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Summary

In a Data-Generating Experiment (DGE), the data, X, is often obtained either from

a Black-Box with inputs θ and Y, or from a Quantile function or a learning machine,

f(Y, θ); θ is unknown, element of metric space (Θ, ρ),Y is random. If X has intractable or

unknown c.d.f., Fθ, non-identifiability of θ cannot be confirmed and when present, among

others, limits the predictive accuracy of the learned model, f(Y, θ̂); θ̂ estimate of θ. In

Machine Learning, non-identifiability of θ is ubiquitous and its extent is a criterion for

selecting a learning machine. Empirical indices, EDI and PPVI, are introduced using

P-values of Kolmogorov-Smirnov tests: i) to confirm almost surely, using generated data,

the discrimination of θ from θ∗, namely that the Kolmogorov distance, dK(Fθ, Fθ∗), is

positive, ii) to confirm identifiability of θ(∈ Θ) by repeating i) for θ∗ in a sieve of Θ, since

neighboring parameter values are in practice indistinguishable, and iii) most important, to

compare EDI-graphs of DGEs, preferring more discrimination and less non-identifiability

among parameters, and select one DGE to use. In applications, EDI-graphs confirm non-

identifiability in mixture models and in models parametrised with sums of parameters.

EDI and PPVI explain why Tukey’s g-and-h model (DGE1) has better g-discrimination

than the g-and-k model (DGE2), unless the sample size is extremely large; h0 = k0. EDI-

graphs indicate that Normal learning machines have better parameter discrimination than

Sigmoid learning machines and their parameters are non-identifiable.
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1 Introduction

Statistical modeling is used in numerous fields, from Economics and Psychology to Bi-

ology, Engineering and Machine Learning, among others. Often, it is assumed the data,

X, has known and tractable cumulative distribution function (c.d.f.), Fθ; θ is unknown, el-

ement of metric space (Θ, ρ). Recently, X is also obtained either from a Quantile function

or a learning machine, f(Y, θ), with f known and intractable Fθ, or more generally from

a “Black-Box”, with unknown data-generating mechanism depending on θ and Y; input,

Y, is either observed or latent.

Breiman (2001) called the Black-Box model algorithmic, observed that statisticians

rarely adopt it, and commented: “If our goal as a field is to use data to solve prob-

lems, then we need to move away from exclusive dependence on data models and adopt

a more diverse set of tools.” Earlier, Tukey (1962, p.60) wrote: “Procedures of diagnosis,

and procedures to extract indications rather than extract conclusions, will have to play a

large part in the future of data analyses and graphical techniques offer great possibilities in

both areas.” Both suggestions have been widely adopted nowadays in Data Science. Such

tools and their theoretical justifications are presented for Black-Box models in this work.

Modeling goals include estimation of θ, and for the Black-Box with output approximated

by learning machine, f(Y, θ), the accurate and reproducible prediction of future outputs of

f. These goals depend on parameter identifiability, confirmed so far only when c.d.fs are

tractable. Note that the parameter in model F = {Fθ∗ , θ
∗ ∈ Θ} is identifiable when for each

θ and θ∗ in Θ, θ ̸= θ∗ implies Fθ ̸= Fθ∗ . A problem not frequently studied for intractable or

algorithmic models is that, often, due to the shapes of Fθ∗ in F , the sample size, n, needed

for small estimation error may be excessively large and the statistician may not be aware

about it. There is no direct data-tool measuring discrimination of θ from θ∗ by evaluating

the (strong) distance between intractable Fθ and Fθ∗ , and also confirm θ-identifiability.

For example, using Tukey’s g-and-h model and the g-and-k model, the difficulty in the

discrimination (and estimation) of parameters has been studied via Maximum Likelihood

estimates (Rayner and MacGillivray, 2002). The extent of non-identifiability and the level

of discrimination of parameters in a model, F , are criteria for the choice of the data-
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generating machine used. Answers to the emerged questions will be provided.

In practice, θ is not distinguished from θ∗-values in an open ρ-ball, Nϵ(θ), centered at θ

with small radius ϵ, and for intractable models the sample size needed for estimation error,

ϵ, is unknown. Taking advantage of samplers, tools are introduced herein: i) to study

for a Black-Box model, the discrimination of parameters θ and θ∗ at ρ-distance greater

than or equal to ϵ, by evaluating with data the (strong) distance ρ̃(Fθ, Fθ∗), ii) to confirm

identifiability of θ using i) for all θ∗ in Θ∗(⊂ Θ), and iii) most important, to select among

several data-generating or learning machines with non-identifiable parameters which one

to use, preferring less non-identifiability and more discrimination, namely larger ρ̃(Fθ, Fθ∗).

