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1 Introduction
Hall conductance: robust quantity of insulating 2d electronic systems at near-zero
temperature. Quantized to a rational number to an incredible accuracy.

Why is that?
Other quantities like this? How about thermal Hall conductance? It exists

even when U(1) symmetry is absent (say, in spin systems). Is it quantized as
well?

2 Various explanations of robustness
1. Systems of non-interacting 2d fermions with a Fermi energy in a band gap.
Here Hall conductance can be expressed as a Chern number of the valence bands.
Thermal Hall conductance is proportional to Hall via the Wiedemann-Franz law.

2. Systems of non-interacting fermions with disorder. If the correlators of
fermionic operators decay sufficiently fast, can define ”noncommutative Chern
number” which determines both Hall and thermal Hall. Not a very intuitive
definition.

3. Gapped interacting spin systems (on a lattice). One can either work on a
torus or in infinite volume. On a torus, one can show that Hall is related to Berry
curvature and is a rational number in the infinite-volume limit provided the
ground-state degeneracy has a limit (as well as the integral of Berry curvature).

4. Laughlin’s flux-insertion argument.
5. Field-theoretic explanations via bulk-boundary correspondence.
The last three approaches apply to interacting systems, but none of them can

deal with thermal Hall conductance. The last two are also not mathematically
rigoeous. In these lectures, I will develop a new formalism which in effect makes
approaches 4 and 5 rigorous and extends them to a much larger class of systems
and symmetries. But it is still not known how to explain the robustness of the
thermal Hall conductance in the presence of interactions. This is an important
open problem.
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3 Gapped phases
We are interested in zero-temperature phases of quantum systems. Phases are
assumed to be gapped so that correlation functions of local observables decay
rapidly (faster than any power of distance). What is a gapped ground state? It
is a unique ground state in infinite-volume and a nonzero minimal energy for
all states created by acting with a local perturbation. Will give a more rigirous
definition later.

4 Quantum Statistical Mechanics
Statistical Mechanics became a serious mathematical subject in 1950s, when it
was realized that infinite systems with local interactions behave radically different
from finite ones (thanks to Lars Onsager’s exact solution of the 2d Ising model in
1944). Namely, even if the Hamiltonian is a smooth functions of parameters, the
free energy is not, in general. Hence, phase transitions. Moreover, the notion of
a ”Gibbs state” becomes subtle for infinite systems, and there can be more than
one Gibbs state for a fixed Hamiltonian and temperature. Hence, spontaneous
symmetry breaking becomes possible.

We are dealing with systems at zero temperature, so QSM should be a useful
tool for distinguishing such phases too. Instead of Gibbs states, we will be
studying ground states. Also, we want to access invariant of phases which are
not related to symmetry breaking. So we will assume that the ground states are
invariant under all symmetries of the Hamiltonian.

5 Why Hilbert space is not the right thing to
start with

The infinite tensor product
⊗j∈ZdHj

is rather pathological. First, it does not have a countable basis. Second, it does
not have a natural inner product which would make it into a (non-separable)
Hilbert space. This was first observed by John von Neumann who also proposed
some ways out.

Simplest way out: consider the restricted tensor product where all vectors
except a finite number are a particular v0 ∈ H0. This is kind of like choosing a
”fixed” boundary condition. Not clear how to choose v0 though. The ”correct”
choice may depend on the Hamiltonian. Example: transverse-field Ising chain.

Better way: focus on observables. For a single site, the algebra of quan-
tum observables is a matrix algebra Aj = L(Hj ,Hj). Naively, the algebra of
observables for Zd should then be an infinite tensor product

Al = ⊗j∈ZdAj .

2



This is a reasonably well-behaved algebra if we only consider observables which
are 1 except for a finite number of sites. Then we have a countable basis
and a good norm. The resulting normed algebra is called the algebra of local
observables.

Many questions remain though.

• Is there a nice topology on Al?

• Observables should be operators on a Hilbert space. Where is the Hilbert
space?

• How do we specify quantum dynamics? In other words, what sort of object
is the quantum Hamiltonian?

Most of these issues are resolved if we enlarge a little our space of observables.
This leads to Banach algebras and more specifically, to C∗-algebras.

6 Banach algebras and C∗-algebras
A normed algebra A is an algebra with a norm such that for all a, b ∈ A we
have

∥a · b∥ ≤ ∥a∥ · ∥b∥.

This ”product inequality” is imposed because it makes all operations continuous
in the topology arising from the norm.

Definition 1. A Banach algebra is a complete normed algebra.

We will work with algebras over complex numbers, so we need to add a bit
more structure.

A ∗-algebra is an algebra with an involution (anti-linear anti-automorphism
which squares to 1).

Definition 2. A Banach ∗-algebra is a Banach algebra over C with an involution
such that ∥a∗∥ = ∥a∥.

A complex N × N matrix algebra can be regarded as a Banach ∗-algebra,
where ∗ is Hermitian conjugation and ∥ · ∥ is the ”spectral norm”:

∥a∥ = sup
∥v∥=1

∥av∥,

where ∥v∥ is the usual Euclidean norm on the N -dimensional vector space. Note
that there are many (in fact, infinitely many) other norms on the algebra of
complex matrices which make it into a Banach algebra, but the spectral norm is
the most important one because it makes it into a C∗-algebra.

