DR}\left(X^{\mathcal{S}}, C(\mathcal{A})\right)^{\mathcal{F}}$

Spencer Resolution

Example: $\beta \gamma - bc$ system

The VOA $\mathcal{V}^{\beta\gamma-bc}$ of $\beta\gamma-bc$ system is the chiral analogue of Weyl/Clifford algebra. It gives rise to a chiral algebra (in the sense of Beilinson and Drinfeld) $\mathcal{A}^{\beta\gamma-bc}$ on a Riemann surface $X = \Sigma$.

$$\beta(z)\gamma(w)\sim rac{1}{z-w}\qquad b(z)c(w)\sim rac{1}{z-w}.$$

The factorization homology (complex)

 $(C_{\bullet}(\mathcal{V}^{\beta\gamma-bc}(\mathbf{h})), d_{ch})$ in the BV formalism

will be the chiral chain complex $C^{ch}(X, \mathcal{A}^{\beta\gamma-bc})$.

Theorem (Gui-L)

Let X be an elliptic curve E_{τ} . We can construct an explicit map

$$\langle - \rangle_{2d} : C^{\mathrm{ch}}(X, \mathcal{A}^{\beta\gamma-bc}) \to \mathcal{A}_{2d}((\hbar))$$

satisfying

$$QME$$
: $(d_{\rm ch} + \hbar\Delta)\langle - \rangle_{2d} = 0.$

Roughly speaking, this map is defined by

$$\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n \rangle_{2d} := \int_{E_{\tau}^n} \langle \mathcal{O}_1(z_1) \cdots \mathcal{O}_n(z_n) \rangle.$$

• $\langle \mathcal{O}_1(z_1)\cdots \mathcal{O}_n(z_n)\rangle$ is local correlation (via Feynman rules).

- The BV trace map leads to Witten genus.

The issue of singular integral and renormalization

We need to understand the integral of local correlators

$$\int_{\Sigma^n} \langle \mathcal{O}_1(z_1) \cdots \mathcal{O}_n(z_n) \rangle'' \stackrel{?}{=} "$$

Unlike the situation in topological field theory, $\langle \mathcal{O}_1(z_1)\cdots \mathcal{O}_n(z_n)\rangle$ is very singular along diagonals and there is no way to extend it to certain compactification of $\text{Conf}_n(\Sigma)$.

Regularized integral (L-Zhou 2020)

Let us first consider the integral of a 2-form ω on Σ with meromorphic poles of arbitrary orders along a finite subset $D \subset \Sigma$. Locally we can write $\omega = \frac{\eta}{z^n}$ where η is smooth 2-form and $n \in \mathbb{Z}$.

We can decompose ω into

$$\omega = \alpha + \partial \beta$$

where α is a 2-form with at most logarithmic pole along D, β is a (0,1)-form with arbitrary order of poles along D, and $\partial = dz \frac{\partial}{\partial z}$ is the holomorphic de Rham. We define the regularized integral

$$\int_{\Sigma} \omega := \int_{\Sigma} \alpha + \int_{\partial \Sigma} \beta$$

This does not depend on the choice of the decomposition.

 f_{Σ} is invariant under conformal transformations. The conformal geometry of Σ gives an intrinsic regularization of the integral $\int_{\Sigma} \omega$.

The regularized integral can be viewed as a "homological integration" by the holomorphic de Rham ∂

$$\oint_{\Sigma} \partial(-) = \int_{\partial \Sigma} (-).$$

The $\bar{\partial}$ -operator intertwines the residue

$$\oint_{\Sigma} \bar{\partial}(-) = \mathsf{Res}(-).$$

In general, we can define

$$\oint_{\Sigma^n}(-) := \oint_{\Sigma} \oint_{\Sigma} \cdots \oint_{\Sigma} (-) \, .$$

This gives a rigorous and intrinsic definition of

$$\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n \rangle_{2d} := \int_{\Sigma^n} \langle \mathcal{O}_1(z_1) \cdots \mathcal{O}_n(z_n) \rangle.$$

It exhibits all the required properties:

- Holomorphic Anomaly Equation. (L-Zhou, in preparation)
- Contact equations. (Gui-L-Tang, in preparation)

Elliptic chiral index (after Douglas-Dijkgraaf)

The partition function of a chiral deformation by a chiral lagrangian \mathcal{L} is given by

$$\left\langle e^{rac{1}{\hbar}\int_{\Sigma}\mathcal{L}}
ight
angle _{2d}$$

If we quantize the theory on elliptic curve $\Sigma = E_{\tau}$,

$$\lim_{\bar{\tau}\to\infty} \left\langle e^{\frac{1}{\hbar}\int_{E_{\tau}}\mathcal{L}} \right\rangle_{2d} = \operatorname{Tr}_{\mathcal{H}} q^{L_0 - \frac{c}{24}} e^{\frac{1}{\hbar}\oint dz\mathcal{L}}, \quad q = e^{2\pi i\tau}$$

where the operation $\lim_{\bar{\tau}\to 0}$ sends

almost holomorphic modular forms \implies quasi-modular forms.

This can be viewed as an chiral algebraic index on the loop space. The regularized integral [L-Zhou] precisely explains $\bar{\tau} \to \infty$.

Theorem (L-Zhou 2020)

Let $\Phi(z_1, \dots, z_n; \tau)$ be a meromorphic elliptic function on $\mathbb{C}^n \times \mathbf{H}$ which is holomorphic away from diagonals. Let A_1, \dots, A_n be n disjoint A-cycles on E_{τ} . Then the regularized integral

$$\oint_{E_{\tau}^{n}} \left(\prod_{i=1}^{n} \frac{d^{2} z_{i}}{\operatorname{im} \tau} \right) \Phi(z_{1}, \cdots, z_{n}; \tau) \quad \text{lies in} \quad \mathcal{O}_{\mathsf{H}}[\frac{1}{\operatorname{im} \tau}] \quad \text{and}$$

$$\lim_{\bar{\tau}\to\infty}\int_{E_{\tau}^n}\left(\prod_{i=1}^n\frac{d^2z_i}{\operatorname{im}\tau}\right)\Phi(z_1,\cdots,z_n;\tau)=\frac{1}{n!}\sum_{\sigma\in S_n}\int_{A_1}dz_{\sigma(1)}\cdots\int_{A_n}dz_{\sigma(n)}\Phi(z_1,\cdots,z_n;\tau)$$

In particular, $\oint_{E_{\tau}^n}$ gives a geometric modular completion for quasi-modular forms arising from *A*-cycle integrals.

Algebraic Index Theory vs Elliptic Chiral Index Theory

1d TQM	2d Chiral CFT
Associative algebra	Vertex operator algebra
Hochschild homology	Chiral homology
QME:	QME:
$(\hbar\Delta+b)\langle - angle_{1d}=0$	$(\hbar\Delta+d_{ch})\langle- angle_{2d}=0$
$\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n angle_{1d} = integrals$	$\langle \mathcal{O}_{\mathbf{r}} \otimes \ldots \otimes \mathcal{O} \rangle_{\mathbf{r}} = regularized$
on the compactified	$\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_{n/2d} = \text{regularized}$
configuration spaces of S^1	
Algebraic Index theory	Elliptic Chiral Algebraic Index

Joint work with Zhengping Gui. arXiv:2112.14572 [math.QA]

Thank You and Happy Birthday Yau!