The main tool used for discriminating θ from θ∗ is the empirical discrimination index,

EDIM , estimating the expected P-value, EPV (θ, θ∗;n), for the Kolmogorov-Smirnov test

of hypotheses Fθ = Fθ∗ against Fθ ̸= Fθ∗ , due to EPV’s special properties (Proposition 3.1);

M samples of size n are used, ρ̃ is Kolmogorov distance, dK . The motivation for EDIM and

its connection with EPV are described in section 3. Since in practice, Θ can be assumed

to be compact or ρ-totally bounded, let θ∗1 = θ and form a partition Nϵ(θ
∗
2), . . . , Nϵ(θ

∗
m) of

N c
ϵ (θ);A

c denotes the complement of A. ϵ-identifiability of θ is confirmed almost surely by

confirming its discrimination from each θ∗ in sieve

Θ∗ = {θ∗1, . . . , θ∗m}. (1)

For practical purposes, ϵ-identifiability of θ will imply identifiability for all the param-

eters in Nϵ(θ). Global identifiability in Θ can be confirmed by repeating the approach for

θ = θ∗i , i ̸= 1. Alternatively, EDI-graphs for one θ, with θ∗ in sieve Θ∗ and various sam-

ple sizes, n, may be enough as observed in Examples for which θ-identifiability implies

θ̃-identifiability for every θ̃ in Θ.

This work was motivated from Statistical Learning of θ with Matching in a Data-

Generating Experiment (DGE) (Yatracos, 2020, 2021). A DGE consists of the sample

space of X, the parameter space Θ and the data-generating mechanism, f, with inputs

θ and random Y. Matching Estimates of θ = (g, h) were satisfactory at g0 for Tukey’s

g-and-h model (DGE1) but not for the g-and-k model(DGE2), for the same values of h, k.

The questions were “Why?” and “How this problem could be predicted in a DGE?”. The
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second tool, used for DGE1 and DGE2 with same inputs, (Y, θ), in fi, i = 1, 2, applicable

for learning machines, is the proportion, PPV I, of P -values of DGE1 exceeding those of

DGE2. If PPV I is smaller than .5, DGE1 is preferred, at least locally, at θ. In some cases,

PPV I gets much smaller than .5 before n gets too large.

In Example 4.1, EDI-graphs are presented for the normal and Cauchy models, to com-

pare the discrimination of their parameters and to observe the form of EDI-graphs for

identifiable parameters. In Examples 4.2 and 4.3, non-identifiability is confirmed with

EDI-graphs, respectively, for the parameters in a normal model with their sum the mean,

and for the mixture of two normal distributions with known variance. In Examples 4.4

and 4.5, Tukey’s g-and-h model (DGE1) and the g-and-k model (DGE2) are compared

using EDI and PPV I, to confirm that the former has better discrimination and is to be

preferred as data-generating or learning machine, unless the sample size, n, is extremely

large. In Example 4.6, EDI-graphs are depicted for Normal and Sigmoid data-generating

machines, showing that both have unidentifiable parameters but the former has better

parameter discrimination.

Rothenberg (1971) established conditions for parameter identifiability using Fθ’s Fisher

Information Matrix (FIM) for tractable Fθ, θ ∈ Θ. Non-identifiable statistical models in-

clude mixture models (Hartigan, 1985), autoregressive moving averages (Veres, 1987) and

change point problem (Csörgo and Horvath, 1997). In Statistical Machine Learning, non-

identifiability of θ is ubiquitous and has deep influence in particular on the output, f(Y, θ),

of the Learning Machine, f. The estimate, θ̂, affects the capability of the learned model (or

representation), f(Y, θ̂), to predict future data (Ran and Hu, 2017). For example, in Deep

Neural Networks it is preferable that when a network relearns with data from the same

model, the obtained learned representation is nearly similar to f(Y, θ̂). This wish moti-

vated studying linear identifiability in function space (Roeder et al., 2021) for tractable

models with general exponential form, extending results on distinct models (Hyvärinen

and Marioka, 2016, Hyvärinen et al. 2018). Other tools include FIM, the asymptotic order

of the Likelihood Ratio test statistic of the MLE and the Kullback-Leibler divergence of

tractable models, used among others by Fukumizu (2003), Watanabe (2001), Fukumizu

and Amari (2000) and Ran and Hu (2014). A detailed review is presented in Ran and Hu



6

(2017), endorsing in the “Summary and Perspective” (p. 1196) the view in Breiman (2001)

for algorithmic models and especially the tools needed, by adding: “This will become one

of the most important issues for machines in the future.”

Dempster and Schatzoff (D&S, 1965) treated P-value as random and used its expected

value, the Expected Significance Level (ESL), as sensibility index for comparing several

multivariate tests. D&S viewed ESL as “reasonable compromise” to the Neyman-Pearson

theory that uses the power of the test which depends on the α-level. Sackrowitz and Samuel-

Cahn (S&SC, 1999) used Expected P-Value (EPV) instead of ESL, to stress that P-value

is random, suggested EPV as test’s performance measure when it is difficult to evaluate

the power function, and examined the P-values under the alternative for location and scale

models. Since then, EPV and its estimates have been used to study the power of tests

for parametric tractable models, but not for studying identifiability or discrimination of

parameters with the Kolmogorov-Smirnov test for general, intractable models. Additional

references on the use of P -values, related controversies and the Bayesian approach can

be found in Shi and Yin (2021), where the connection between P -value and posterior

probability is presented.

Empirical discrimination indices for θ based on tests’ comparisons, provide useful infor-

mation in estimation problems since in the elementary estimation problem, Θ consists of

two parameters, θ and θ∗, and can be solved by testing. Stein (1964) showed inadmissibility

of the usual estimator for the variance of a normal distribution with unknown mean using a

test of hypotheses to obtain the improved estimate. Le Cam (1973) and Birgé (2006) used

successfully multiple, simultaneous tests of simple hypotheses for estimation with infinite

dimensional parameter space, Θ.

