More physics
$\operatorname{Ref}[C K, \xi 1]$
We return to disarsing the
Super conformal field theory (SCFT)
An interaction between two paracles $a, b \backsim$ spacetime M may be drawn like this $\xrightarrow{\text { time }}$

For tiv interacting strings, we may instead take a picture as follows

We therefore consider surfaces $\sum \subset M$.
The theory should not depend on choice of a coordinate system on \sum. This leads to a requirement that
theory is invariant under a certain
Super conformal algebra $A \supset u(1) \times v(1)$
Taking generators for the latter subalgebra, and
letting them act on the Hilbert space of the theory
(ie. the space of quantum states) we have that

$$
\begin{aligned}
& (p, q) \text { eigenspace } \longleftrightarrow H q(\sim T) \\
& (-p, q) \text { eigenspace } \longleftrightarrow H q(\Omega p)
\end{aligned}
$$

where we take $T=$ tangent bundle on M

$$
\text { and } \Omega^{P}=p \text {-forms on } M
$$

considering M as a complex manifold
Recall we charmed an automorphism Φ of $\{S C F T s\}$.
This exchanges the $(\pm p, q)$ eigenspaces in the representation above.

For a mirror par X, X^{\prime} we therefore expect

$$
\begin{aligned}
H q\left(\mathbb{N}^{p} T_{x}\right) & \cong H\left(\Omega_{x^{\prime}}^{p}\right) \\
H q\left(\Omega_{x}^{p}\right) & \cong H\left(\Lambda^{p} T_{x^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H^{3-p, q}(x) \cong H^{p, q}\left(x^{\prime}\right) \\
& H^{p, q}(x) \cong H^{3-p, q}\left(x^{\prime}\right)
\end{aligned}
$$

Note this agrees with the relations between iq claimed above

Moduli of SETs
We finish our discussion of physics background, to explain further mirror symmetry predictions which will be the subject of Later parts of the course. After this, we will introduce tonic geometn, to gie us a source of examples for constructions
Recall Calabi-Yam 3-fold X has
complex structure J, metric g, Kahler form w.
Note w determines class in $H^{2}(X, R)$
(this is detham cohomology, but we drop subscript "dR")
$H^{2}(X, \mathbb{R})$ contains natural integral lattice, which may be identified with $H^{2}(x, \mathbb{Z}) \subset H^{2}(x, \mathbb{R})$ (cohom with \mathbb{Z} coeffs)

A further structure which appears in the construction of the SCFT is

$$
\text { "B-field" } B \in H^{2}(x, \mathbb{R}) / H^{2}(x, 2)
$$

Combining B and w we get

$$
\text { complexified Kahler class } B+i \omega \in H^{2}(X, \mathbb{C}) / H^{2}(X, 2)
$$

Note Why do we say these are in the quotient?
Because a surface $\Sigma \subset X$ corresponds to terms $\exp (2 \pi i(B+i \omega) \cdot[\Sigma])$ in the SCFI
where $[\Sigma] \in H_{2}(x, \mathbb{Z}) \subset H_{2}(X, \mathbb{C})$ is the class of Σ in homology: these only depend on the class of $B+2 \omega$ in the quotient.

Now, given the data $X J, g, B+i w$ there exists a SCFT
Varying this data continuously, we would like to obtain a moduli space M McFt, that is a space whose points correspond to different SCFTs. We expect that, locally,

$$
\mu_{\text {SCFT }} \cong M_{k} \times \mu_{c}
$$

where points of M_{k} and M_{c} correspond to choices of $B+i w$ and J, respectively We say
$\mu_{k}=$ complexified/stringy Kahler moduli
$\mu_{c}=$ complex structure moduli
M_{c} is a classical boject, much studied before mirror symmetry, and is locally isomorphic to $H^{2,1}(X)$
This is because deformations of complex structive
are given by elements of $H^{\prime}\left(T_{x}\right)($ see $[H, \S 6.1])$ and for Calabi-You $X, H^{\prime}\left(T_{x}\right) \cong H^{\prime}\left(\Omega^{2} x\right)=H^{2, \prime}(X)$
M_{k}, on the other hand, is special to mirror symmetry and does not yet have a full mathematical defuition

From the above description, we expect

$$
M_{k} \subset H^{2}(x, \mathbb{C}) / H^{2}(x, \mathbb{Z})
$$

to be locally isomorphic to $H^{\prime \prime 1}(x)$, as the
Kahler form ω gives a class in $H^{H^{\prime \prime}}(X) \subset H^{2}(X, \mathbb{C})$.
Modwh under mirror symmetry
Some part of the SCFT depends only on
$B+i \omega$, and some part only on I In physics terminology, these are called A - and B-model

Therefore we have

- A-model determined by symplectic manifold (X, ω) and B-fueld
- B-model determined by complex manifold (X, J) Now take a mirror patner X^{\prime}. By defuition, X and X^{\prime} have isomorphic SCFTs, so we have an identification

$$
M_{\operatorname{SCF} T}(X) \cong M_{\operatorname{SCF}}\left(X^{\prime}\right)
$$

Locally, this isomorphism swaps M_{k} and M_{C} so that we have

$$
M_{k}(x) \cong M_{c}\left(x^{\prime}\right) \text { and } M_{c}(x) \cong M_{k}\left(x^{\prime}\right)
$$

These are called the mirror maps, and can be calculated and studied

Conceptually, they imply that mirror symmetry relates symplectic geometry on X to complex geometry on X^{\prime} ', and Ukewise with X and X ' exchanged.
Note. The mirror map gives an indirect way to define $M_{k}(x)$ we find a mirror x^{\prime}, and set $M_{k}(x)=M_{c}\left(x^{\prime}\right)$ This approach is commonly taken.

