
Lecture notes for Tsingua Workshop

Alex Blumenthal

References for this course:

• Lai-Sang Young’s lecture notes: “Ergodic theory of differentiable dynamical systems”. Chap-
ter in book Real and Complex Dynamical Systems, pages 293-336.

• Brin & Stuck: “Introduction to dynamical systems”, book.

1 Lecture 1: Motivation, examples

1.1 Thought experiment: a ‘typical’ experimental setup

Let us write X for the phase space of our experiment, typically a high-dimensional (or sometimes
infinite-dimensional) manifold. Starting at an initial condition x0 ∈ X, we will write xn ∈ X for
the state of our system at discrete times n = 1, 2, · · · .

For many systems, especially those for which the phase space is extremely high-dimensional,
the only way to ‘probe’ phase space is to measure the state φ(xn) of an observable φ : X → R
at time n, e.g., temperature, or the pressure exerted on a wall, or the concentration of a tracer
chemical at a point.

Imagine that you run the system and take measurements of the observable φ at each integer
timestep, resulting in collecting the time series data {φ(xn)}n≥0. We are interested describing the
time-asymptotic behavior of the system, i.e., what happens to the system for large times n.

One scenario is as follows: the time series φ(xn) settles down to a single fixed value, or settles
down into a finite cycle of repeating values. This hints that the dynamics (xn) is settling down
into an asymptotically stable equilibrium or periodic orbit. If you can describe this equilibrium or
periodic orbit, then you have more-or-less described all asymptotic dynamics of the system.

Another scenario is that the time series φ(xn) never settles down to a fixed value or a periodic
cycle, and instead fluctuates indefinitely for all large times. How can you describe the asymptotic
dynamics in this case? For systems with such ‘complicated’ time series, physicists often make the
following assumptions:

(1) The asymptotic or ‘equilibrium’ state of the system can be described statistically by a prob-
ability measure µ on the phase space X. That is, if you let the system run for a long time,
then the state of the system can be thought of as an X-valued random variable with empirical
law µ.

(2) We can obtain a description of the statistic µ by estimating the expected values
∫
φ(x)dµ(x).

These can be estimated from time series by the limit∫
φdµ = lim

N→∞

1

N

N∑
n=1

φ(xn) (1)

The limiting value on the LHS does not depend on the initial condition x0 ∈ X.
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In (1), the RHS is an asymptotic time average, while the LHS is a spatial average over the phase
space X. The formula (1) ‘exchanges’ time and space averages.

Implicit in (1) and (2) above is the idea that there is some ‘randomizing’ mechanism in our
system. In (1), no matter where we initiate the system, after a long time the system has ‘forgotten’
where it started and is distributed according to the law µ. That is, the initial state x0 and the
future state xN , N � 1 have de-correlated from each other. There is something mysterious about
this: the system in question is possibly entirely deterministic, so the initial state should entirely
determine the final state.

Let us consider briefly the situation when the states x1, x2, · · · are entirely independent of each
other, distributed in X with law µ.

1.2 Simplified model: IID time dependence

Let us assume that X is a measurable space. For our purposes, we will assume that x1, x2, · · · are
IID X-valued random variables, xi : Ω→ X, on a probability space (Ω,P). Let us write µ for the
empirical law of the xi, i.e.,

µ(A) = P{x1 ∈ A}

for measurable A ⊂ X.
Suppose we don’t know the law µ of the xi, but you can sample as many times as you want.

In this case, we can use time averages to determine µ as follows. Let φ : X → R be a bounded,
measurable observable, so that Yi = φ(xi), i = 1, 2, · · · are a sequence of IID R-valued random
variables. Observe that

E(Y1) =

∫
φ(x)dµ(x) .

Theorem 1 (Strong Law of Large Numbers). With probability one, we have that limN→∞
1
N

∑N
i=1 Yi

converges to the (deterministic) value E(Y1).

In particular, we have that ∫
φ(x)dµ(x) = lim

N→∞

1

N

N∑
i=1

φ(xi)

holds with probability 1. That is, the SLLN justifies exchanging time and spatial averages under
the simplifying assumption that the states x1, x2, · · · are IID.

1.3 Dynamics and basic ergodic theory

The case when (xi) are IID is instructive, but by no means indicative of what happens in real
systems. More realistically, the state of the experiment evolves in time according to a map f : X →
X, so that given an initial state x0 ∈ X the state of the system xn at time n is given by

xn = f(xn−1) = fn(x0) = (f ◦ · · · ◦ f)︸ ︷︷ ︸
n times

(x0) .

Let us assume that (X,F) is a measurable space. Our aim is to describe asymptotic dynamics
by probability measures which are ‘invariant’ under the time evolution proscribed by f .