In section 2, previous results related indirectly to parameter discrimination are pre-

sented. In section 3, EPV ’s properties are presented and EDI and PPVI are introduced

along with the use of EDI-graphs. Applications follow in section 4. The reader may

proceed directly to Figures 1-8 that depict EDI-graphs with informative captions.
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2 Model Shapes and Parameter Discrimination

Tukey (1960,1962, 1977) used the g-and-h model to better fit data, X, with heavy tails

and skewness, and the λ-distribution to fit both symmetric and asymmetric data; the

sample X = {X1, . . . , Xn}. The idea is to model the quantiles of X directly and not via a

density (Yan and Genton, 2019). Thus, X is seen as modification of data, Y, using known

data-generator f, with unknown parameter θ(∈ Rp), e.g., θ = (g, h),

Xi = f(Yi, θ), i = 1, . . . , n; (2)

p ≥ 1,Y = {Y1, . . . .Yn} is observed from a known model with known parameter η.

Tukey’s quantile-modeling approach has been used since then in several fields, (2)

evolved and has led to an abundance of models’ shapes that would fit better X. However,

this abundance of model shapes near the underlying distribution increases the difficulty in

estimating θ, and f in (2) should be examined before its use as data-generator.

For the g-and-k model (Haynes et al., 1997) and the generalized g-and-h models, Rayner

and MacGillivray (2002) confirmed the difficulty of the MLE to discriminate distributional

shapes and parameters’ values with small and moderate n : “... computational Maximum

Likelihood procedures are very good for very large sample sizes, but they should not nec-

essarily be assumed to be safe for even moderately large sample sizes” (p. 58); also, “...

with moderately large positive (i.e. to the right) skewness, the MLE method fitting to the

g-and-k distribution cannot efficiently discriminate between moderate positive values and

small negative values of the kurtosis parameter.” (p. 64).

For Tukey’s asymmetric λ-distributions, with wider variety of distributional shapes than

g-and-h and using the Moments estimation method it is observed: “An additional difficulty

with the use of this distribution when fitting through moments, is that of nonuniqueness,

where more than one member of the family may be realized when matching the first four

moments ... ” (Ramberg et al. 1979, Rayner and MacGillivray, 2002, p. 58).

These findings indicate, for DGEs with intractable or unknown models, the need to

study the discrimination of parameters using tools independent from estimation methods.
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3 Empirical Discrimination and Identifiability of pa-

rameters in Black-Box Models

Assume the sample, X, in a DGE has either intractable or unavailable c.d.f. Fθ; θ ∈ Θ, ρ

is metric on Θ,X = {X1, . . . , Xn};Xi ∈ Rd, d ≥ 1,Θ ⊆ Rp, p ≥ 1.

Definition 3.1 For any two distribution functions F,G in Rd, d ≥ 1, their Kolmogorov

distance

dK(F,G) = sup{|F (y)−G(y)|; y ∈ Rd}. (3)

Definition 3.2 For any sample U = (U1, . . . , Un) of random vectors in Rd, nF̂U(u) de-

notes the number of Ui’s with all their components smaller or equal to the corresponding

components of u(∈ Rd). F̂U is the empirical c.d.f. of U.

θ is identifiable when for any θ∗ ∈ Θ, θ∗ ̸= θ, it holds that Fθ ̸= Fθ∗ , verified, e.g., when

the Kolmogorov distance, dK(Fθ, Fθ∗), is not zero. However, this cannot be confirmed with

unavailable or intractable c.d.fs, Fθ and Fθ∗ .

Definition 3.3 θ is discriminated from θ∗ when ρ̃(Fθ, Fθ∗) > 0; ρ̃ is a strong probability

distance, i.e., when ρ̃(Fθ, Fθ∗) = 0, then Fθ = Fθ∗ .

The larger the distance ρ̃(Fθ, Fθ∗) is, the better the discrimination between θ and θ∗ is.

If θ is discriminated from all θ∗ ∈ Θ, then θ is identifiable. In the sequel, ρ̃ = dK is used.

Discrimination of θ and θ∗ is studied for Black-Box models, taking advantage of samplers

by drawing samples, X and X∗ both of size n, with unknown or intractable c.d.fs, Fθ

and Fθ∗ , respectively. dK(Fθ, Fθ∗) is estimated by dK(F̂X, F̂X∗). To evaluate how large

dK(Fθ, Fθ∗) is, since dK(F̂X, F̂X∗) is random, one could rely on its P-value exceeding t∗,

for various observed t∗-values, and in particular on their average value, that has crucial

properties for discriminating θ and θ∗ when several, independent X,X∗ and t∗ are used.

The average’s estimand is an expected value that is also a probability, P (Tn > T ∗
n), with
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Tn and T ∗
n Kolmogorov distances of empirical c.d.fs, obtained from the testing problem

that follows; see (9) and (11).

