
Energy estimates for non-linear wave equations in

mathematical General Relativity

1 Lecturer:

Sari Ghanem (Assistant Professor, BIMSA).

2 Mode of the discussion, venue and time, audience:

• Offline, in English, at A614 in the Shuangqing Complex Building, at Tsinghua University.

• During the Fall semester 2025, starting September 17, 2025. Two sessions per week: every Wednesday,
at 11:00–12:30 and then at 14:30–16:00. No class on Wednesday October 15, 2025.

• Audience: Graduate, Postdoc, Researcher.

3 Prerequisite:

Basic knowledge from my previous courses on “The Cauchy problem in mathematical General Relativity”,
on “Non-linear wave equations in General Relativity”, and on “Dispersive estimates for non-linear waves
in mathematical General Relativity”, graduate level knowledge in differential geometry and in Riemannian
geometry, and basic knowledge in partial differential equations and analysis.

4 Introduction:

This course introduces mathematical tools of analysis for partial differential equations to prove uniform
bounds and decay for solutions of non-linear wave equations arising in General Relativity. The course
material builds on a series of courses that I gave in Spring–Fall 2024, and in Spring 2025, on the Cauchy
problem in mathematical General Relativity, on non-linear wave equations in General Relativity, and on
dispersive estimates for non-linear waves in mathematical General Relativity. The goal of this course is
to explain the vector field method and how to obtain energy estimates for solutions of tensorial coupled
non-linear hyperbolic partial differential equations, in order to prove decay for solutions of non-linear wave
equations provided that one exploits the non-linear structure of the wave equations. We shall exhibit how
this can be applied to the Einstein equations coupled to non-linear matter such as the Yang-Mills fields, by
studying the simpler case of higher dimensions.

5 Keywords:

Energy estimates, non-linear wave equations, hyperbolic partial differential equations, Minkowski vector
fields, Klainerman-Sobolev inequality, weighted energy norms, bootstrap argument, decay estimates, Hardy
type inequality, commutator term, Grönwall type inequality, Einstein equations, Yang-Mills fields, Einstein-
Yang-Mills system, gauge transformations, Minkowski metric, wave coordinates, Lorenz gauge.
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6 Syllabus:

1. Reminders of prerequisites:
The Einstein equations, the Yang-Mills equations, the coupled Einstein-Yang-Mills system, wave coor-
dinates, the Lorenz gauge, recasting the Einstein-Yang-Mills system as a coupled system of non-linear
hyperbolic partial differential equations, the hyperbolic Cauchy problem, the constraint equations, the
gauges invariance of the equations.

2. Set-up of analysis for proving decay for solutions of non-linear wave equations:

• The Minkowski vector fields.

• Weighted Klainerman-Sobolev inequality.

• Definition of the norms.

• The energy norm.

• The bootstrap argument.

• The bootstrap assumption.

• The big O notation.

3. À priori decay estimates:

• The spatial asymptotic behaviour of the fields on the initial hypersurface.

• Estimates on the time evolution of the fields.

4. Looking at the structure of the source terms of the coupled non-linear wave equations
for the Einstein-Yang-Mills system in the Lorenz gauge and in wave coordinates.

5. Using the bootstrap assumption to exhibit the structure of the source terms of the
Einstein-Yang-Mills system in higher dimensions:

• Using the bootstrap assumption to exhibit the structure of the source terms for the Yang-Mills
potential.

• Using the bootstrap assumption to exhibit the structure of the source terms for the metric.

• The source terms in higher dimensions n ≥ 5 .

6. Energy estimates for non-linear wave equations.

7. A Hardy type inequality.

8. The commutator term for n ≥ 4 :

• Using the Hardy type inequality to estimate the commutator term.

9. The energy estimate for the Einstein-Yang-Mills fields in higher dimensions n ≥ 4 .

10. Closing the bootstrap argument for the Einstein-Yang-Mills fields in higher dimensions :

• Using the Hardy type inequality for the space-time integrals of the source terms for n ≥ 5 .

• Grönwall type inequality on the energy for n ≥ 5 .

• Decay estimates for the Einstein-Yang-Mills fields in higher dimensions n ≥ 5 .
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