Definition 2. A probability measure µ on (X,F) is called invariant if for all A ∈ F , we have
µ(f−1A) = µ(A).
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We can think of invariant measures as equilibrium statistics for the dynamical system f : X →
X, in the sense that if x0 is distributed according to µ, then x1 = f(x0), x2 = f2(x0), · · · , xn =
fn(x0) are each distributed according to µ.

Example 3. Let xper ∈ X, and assume fp(xper) = xper for some p ≥ 1. We call {xper, fxper, · · · , fp−1xper}
a periodic orbit of f . In this case, one can check that

1

p

p−1∑
i=0

δf ixper

is an invariant measure for f . Here, δx denotes the Dirac delta-mass at x ∈ X.

1.3.1 Ergodicity

Definition 4. An invariant measure µ is called ergodic if, for some A ∈ F , the property f−1A = A
implies that µ(A) = 0 or 1.

A set A ∈ F for which f−1A = A is sometimes itself called invariant, for the reason that
trajectories initiated in A do not leave A. What ergodicity means as above is that if you could
‘partition’ X into two invariant pieces, then µ only ‘sees’ one such piece.

Ergodicity has many equivalent characterizations, a few of which we list here:

Lemma 5. The following are equivalent.

(a) µ is ergodic.

(b) If A ∈ F is such that f−1A ⊂ A, then µ(A) = 0 or 1.

(c) If A ∈ F is such that f−1A ⊃ A, then µ(A) = 0 or 1.

(d) If A ∈ F is such that µ(A) > 0, then µ(∪n≥0f−nA) = 1.

Property (d) is equivalent to the following: if µ(A) > 0, then µ-almost every x ∈ X has the
property that fnx ∈ A for some n ≥ 0.

Remark 6. The old name for ergodicity is metric transitivity, and is perhaps more instructive as
to what the concept means. In this context, metric refers to ‘measure-theoretical’, and transitivity
refers to the way in which the µ-generic dynamics spreads over phase space. Property (d) in Lemma
5 is a kind of ‘transitivity’ property following from ergodicity.

1.4 The Birkhoff Ergodic Theorem

As it turns out, ergodicity is precisely the condition necessary needed to allow exchanging time and
space averages with respect to a given invariant measure µ.

Theorem 7 (Birkhoff Ergodic Theorem). Let µ be an ergodic invariant measure for f . Let φ ∈
L1(µ). Then,

lim
N→∞

1

N

N∑
n=1

φ ◦ fn(x) =

∫
φdµ

for µ-almost all x ∈ X.
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This theorem provides a number of useful insights about asymptotic dynamics with respect to
an invariant measure. Below, for A ∈ F , we write

χA(x) =

{
1 x ∈ A
0 else.

Corollary 8. Assume µ is ergodic. Let A ∈ F , µ(A) > 0. Then, for µ-almost all x ∈ X, we have
that

lim
N→∞

1

N
#{1 ≤ n ≤ N : fnx ∈ A} = µ(A) .

Proof. Apply the Birkhoff Ergodic Theorem to φ = χA.

Remark 9. The Birkhoff Ergodic Theorem can be stated for non-ergodic measures µ. In that
case, we still have that the limit f∗(x) = limN N

−1∑N
n=1 φ◦fn(x) exists for µ-almost all x, but the

value of f∗(x) may be non-constant in x. Nevertheless, f∗ ∈ L1(µ) does hold and
∫
f∗dµ =

∫
fdµ.

Exercise 10. Prove the following enhancement of Lemma 5: If µ is ergodic and µ(A) > 0, then

µ{x ∈ X : fnx ∈ A for infinitely many n ≥ 0} = 1 .

1.4.1 Caveats

Just as important as what a theorem says is what it does not say. You might be tempted to
think that the Birkhoff Ergodic Theorem justifies exchanging time and space averages in the sense
described in Lecture 1, but this is not quite true for the following two reasons.

• The BET only entitles you to exchange time and space averages for ‘µ-almost all’ intiial
conditions, while the support of µ could in fact be quite small, or even singular, with respect
to a natural reference measure (in our case, Lebesgue). This is the case, for instance, for the
Smale Solenoid described in Example 18, for which all invariant measures are singular with
respect to Lebsegue.

• Even when there is an invariant measure µ which serves as a natural reference measure, e.g.,
Lebesgue measure is preserved (as is the case for, say, Hamiltonian systems), ergodicity does
not necessarily follow. Indeed, it is possible to construct, using KAM theory, a large variety
of Hamiltonian systems (preserving Liouville measure / Lebesgue measure on phase space)
for which ergodicity is false in a dramatic way.

Remark 11. The rate at which time averages converge to space averages has not been specified,
and can in general be quite slow. There are general results in this direction (see, e.g., upcrossing
inequalities) but they are typically quite weak.

1.5 Goals of this course

Measures µ for which (1) converges for a ‘large’ set of initial states x0 are called physical, meaning
that they are physically relevant for the ‘bulk’ dynamics of the experiment / system. Typically,
X is a manifold or just Rd for some d, in which case ‘large’ is meant to mean ‘positive Lebesgue
volume’.