Let

η = dK(Fθ, Fθ∗), 0 ≤ η ≤ 1, (4)

and consider the hypotheses

H : η = 0 (i.e. Fθ = Fθ∗) against H
∗ : η = η∗ > 0 (i.e. Fθ ̸= Fθ∗). (5)

Independent samples X and X∗ of size n are obtained, respectively, from Fθ and Fθ∗ , using

the DGE’s sampler. Let

Tn = dK(F̂X, F̂X∗), (6)

and with abuse of notation use for Tn’s c.d.f., G0 under H and Gη∗ under H∗, instead of

using, respectively, Fθ = Fθ∗ and Fθ ̸= Fθ∗ . H is rejected if Tn is large, Tn > t∗, or instead

if

P0(Tn > t∗) = 1−G0(t) (7)

is small; t∗ is usually the observed Tn-value under H. Instead of the P -value calculated for

an observed t∗ under H, its expected value, EPV, is used calculated under both H and H∗

with X and X∗ independent,

EPV (θ, θ∗;n) =

∫ 1

0

P0(Tn > t∗)dGη∗(t
∗) = 1− Eη∗G0(T

∗
n), η∗ ≥ 0. (8)

In the right side of (8), T ∗
n is the random variable with observed value t∗ obtained also

when η∗ = dK(Fθ, Fθ∗) ̸= 0. Discrimination of θ and θ∗ is confirmed almost surely with

EPV’s estimate EDI, due to the EPV-properties a)-c) in Proposition 3.1, and is used to

determine identifiability of θ. In D&S and S&SC, a) has been used as well as that, when

Tn and T ∗
n are independent, then

EPV (θ, θ∗;n) = 1− Eη∗G0(T
∗
n) = P (Tn > T ∗

n), (9)

with Tn and T ∗
n obtained, respectively, under H and H∗, or H and H.

Proposition 3.1 Using independent Tn and T ∗
n described as above and in (6)-(9),

a) for every θ in Θ and for every sample size n,E0[1−G0(T
∗
n)] = .5 = EPV (θ, θ;n),
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b) for every η∗ ̸= 0, limn→∞Eη∗ [1−G0(T
∗
n)] = 0 = limn→∞ EPV (θ, θ∗;n), θ ̸= θ∗,

c) if η∗ = dK(Fθ, Fθ∗) < η∗∗ = dK(Fθ, Fθ∗∗), and T ∗∗
n is defined as Tn in (6) using X∗∗ from

Fθ∗∗ , then for large n,

EPV (θ, θ∗;n) = Eη∗ [1−G0(T
∗
n)] ≥ Eη∗∗ [1−G0(T

∗∗
n )] = EPV (θ, θ∗∗;n). (10)

For each n, by the strong law of large numbers, the averages of P -values from M

repeated, independent samples obtained by the sampler at θ and θ∗ ∈ Θ, have almost

surely the properties of their expected values in a)-c) of Proposition 3.1. These properties

are the keys to discriminate θ from θ∗, for checking θ-identifiability using θ∗ in sieve Θ∗ of

Θ and for choosing one among several data-generating machines.

Definition 3.4 (EDI) Let X1,X2, . . . ,XM be samples of size n obtained in a DGE with

intractable or unavailable c.d.f. Fθ, and let X∗
1, . . . ,X

∗
M be samples of size n from Fθ∗ , with

Xi,X
∗
i independent, i = 1, . . . ,M. Let PVi be the P -value for the two sided Kolmogorov-

Smirnov test of θ against θ∗ using Xi,X
∗
i , i = 1, . . . ,M. The Empirical Discrimination

Index (EDI) of θ and θ∗ is

EDIM(θ, θ∗;n,DGE) =
1

M

M∑
i=1

PVi. (11)

The smaller the EDI-value is, the easier θ and θ∗ are discriminated in the DGE.

EDI is also used instead of EDIM .

EDI in (11) can be used to compare two or more DGEs, in particular quantile experi-

ments and learning machines generated with Y having the same distribution.

DGE Selection with EDI ′s Discrimination Criterion

Assume thatDGE1 andDGE2 are indexed by a parameter θ ∈ Θ (usually of similar na-

ture, e.g., location) and that samples as in Definition 3.4 are obtained. The discrimination

of θ from θ∗ is easier in DGE1 than DGE2 if

EDIM(θ, θ∗;n,DGE1) < EDIM(θ, θ∗;n,DGE2). (12)
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When (12) holds for some θ in Θ, then DGE1 is preferred. The EDI comparison can

be used for DGE1 and DGE2 with parameters respectively θ, θ∗ in Θ, ζ, ζ∗ in Z and

ρ(θ, θ∗) = ρZ(ζ, ζ
∗); ρZ is distance in Z.

Definition 3.5 When DGE1 and DGE2 are generated each by quantile model (2) with

latent variables Y from the same model, for each of the M tests in (11) the same Y,Y∗

can be used to generate the data and P -values are compared. The proportion of P -values

index is

PPV IM(θ, θ∗;n,DGE1, DGE2) =
#{PVj(DGE2) < PVj(DGE1), j = 1, . . . ,M}

M
. (13)

PPV I is also used instead of PPV IM .

