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Outline of my Talk

• Chern started me in soliton theory: Classical Bäcklund
Theorem for surfaces in R3 with K = −1
• Joint work with K. Uhlenbeck on Schrödinger flow on CPn

(GNLS):
(i) The GNLS is gauge equivalent to Fordy-Kulish’s Vector

NLS.
(ii) Bäcklund transformations arise from the action of a rational

loop group on the space of solutions.
(iii) Other symmetries: a Hamiltonian action of an infinite

dimensional group, a Poisson action of a non-abelian loop
group, and Virasoro action on tau functions.



Chern started me in soliton theory

• I went to UC Berkeley in 1976 as an instructor and
Professor Chern was my advisor.
• In the summer of 1977, Chern gave a seminar on Bäcklund

transformations (BTs) for the sine-Gordon equation

qxt = sin q, SGE

which is the equation for surfaces in R3 with K = −1 and
was one of the few soliton equations known at the time.
• He suggested to me and Keti Tenenblat to generalize

Bäcklund’s result to n-dimension and to investigate
whether this gives a new soliton equation with n variables.
We did have success in this project.



Surfaces in R3 with Gaussian curvature −1

• 1862 Edmond Bour showed that a surface M in R3 with
K ≡ −1 admits local coordinates (x , t) such that fx and ft
are unit asymptotic vectors and φ := ∠(fx , ft ) satisfies the
SGE qxt = sin q, where f is the immersion.

• Given a solution of the SGE, we can construct a surface in
R3 with K = −1 unique up to rigid motion.

• The study of surfaces in R3 with K ≡ −1 is equivalent to
the study of solutions of the SGE.



Bäcklund’s Theorem (1883)
Let M,M∗ be surfaces in R3, and 0 < θ < π a constant. If
` : M → M∗ satisfies

1.
−−→
pp∗ is tangent to M and M∗ at p and p∗ resp.,

2. ||pp∗|| = sin θ,
3. the angle between the normal n(p) to M and the normal

n∗(p∗) to M∗ is θ,
for all p ∈ M and p∗ = `(p). Then both M,M∗ have K ≡ −1.
(Such ` is called a Bäcklund Transformation (BT).)



Bäcklund Theorem Continued

• let s = tan θ
2 , and q,q∗ be the solutions of SGE given by

M,M∗, then q,q∗ satisfy

(BT )q,s

{
q∗x = qx + 4s sin q+q∗

2 ,

q∗t = −qt + 2
s sin q∗−q

2 .

• If q is a solution of the SGE, then the system (BT )q,s is
solvable for q∗ and the solution q∗ is a new solution of the
SGE.



Bianchi Permutability for Bäcklund Transformations
Let 0 < θ1 6= θ2 < π, si = tan θi

2 , and `i : M0 → Mi Bäcklund
transformation with constant θi for i = 1,2. Then there exist a
unique surface M3 and BTs ˜̀1 : M2 → M3 and ˜̀2 : M1 → M3
such that ˜̀1 ◦ `2 = ˜̀2 ◦ `1. Moreover, let q0 be a solution of SGE,
and qi a solution of (BT )q,si for i = 1,2, then q12 defined by

tan
q12 − q0

4
=

s1 + s2

s1 − s2
tan

q1 − q2

4

solves SGE, (BT )q1,s2 and (BT )q2,s1 .



Soliton solutions of the SGE

• Apply BT to q = 0 to obtain a family of 1-soliton solutions

q∗ = 4 tan−1(esx+s−1t ) = 4 tan−1(e
s+s−1

2 X+ s−s−1
2 T ),

where s ∈ R \ 0 is a constant and (X ,T ) is the space-time
coordinate X = x+t

2 , T = x−t
2 . This is a 1-soliton solution

of the SGE. Note that s > 1 gives a kink, 0 < s < 1 gives
an anti-kink, and s = 1 gives a stationary solution.
• Apply Bianchi Permutability formula to 1-soliton solutions

to obtain two parameter families of 2-soliton solutions of
the SGE, ... etc.
• Apply Bianchi’s formula with s1 = eiθ and s2 = −e−iθ, we

obtain a solution of the SGE that is periodic in the time
variable T , which ia called a breather.