Our focus in this mini-course are the following two items:

(a) What mechanisms are responsible for a deterministic dynamical system ‘forgetting’ its initial
state?
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(b) In particular, when can we mathematically justify the existence of a physical measure for a
dynamical system?

1.6 Examples

Example 12. Let Y1, Y2, · · · be an IID sequence of R-valued random variables with empirical
law νY on R. We can encode this into a ‘deterministic’ dynamical system as follows. Define
X = [0, 1]⊗N, writing x = (x1, x2, · · · ) for x ∈ X. Define ϑ : X → X, (ϑx)n = xn+1 to be the
leftward shift, so ϑx = (x2, x3, · · · ). Define the observable φ : X → R, φ(x) = x1. Then,

1

N

N∑
n=1

φ(ϑnx) =
1

N

N∑
n=1

xn

In particular, the SLLN for the IID sequence (Yi) is the same as the Birkhoff ergodic theorem
applied to the measure µ = ν⊗NY on X.

Exercise 13. Show that µ is invariant and ergodic for ϑ : X → X.

Smooth examples

Here we list a number of instructive, low-dimensional examples of dynamical systems to give a
concrete illustration of the infinitesimal mechanisms which produce seemingly ‘random’ or ‘decor-
related’ behavior in asymptotic dynamics.

Example 14. Let X = S1, the unit circle, parametrized by the unit interval [0, 1] with endpoints
identified. Define f : X → X by

fx = 2x (mod 1) .

This is called the doubling map.

Exercise 15.

(a) Show that Lebesgue measure Leb on the circle S1 is an invariant measure for f .

(b) Let I ⊂ S1 be a small interval of length ε > 0. Show that fn(I) = S1 for all sufficiently large
n. How do you interpret this in the context of a dynamical system ‘randomizing’ its initial
condition?

Example 16. Let X = T2 = S1 × S1, parametrized as the unit box [0, 1]2 with opposite sides

identified. Regard x ∈ X as column vectors

(
x1
x2

)
, xi ∈ S1 ∼= [0, 1), i = 1, 2 and define

fx =

(
2 1
1 1

)
x (mod 1) ,

where ‘mod 1’ is taken on both coordinates individually. The resulting map of T2 is called the CAT
map (short for ‘continuous automorphism of the torus’).

Exercise 17.

(a) Show that f is actually a continuous map on T2.

(b) Show that Lebesgue measure on T2 is invariant for f .
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(c) Evaluate the differential Dpf, p ∈ T2 by identifying T2 = R2/Z2 and identifying tangent
spaces T2 with the same copy of R2.

(c) Let vu, vs denote unit eigenvectors for the matrix defining f above, where vu corresponds to
the eigenvalue λu = 1

2(3 +
√

5) and vs to λs = 1
2(3−

√
5).

Let p, q ∈ T2, d(p, q) ≤ 1/10 and assume that the length of the displacement vector p − q
coincides with d(p, q). What happens to d(fnp, fnq) if p− q is parallel to (i) vu, (ii) vs?

Example 18. Let X = S1 × D, where D ⊂ C is the closed unit disk in the complex plane. As
usual, S1 is parametrized by the unit interval [0, 1] with endpoints identified. We can visualize X
as the solid or filled-in torus (i.e., donut) in R3. Define f : X → X by

f(t, z) = (2t (mod 1),
1

4
z +

1

2
e2πit)

This map is called the Smale solenoid map.

Exercise 19. Show that if µ is an invariant measure f , then it is singular with respect to Lebesgue
mesaure on X. Specifically, show that there is a set A ⊂ X such that µ(A) = 1 for all invariant
µ, while Leb(A) = 0. Hint: Define An = ∩ni=0f

i(A), A = ∩n≥1An and show that Leb(An) =
cLeb(An−1), where c ∈ (0, 1) is a constant. Conclude that Leb(A) = 0. Conversely, argue that
µ(A) = 1.

Example 20. The mechanism of stretching/contracting in the above examples is uniform. Real-
world systems might exhibit these mechanisms, but usually not uniformly in phase space. One
famous (albeit notorious) example is the Chirikov standard map

FL(x, y) = (2x+ L sin(2πx)− y, x)

defined on T2. Clearly for L � 1 this map exhibits very strong expansion in the horizontal (x)
direction; since it preserves volume, it contracts along some roughly vertical direction on most of
phase space. At the same time, this expansion/contraction is not uniformly expressed in phase
space, as it fails along neighborhoods of the lines {x = 1/4}, {x = 3/4}. The following is an open
question against which many graduate students and famous dynamicsts have failed:

Problem 21 (Standard map conjecture; attempt at your own peril!). Show that for any value of
L that the map FL has the property that a positive Leb-measure set of points x ∈ T2 satisfy

lim inf
n→∞

1

n
log ‖DxF

n
L‖ > 0 .
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