DGE Selection with PPV I Discrimination Criterion

Using the previous notation, for DGE1 and DGE2 as in Definition 3.5, the discrimina-

tion of θ from θ∗ is easier in DGE1 than DGE2 if

PPV IM(θ, θ∗;n,DGE1, DGE2) < .5. (14)

Remark 3.1 When Θ ⊆ Rp, in Definitions 3.4 and 3.5 indices are calculated at θ =

(θ1, . . . , θi, . . . , θp) and θ∗ = (θ1, . . . , θi + ϵ∗, . . . , θp), i = 1, . . . , p, ϵ∗ > 0. Local discrimina-

tion of a subvector of θ parallels the concept of local identifiability of a subvector of θ; see,

e.g., Ran and Hu (2017, Definition 5, p. 1161).

When d = 1, the function ks.test in R provides the P -value for the Kolmogorov-Smirnov

two-sample test of equality for θ and θ∗, with X and X∗ from Fθ against Fθ∗ , respectively.

For d = 2 and d > 2, the approaches in Peacock (1983) and Polonik (1999) can be used

to obtain P -values The theory in the latter was implemented by Glazer et al.(2012), who

estimated high-density regions directly instead of using density estimates.

Use of EDI-graphs

For θ ∈ Θ and ϵ(> 0) small enough such that parameters in Nϵ(θ) are indistinguishable,

let Θ∗ = {θ∗1, . . . , θ∗m} be the sieve in (1), with θ ∈ Θ∗ but not necessarily equal to θ∗1.
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EDI-graphs of EDIM(θ, θ∗i ;n) against ρ(θ, θ
∗
i ), i = 1, . . . ,m, for various n :

A) show non-identifiability of θ (and other parameters) when either EDIM(θ, θ∗i ;n) does

not decrease as ρ(θ, θ∗i ) increases, or, when n increases, at least EDIM(θ, θ∗i = θ;n) and

EDIM(θ, θ∗j ;n) remain larger from most of the remaining EDIM(θ, θ∗k;n), i ̸= j ̸= k,

B) indicate better discrimination of θ from θ∗ with smaller EDI(θ, θ∗;n), and

C) allow comparing data-generating machines with their EDI-graphs using A) and B),

preferring more discrimination and less non-identifiabiliy.

When Θ ⊂ Rp, ρ is the usual Euclidean distance.

4 Applications

EDI-graphs for θ, with θ∗ in the sieve Θ∗, are presented for models and learning machines

with identifiable and non-identifiable parameters to see their differences and use. The y-

axis is used for EDI-values and the x-axis for the Euclidean L2-distance between θ and

the sieve’s elements. For the interpretation of EDI-graphs follow A)-C) at the end of the

previous section. Figures 1-8 indicate that EDI-graphs for one θ and for θ∗ in Θ∗, and for

moderate and large sample size, n, can be sufficient for checking identifiability in Θ and

parameter discrimination, thus confirming their usefulness.

EDI-graphs for statistical models are first presented.

Example 4.1 EDI-graphs for Normal (N) and Cauchy (C) models are depicted for

studying discrimination and confirming identifiability of θ=(µ, σ) = (1.2, 1.6). The as-

sumed parameter spaces for µ and σ are, respectively, [0, 2] and [0.4, 2.4], Θ is their

Cartesian product. For ϵ = .4, consider in each parameter space, respectively, sieve

µ∗
j = .4(j − 1), 1 ≤ j ≤ 6 and σ∗

k = .4 + .4(k − 1), 1 ≤ k ≤ 6, providing Θ-sieve,

θ∗i = (µ∗
j , σ

∗
k), i = 1, . . . , 36, that includes θ.

M = 100 independent samples X and X∗, each of size n, are obtained with parameters,

respectively, θ and θ∗i in both models, and the corresponding EDIs are calculated, i =

1, . . . , 36, for n = 100, 300, 600, 1000. EDI-graphs appear in Figures 1 and 2. Identifiability

of θ is indicated when EDI(θ, θ;n) takes value near .5 and the other EDI values decrease
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as the Euclidean distance of θ and θ∗ increases, all eventually decreasing to zero as n

increases except for EDI(θ, θ;n).

Indicative EDI(θ, θ∗;n)-values are provided in Table 1, for θ∗22 = θ = (1.2, 1.6) and

θ∗23 = (1.2, 2), to observe better parameter discrimination for the Normal model.

EDI (θ, θ∗) FOR NORMAL AND CAUCHY

n θ∗22(N) = θ θ∗23(N) θ∗22(C) = θ θ∗23(C)

100 .53 .41 .53 .48

300 .56 .20 .49 .35

600 .56 .05 .51 .21

1000 .47 .02 .53 .10

Table 1: EDI-values for θ∗23 indicate easier discrimination of θ with the Normal (N)-model

than the Cauchy (C)-model, since their convergence rate to zero for the former is faster as

n increases.

Example 4.2 EDI-graphs for Normal distributions of the form N(a+b, 1) are depicted to

confirm non-identifiability of the parameter θ = (a, b) = (1.2, 1.6). The assumed parameter

spaces for a and b are, respectively, [0, 2] and [0.4, 2.4],Θ is their Cartesian product. For

ϵ = .1, in each parameter space, consider a∗j = .1(j − 1), 1 ≤ j ≤ 21 and b∗k = .4 + .1(k −

1), 1 ≤ k ≤ 21, providing sieve θ∗i = (a∗j , b
∗
k) ∈ Θ, i = 1, . . . , 212.