1- soliton solutions of SGE & corresponding K = −1
surfaces

If we apply BT to the trivial solution q = 0 with
1. s = 1, we obtain a stationary solution and pseudo-sphere,
2. s 6= 1, we obtain the Dinni surfaces.

 



2-soliton solution of SGE s1 6= s2 ∈ R, Kuen surface

• 

 
 
 



2-soliton Breather solution of SGE s1 = eiθ = −s̄2

 
 

 



Schrödinger flow on CPn

• The Schrödinger flow on CPn is the equation,

γt = Jγ(∇γxγx ),

for γ : R× R→ CPn, where J is the complex structure and
∇ is the Levi-Civita connection on CPn.
• 〈A1,A2〉 = −tr(A1A2) is an inner product on u(n + 1).

{A ∈ u(n + 1) |A = gag−1 for some g ∈ U(n + 1)}

with the induced metric from u(n + 1) is an isometric
embedding of CPn in u(n + 1) (the Cartan embedding),
where a = diag(i ,−i , . . . ,−i)}.
• Use the Cartan embedding, Schrödinger flow on CPn is

γt = [γ, γxx ]. GNLS



Moving frames and differential invariants for curves in
CPn

Given smooth γ : R→ CPn, then ∃ g : R→ U(n + 1) satisfying

γ(x) = gag−1, u := g−1gx =

(
0 −q∗

q 0

)
for some q ∈ C∞(R,Cn).
• We call g a moving frame and u the differential invariant

defined by g along γ.
• If g1 is another moving frame along γ, then there is a

constant k ∈ U(n + 1)a = U(1)× U(n) such that g1 = gk .
Note the the differential invariant defined by g1 is k−1uk .
• This is similar to the parallel normal frame along curves in
R3 and its differential invariants, principal curvatures,
depend on the choice of parallel normal frame.



Relation between GNLS and VNLS

Theorem (Terng-Uhlenbeck 06)
If γ is a solution of γt = [γ, γxx ], then there exists
g : R2 → U := U(n + 1) satisfying
(1) γ = gag−1,

(2)

{
g−1gx = u,
g−1gt = P−1(u) := [a,ux ]− 1

2 [u, [a.u]]
,

for some u =

(
0 −q∗

q 0

)
with q ∈ Cn×1.

Moreover,
• differential invariant u satisfies ut = i(uxx + 2||u||2u), i.e.,

qt = i(qxx + 2||q||2q) VNLS

• if g1 also satisfies (1)-(2) above, then there is a constant
k ∈ Ua = u(1)× u(n) such that g1 = gk .



Continue
• Conversely, if u is a solution of the VNLS and g is a

solution of system (2), then γ = gag−1 is a solution of the
GNLS.
• u is a solution of the VNLS and c a constant in

Ua = U(1)× U(n) then cuc−1 is also a solution of the
VNLS.
• A solution γ of the GNLS maps to a Ua-orbit of solutions of

VNLS.



Deriving Lax pair for VNLS from an action of R∗
• γ satisfies the GNLS γt = [γ, γxx ] if and only if

θ = γdx + (γ + [γ, γx ])dt is flat.

• R∗ action: Let γ be a solution of the GNLS and
λ ∈ R∗ = R \ 0, then γ̃(x , t) = γ(λ−1x , λ−2t) is again a
solution of the GNLS. Hence θ̃ = γ̃dx + (γ̃ + [γ̃, γ̃x ])dt is
also flat. Let x̃ = λ−1x , t̃ = λ−2t . Then

Θ = λγdx + (λ2γ + [γ, γxx ])dt

is flat for all λ ∈ R \ 0. This is the Lax pair for GNLS, one of
the key properties of soliton equations.
• The gauge transform g−1Θg + g−1dg is

(aλ+ u)dx + (aλ2 + uλ+ ([a,ux ]− 1
2

[u, [a,u]]))dt ,

which is a flat connection on the (x , t)-plane for all
parameter λ ∈ C. This is the Lax pair for VNLS.



How do we know a geometric PDE is a soliton
equation?

• The geometric PDE can be written as the flatness of
certain connection.
• There is an R∗-action on the space of solutions of the PDE.
• Use the R∗-action, we can associate to each solution a

family of flat connections, the Lax pair.
• The shape of the Lax pair tells us what the loop group and

loop group splitting will give the equation (I will explain
next).

For example, many classes of submanifolds in space forms,
curve flows in homogeneous space, harmonic maps from R2 to
a compact Lie group or a symmetric space, space-time
monopole equation, ... etc are soliton equations.



Soliton hierarchies from splitting of loop algebras
developed by Adler (1979), Ablowitz-Kaup-Segur-Newell
(1974), Kupershmidt-Wilson (1981) Zakharov and Shabat
(1974), Drinfeld-Sokolov (1984). Here I use T-U version:

L+,L− subgroups of a loop group L such that L = L+ ⊕ L− as
linear subspaces. We call such a pair (L+,L−) a splitting of L.
A vacuum sequence is a linearly independent commuting
sequence {Jj |j ≥ 1} in L+ that is generated by J1 = J. For
simplicity, we assume in this talk

J = aλ, Jj = aλj .

Set
V = [J,L−]+.

• Given u ∈ C∞(R,V ), ∃ M : R→ L− satisfying

M−1(∂x + J)M = ∂x + J + u.

M is a reduced wave function and f = M(0) is a formal
scattering data for u.



• ∃ a unique P(u) : R→ L satisfying

[∂x + J + u,P(u)] = 0.

In fact, P(u) = M−1JM.
• Write

P(u)(λ) = J + u + P−1(u)λ−1 + P−2(u)λ−2 + · · · .

Then Pj(u) is a polynomial differential of u,
•

ut = [∂x + u,P−(j−1)(u)]

is an evolution PDE on C∞(R,V ), call the j-th flow.



Poisson structure

Let F1,F2 be functionals on C∞s (R,V ). Then

{F1,F2}(u) =

∫
R

tr([∇F1(u),a]∇F2(u))dx

is a Poisson structure on C∞s (R,V ). Moreover,
• the j-th flow is the Hamiltonian flow for

Hj(u) =
1
j

∮
tr(P−(j+1)(u)a)dx

with respect to { , },
• {Hi ,Hj} = 0, in particular these flows commute.



Dressing and formal inverse scattering (T-U 1997)

• Given f− ∈ L−, f+ ∈ L+, we factor

f−1
− f+ = f̃+ f̃−1

− , f̃± ∈ L±.

Then
f+]f− = f̃−

defines an action L+ on L−. This is the dressing action.
• The formal inverse scattering transform is the map

F : L− → C∞(R,V )

defined by
F(f ) = uf , uf (x) := Resλ([a,exJ]f ])

• Given u ∈ C∞(R,V ), let M be a reduced wave function for
u and f = M(0) ∈ L−. Then u = uf = F(f ).



• If f ∈ L−, then uf (x , t) := F(eJj t]f ) is a solution of the j-th
flow. In fact, we factor

f−1(λ)eJx+Jj t = E(x , t , λ)M−1(x , t , λ),

with E(x , t , ·) ∈ L+ and M(x , t , ·) ∈ L−. Then

E−1Ex = J + u, E−1Et = (λj−1P(u, λ))+,

and u is a solution of the j-th flow. We call E the frame of
the solution u.
• The dressing action of the subgroup

{f ∈ L+|f (λ) ∈ Ua}

on L− gives a Poisson action on C∞(R,V ) under F and its
flows commute with the j-th flow.



The action of L− and BTs (TU 2000)

• Given f ,g ∈ L−, then

g ∗ uf = ufg−1

defines an action of L− on the space of solutions of the j-th
flow. In fact, if E is the frame of a solution u of the j-th flow
and g ∈ L−, we factor

gE(x , t , ·) = Ẽ(x , t , ·)g̃(x , t)

with Ẽ(x , t , ·) ∈ L+ and g̃(x , t) ∈ L−, then

ũ = u + [a,Resλ g̃] = g ∗ u

is a new solution of the j-th flow.
• If g ∈ L− has a simple pole, then u 7→ ũ is a Bäcklund

transformation.