M = 100 independent samples X and X∗ each of size n are obtained with parameters,

respectively, θ and θ∗i , and the corresponding EDIs are calculated, i = 1, . . . , 212, for

n = 100, 1000, 30000, 100000. EDI-graphs appear in Figure 3. For n = 100, several circles

in the EDI-graph “jump” and have y-values near .5, as the distance on the x-axis from

θ = (1.2, 1.6) increases. For n = 1000, the θ∗-values that indicate non-identifiability of

θ have EDI values near .5 and the sum of the θ∗ parameters is 2.8, as with θ. The θ∗

with EDI-values near .2 indicate additional non-identifiable parameters and have sum

of parameters 2.7. Even for n = 100000, the EDI-graph differs from the EDI-graph of

Example 4.1 that indicates identifiability of θ.
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Example 4.3 Let N(µ, σ2) denote Normal c.d.f. with mean, µ, and variance, σ2. Consider

the normal mixture model, F , with known variance, σ2 = 1, and parameter θ = (p, µ1, µ2),

which is non-identifiable,

F = {pN(µ1, 1) + (1− p)N(µ2, 1), (p, µ1, µ2) ∈ Θ = [0, 1]x[0, 2]x[0, 2]}.

EDI is used to confirm algorithmically non-identifiability of θ = (.25, .4, 1.2). Sp = {0, .25, .5, .75, 1}

is a sieve for [0, 1] and Sµ1 = Sµ2 = {0, .4, .8, 1.2, 1.6, 2} are sieves for [0, 2], and

Θ∗ = SpxSµ1xSµ2 = {θ∗i : 1 ≤ i ≤ 180} (15)

is sieve for Θ, with θ = θ∗46. θ
∗
128 = (.75, 1.2, .4) makes θ non-identifiable. Using M = 100,

EDI-plots for n = 100, 500, 15000, 30000, appear in Figure 4. When n = 100, the EDI-

values are spread in [0, .5], but as n increases, e.g. when n = 500, several EDI-values are

near zero. When n = 15000, there are 6 EDI-values far from 0. Those with similar values

correspond to non-identifiable θ∗46 and θ∗128, θ
∗
63 = (.25, 1.6, .8) and θ∗125 = (.75, .8, 1.6), θ∗88 =

(.5, .8, 1.2) and θ∗93 = (.5, 1.2, .8). When n = 30000, the EDI-values of the last two are

nearly zero, those corresponding to indices 63 and 125 decrease, while those for indices 46

and 128 remain near .5, as expected.

In Figure 5, simulations are repeated when the means’ coordinates in θ = (.25, .35, 1.25)

are not in Θ∗. θ’s closest element in the sieve is θ∗46 = (.25, .4, 1.2). The same pattern with

Figure 4 is observed in Figure 5, except for the two larger EDI-values which decrease

slower than the other EDI-values towards zero as n increases. Non-identifiable θ∗63, θ
∗
125

and θ∗88, θ
∗
93 have similar EDI-values, with those of the last two vanishing for n ≥ 15000.

EDI-graphs are used also for studying data-generating machines.

Tukey’s (1977) (a, b, g, h)-model accommodates data from non-Gaussian distribution,

with g real-valued controlling skewness, non-negative h controlling tail heaviness and with

location and scale parameters a ∈ R, b > 0. A vector of independent standard normal

random variables, Z = (Z1, . . . , Zn) and parameter values a, b, g, h are used to obtain

X1,i(g, h) = a+ b
egZi − 1

g
e.5hZ

2
i , i = 1, . . . , n; (16)
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X1(g, h) = (X1,1(g, h), . . . , X1,n(g, h)).

The (a, b, g, k)-model (Haynes et al., 1997) includes distributions with more negative

kurtosis than the normal distribution and some bimodal distributions (Rayner and MacGillivray,

2002, p. 58). Standard normal Z1, . . . , Zn and parameter values a, b, g, k are used to obtain

X2,i(g, h) = a+ b[1 + c · 1− e−gZi

1 + e−gZi
](1 + Z2

i )
kZi, i = 1, . . . , n; (17)

X2(g, k) = (X2,1(g, k), . . . , X2,n(g, k)), c is a parameter used to make the sample correspond

to a density and usually c = .8.

Tukey’s g-and-h model (DGE1) and the g-and-k model (DGE2) are now compared,

initially g-locally with EDI and PPVI; see Remark 3.1.

Example 4.4 Normal sample, Z, is used to obtain X1(g, h),X2(g, k), respectively, from

(16) and (17) with g = 5, h = k = 2.5, a = 0, b = 1, c = .8. Normal sample, Z∗, also of size

n, is used to obtain similarly X∗
1(g

∗, h),X∗
2(g

∗, k) with g∗ = 3, h = k = 2.5, a = 0, b = 1.

The P -value for the Kolmogorov-Smirnov test for equality of g and g∗ based on Z and Z∗ is

obtained for both g-and-h (DGE1) and g-and-k (DGE2) models. Both experiments are re-

peatedM = 1000 times for n = 50, 100, 200, 500, 1000, 1500, 2500, 5000, 10000, 35000, 40000.

The corresponding EDIs for DGE1 and DGE2 are computed for each n, and counters

measure for each n the number of times out of M the P -value for DGE2 is smaller than,

or larger than, that of DGE1. Comparisons of EDIs indicate that for the values g and g∗

used and n < 40000, Tukey’s g-and-h model has better g-discrimination than the g-and-k

model. For 5% significant difference, a sample of size n = 1500 is needed for the g-and-h

model, and n = 2500 is needed for the g-and-k model. The proportion of samples out of M

for which the P -value(g-and-k) is smaller than the P -value(g-and-h) appears decreasing

to zero as n increases and at n = 40000 there is a correction. It takes a sample of size

nc = 40000 for the parameters g = 5 and g∗ = 3 for the g-and-k model to be discriminated

as in Tukey’s g-and-h model. The results appear in Table 2; those for n = 40000 hold also

for n = 50000, 100000.

Remark 4.1 The results in Example 4.4 for the g-and-k model suggested comparing also

smooth histograms for this model. Visually, there is no discrimination between overlayed
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g-Local Discrimination: Tukey’s g-and-h and g-and-k models

n EDI (g-and-h) EDI (g-and-k) PPVI(g-and-h, g-and-k) PPVI(g-and-k, g-and-h)

50 5.05 e-01 5.31e-01 0.1540 0.2980

100 4.47e-01 4.92e-01 0.1762 0.4287

200 3.61e-01 4.38e-01 0.1864 0.5459

500 2.00e-01 3.15 e-01 0.1683 0.6845

1000 8.12e-02 1.836 e-01 0.1379 0.7807

1500 3.56e-02 1.083e-01 0.1150 0.8327

2500 6.21e-03 3.19e-02 0.0988 0.8745

5000 1.08e-04 1.86e-03 0.0680 0.9205

10000 7.31e-08 5.37e-06 0.0388 0.9379

35000 0 2.22e-20 0 1e-04

40000 0 0 0 0

Table 2: Model parameters: g = 5, g∗ = 3, h = k = 2.5. EDIs and PPVIs for g are based

on M=1000 repeats.

g-and-k smooth histograms with parameters, respectively, g = 5 and g∗ = 3.5 for various

sample sizes less than or equal to n = 10000 and Z = Z∗. We did not use n > 10000.

From the results in Example 4.4, Tukey’s g-and-h model has better local discrimination

than the g-and-k model, unless the sample size is very large. The findings in Table 2

extend those in Rayner and MacGillivray (2002), based on the data and not on a particular

estimate, e.g. the MLE. The results are confirmed g-globally below, with EDI-graphs.

Example 4.5 Tukey’s g-and-h and the g-and-k models are examined as Learning Machines

with same parameters a = 0, b = 1, θ = (g, h) = (g, k) = (5, 2.5). It is assumed g is

unknown, but h = k = 2.5 is known. To use the same R programs we considered parameter

spaces for g and h = k, respectively, [2, 5] and [2.5, 2.5]. The sieve for the first parameter

space, with ϵ = .4, is g∗j = 2 + .6(j − 1), 1 ≤ j ≤ 6, and h∗
k = 2.5, 1 ≤ k ≤ 6, therefore the

Θ-sieve consists of θ∗i , i = 1, . . . , 36.

M = 100 independent samples X and X∗ each of size n are obtained with parameters,
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respectively, θ and θ∗i in both models, and the corresponding EDIs are calculated, i =

1, . . . , 36, for n = 200, 1000. EDI-graphs for both models appear in Figure 6 indicating

identifiability. Comparison of the EDI-graphs for the same n value, indicates that Tukey’s

g-and-h model has better parameter discrimination than the g-and-k model. The findings

confirm graphically the results in Example 4.4.

Example 4.6 Similar set-up as in Example 4.3 is used, with only difference that data,

X, is obtained from the Normal learning machine that is convex combination of normal

densities,

X = f(Z, θ) = pϕ(Z − µ1) + (1− p)ϕ(Z − µ2). (18)

(p, µ1, µ2) is element of Θ = [0, 1]x[0, 2]x[0, 2], with the same sieve, Θ∗. The model pa-

rameter θ = (.4, 1.2, 1.6) = θ∗46, and Z is a standard Normal random variable. M = 100

learning samples are used for EDI and n = 100, 500, 15000, 30000. A similar experiment

is examined for a Sigmoid learning machine, with ϕ in (18) replaced by

s(u) =
1

1 + e−u
, u ∈ R.

Figures 7 and 8 indicate non-identifiability and that the parameters are better discriminated

with the data from the Normal learning machine.

5 Conclusion

For Black-Box and intractable data models, parameter identifiability cannot be con-

firmed. In Machine Learning, non-identifiability is ubiquitous and the resulting difficulty

in the estimation of the parameters and the reproducibility of the learning models are not

yet quantified using the data. Empirical discrimination index, EDI(θ, θ∗), is used for θ∗

in a sieve of Θ, to confirm with EDI-graphs almost surely identifiability of θ, and in Θ,

or non-identifiability. EDI and PPVI are useful tools: a) for selecting Data-Generating

Experiments, in particular learning machines with non-identifiable parameters that have

better parameter discrimination, and b) for indicating the sample size needed for a good

estimate of a parameter to be informative, when identifiability holds.
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6 Appendix