The VNLS soliton hierarchy (Fordy-Kulish 1983)

The splitting that gives VNLS hierarchy: Fix ε > 0,

L = {f : {|λ| = ε−1} → GL(n + 1,C)| f (λ̄)∗f (λ) = I},
L+ = {f ∈ L|f extends holomorphically to |λ| < ε−1},
L− = {f ∈ L|f extends holomorphically to∞ = |λ| > ε−1, f (∞) = I}.

The vacuum sequence is: {aλj |j ≥ 1}. Then the second flow
constructed by this splitting and vacuum sequence is the VNLS.
The third flow and the corresponding flow on CPn are
respectively

qt = qxxx + 4|q|2qx ,

γt = ∇2
γxγx − 4||γx ||2γx .



BT and L− action for SGE

• Let s ∈ R \ 0, and π ∈ gl(2,R) an orthogonal projection.
Then

gis,π(λ) = I +
2is
λ− is

π ∈ L−.

• uf 7→ ufg−1
is,π

is the classical BT for the SGE.

• Given s1, s2, π1, π2, ∃ unique τ1, τ2 such that

gis1,τ1gis2,π2 = gis2,τ2gis1,π1 ,

and τi ’s can be computed algebraically from π1, π2. So
Bianchi’s Theorem follows directly form L−-action.



Wilson’s µ function

Let ρ : L̂→ L be the central extension of L defined by the
2-cocycle

w(ξ, η) = Resλtr(ξλη),

and S+ : L+ → L̂, S− : L− → L̂ group homorphism lifts of ρ.

Wilson’s µ function µ : L→ C∗
is defined as follows: Given f ∈ L, factor

f = f−1
− f+ = g+g−1

− , f±,g± ∈ L±,

then S−(f−1
− )S+(f+) and S+(g+)S−(g−1

− ) lie in the same fiber
ρ−1(f ). Hence they differ by a non-zero complex number, which
is defined to be µ(f ). In other words,

S−(f−1
− )S+(f+) = µ(f )S+(g+)S−(g−1

− ).



Tau function

The tau function given by f ∈ L− is

τf (t1, . . . , tN) = µ(f−1 exp(
N∑

i=1

tiJi)).

Let Jj = aλj . Factor

f−1(λ) exp(
n∑

j=1

aλj tj) = E(t1, . . . , tN , λ)M−1(t1, . . . , tN , λ)

with E(t1, . . . , tN , ·) ∈ L+ and M(t1, . . . , tN , ·) ∈ L−.



Theorem (Terng-Uhlenbeck 2016)
Given f ∈ L−, then:
• uf = Resλ[a,M] is the solution of the VNLS hierarchy

associated to f .
• We have

(i) yj := (ln τf )t1tj = Resλ(tr(MaM−1aλj )), for 1 ≤ j ≤ n,
(ii) uf can be obtained from y1, . . . , yn and a system of odes.



Remark
• For the KdV hierarchy, it is known that uf = (ln τf )t1,t1 .
• This is not the case for the NLS. If we write the solution

uf = reiθ, then

r2 = (ln τf )t1t1 , θ′ = −(ln τf )t1t2
(ln τf )t1t2

.

So we can only recover uf from τf up to a constant in S1,
but τf recovers the corresponding Schrödinger flow on S2

uniquely.



Virasoro action on tau functions

The positive Virasoro algebra V+ is the algebra generated by
{ξj |j ≥ −1} that satisfies

[ξj , ξk ] = (k − j)ξj+k .

Our project on Virasoro actions was motivated by the
remarkable work of Kontsevich: the tau function of the KdV
hierarchy, that is fixed by the Virasoro action, gives the
generating function of the quantum cohomology of a point. We
constructed Virasoro actions on soliton hierarchies in an
elementary way and hope their fixed points may be of some
use.



Theorem (Terng-Uhlenbeck 2016)

• ξj(f ) = −(λj+1fλf−1)−f , j ≥ 1, defines an action of V+ on
L−.
• The induced V+ action on χ = ln τf is given by

ζ`χ =
N∑

j=1

jtjχtj+` −
1
2

c`(f ), ` = −1,0,1,

ζ`χ =
N∑

j=1

jtjχtj+` +
`−1∑
j=1

(
χtjχt`−j +

1
2
χtj t`−j

)
− 1

2
c`(f ), ` ≥ 2.

where c`(f ) = Resλ(λ`+1(fλf−1)2) are constants.