Lemma 6.1 Assume Xn, Yn are r.vs, Xn
Prob−−−→
n→∞

0, Yn
Prob−−−→
n→∞

a > 0, then,

i)

lim
n→∞

P (Xn > Yn) = 0. (19)

ii) If in addition, Yn
a.s.−−−→

n→∞
a > 0, and r.vs, Y ∗

n
a.s.−−−→

n→∞
a+ ϵ, ϵ > 0, then, for large n,

P (Xn > Yn) ≥ P (Xn > Y ∗
n ). (20)

Proof: i) Let 0 < ϵ < a, then

P (Yn < Xn) = P (Yn < Xn, Xn > ϵ) + P (Yn < Xn, Xn ≤ ϵ) ≤ P (Xn > ϵ) + P (Yn < ϵ)

= P (Xn > ϵ) + P (Yn − a < ϵ− a) ≤ P (|Xn| > ϵ) + P (|Yn − a| > a− ϵ)
Prob−−−→
n→∞

0,

since Xn and Yn converge in probability, respectively, to 0 and a, and a− ϵ > 0.

ii) Let 0 < δ < ϵ. Then, for large n, since a.s. limn→∞(Y ∗
n − Yn) = ϵ > δ > 0, (Y ∗

n − Yn)

will eventually take positive values a.s. which are larger than δ,

P (Xn > Y ∗
n ) = P (Xn > Yn+Y ∗

n−Yn) = P (Xn > Yn)−P (Yn < Xn ≤ Yn+Y ∗
n−Yn) < P (Xn > Yn).

Proof of Proposition 3.1: a) E0G0(T
∗
n) = .5, either via integration by parts or since

G0(T
∗
n) is uniform random variable on [0, 1] when η∗ = 0.

b) Follows from Lemma 6.1 used for aDGE, under (6)-(9), withXn = Tn = dK(F̂X, F̂X∗)

when Fθ = Fθ∗ , and Yn = T ∗
n = dK(F̂X, F̂X∗) when Fθ ̸= Fθ∗ . The assumptions of Lemma

6.1 hold by Glivenko-Cantelli Theorem using a = dK(Fθ, Fθ∗) ≥ 0, since

|dK(F̂X, F̂X∗)− dK(Fθ, Fθ∗)| ≤ dK(F̂X, Fθ) + dK(F̂X∗ , Fθ∗). (21)

From Lemma 6.1 i), it follows by (9) that

lim
n→∞

EPV (θ, θ∗;n) = lim
n→∞

P [Tn > T ∗
n ] = 0.

c) Using the notation in b) and Lemma 6.1 ii), with Yn = T ∗
n , Y

∗
n = T ∗∗

n and, by

Glivenko-Cantelli and (21), a = η∗ < η∗∗ = a+ ϵ, (10) follows using (9).
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Figure 1: EDI-graphs indicate identifiability for the Normal model, seen also as learning

machine. The graphs will be compared for discrimination with those of the Cauchy model

in Figure 2.
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Figure 2: EDI-graphs indicate identifiability for the Cauchy model, seen also as learning

machine. Comparison with Figure 1 indicates EDI-values of the Cauchy model are larger

than or equal to those of the Normal model, for the same distance from θ and n-value,

indicating better parameter discrimination for the latter.
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Figure 3: EDI-graphs indicate non-identifiable parameters for the normal model, N(a +

b, 1), with θ = (a, b) = (1.2, 1.6). Several EDI-values near .5 as n increases, indicate

non-identifiability, with θ∗ = (a∗, b∗), a∗ + b∗ = 2.8. When n = 1000, EDI-values near .2

correspond to non-identifiable θ∗ with a∗ + b∗ = 2.7.
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Figure 4: Non-identifiability of the normal mixture, .25N(.4, 1)+ .75N(1.2, 1), is confirmed

by the two circles with y-coordinates near .5 for all sample sizes n. Circles with similar

y-coordinates far from 0, as n increases, indicate non-identifiable parameters.
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Figure 5: Non-identifiability of the normal mixture, .25N(.35, 1) + .75N(1.25, 1), with the

parameter θ = (.25, .35, 1.25) not included in the sieve, is confirmed by the two circles with

the larger y-coordinates, which decrease as n increases. Circles with similar y-coordinates

far from 0, as n increases, indicate non-identifiable parameters, as in Figure 4.
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Figure 6: EDI-graph for comparison of learning machines: Tukey’s g-and-h and the g-and-

k models. Tukey’s g-and-h has better parameter discrimination for moderate sample size,

reconfirming Example 4.4.
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Figure 7: EDI-graphs showing non-identifiability for data, X, from a Normal learning

machine, X = f(Z, θ) = pϕ(Z−µ1)+(1−p)ϕ(Z−µ2), θ = (p, µ1, µ2) = (.25, .4, 1.2) = θ∗46;Z

is a standard Normal r.v. with density ϕ.
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Figure 8: EDI-graphs showing non-identifiability for data, X, from a Sigmoid learning

machine, X = f(Z, θ) = ps(Z−µ1)+(1−p)s(Z−µ2), θ = (p, µ1, µ2) = (.25, .4, 1.2) = θ∗46;Z

is a standard Normal r.v., s(u) = (1+ e−u)−1, u ∈ R. Comparison with Figure 7 favors the

Normal learning machine which shows better discrimination.