Definition 3. A C∗-algebra is a Banach ∗-algebra such that for all a ∈ A we
have

∥a∗a∥ = ∥a∥2.
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Example 1. The algebra of bounded operators on a Hilbert space H is a
C∗-algebra when equipped with the spectral norm. This algebra is denoted
B(H).

Example 2. The algebra of bounded functions on a set is a commutative
C∗-algebra (when equipped with the usual ∥ · ∥∞ norm).

Example 3. The algebra of bounded continuous functions on a topological
space is a commutative C∗-algebra (when equipped with the usual ∥ · ∥∞ norm).

Example 4. Let X be a locally compact Hausdorff topological space. The
algebra of continuous functions on X which vanish ”at infinity” is a commu-
tative C∗-algebra (when equipped with the usual ∥ · ∥∞ norm). In fact, every
commutative C∗-algebra is isomorphic to one of these (for some X).

In what follows, we will mostly work with Banach and C∗-algebras which
have an identity element (”unital” algebras).

7 States on C∗-algebras
Let A be a C∗-algebra. Elements of the form b = a∗a are called positive. One
writes b ≥ 0 in this case. The subset of positive elements in A is denoted A +.
One can show that A + is convex and invariant under b 7→ λb, λ ∈ [0, +∞).
That is, A + is a cone in A .

Definition 4. Let A , B be C∗-algebras. A linear map f : A → B is called
positive if it commutes with ∗ and f(A +) ⊂ B+. In particular, a positive linear
functional on A is a positive linear map f : A → C. A state on A is a positive
linear functional on A such that f(1) = 1.

Proposition 1. A linear functional ρ on a unital C∗-algebra is positive iff it is
continuous and ∥ρ∥ = ρ(1).

All states over A form a convex subset of the dual of A (i.e. of the space
of continuous linear functionals A → C). We have an obvious partial order
on states and more general positive linear functionals: ω1 ≥ ω2 iff ω1 − ω2 is
positive.

Definition 5. A state ω is pure if it does not majorize a multiple of any
other state except itself. Equivalently, it cannot be written as a convex linear
combination of two distinct states.

8 Examples of states
For matrix algebras (i.e. linear operators on a f.d. Hilbert space H), all states
are described by density matrices:

a 7→ Trρa,
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where ρ must be positive (as a matrix) and normalized (Trρ = 1). Pure states
are the ones for which ρ is a projector to a 1d space of H.

For an infinite-dimensional H, can also define a state using ”density matrices”
(more precisely, these are positive elements of B(H) which are trace-class, i.e.
Trρ < ∞. Such states are called normal. Surprisingly, not all states on B(H)
are normal! There exist pure states which vanish on all finite-rank projectors
(Dixmier, 1969).

Remark 1. For states on a general C∗-algebra, we can define distance between
states as

∥ω − ω′∥ = sup
∥a∥=1

|ω(a) − ω′(a)|.

The distance between states is always 2 or less. This distance makes sense
for arbitrary continuous linear functionals on A , not just states. The state
of continuous linear functionals on A thus becomes a Banach space. The
corresponding topology on continuous linear functionals is called the strong
topology (or ”the topology of uniform convergence”). It does not come from a
metric, in general. In the case of normal states on B(H) the distance reduces to

∥ρ − ρ′∥1 = Tr|ρ − ρ′|.

Note that this is different from the norm of the bounded operator ρ − ρ′ (in fact,
for any bounded trace-class operator we have ∥ρ∥1 ≥ ∥ρ∥).

Remark 2. Another useful topology on continuous linear functionals is the
topology of pointwise convergence (or weak-∗ topology). It is defined by saying
that a net of linear functionals ωα converges to zero if for any a ∈ A the net of
numbers ωα(a) converges to zero. If a net converges strongly, it also converges
in weak-* topology, but the opposite is not true, in general.

We are interested in lattice systems. Here A is the completion of Al =⊗
j∈Zd Aj , where each Aj is a matrix algebra. We can first define a state on

each Aj (given by a density matrix ρj), then define

AΛ =
⊗
j∈Λ

Aj

for every Λ ∈ Pf (Zd) (i.e. for any finite subset of Zd), and define a state ωΛ on
AΛ using a density matrix

ρΛ = ⊗j∈Λρj .

States on different Λ are clearly compatible: if Λ ⊂ Λ′, then

ωΛ(a) = ωΛ′ , ∀a ∈ AΛ.

Hence we get a positive normalized linear functional ω on Al. Clearly, we have

|ω(a)| ≤ ∥a∥, ∀a ∈ Al.
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By the BLT theorem, ω extends to a continuous linear functional on A . It is
easy to check that it is positive. Hence we get a state on A . Such states are
called factorized states. If all ρj are pure, this state is also pure.

A special case of this construction is the ”infinite-temperature state”. This
corresponds to taking all ρj to be proportional to the identity matrix. This state
has the property

ω(ab) = ω(ba)

for all a, b ∈ A . In other words, ω vanishes on commutators. A state which
satisfies this condition is called a tracial state, for obvious reasons. Some algebras,
like B(H) for an infinite-dimensional H, do not admit tracial states (one way to
argue is to show that any bounded operator can be written as a sum of several
commutators).

9 Representations
We need to learn how to ”realize” abstract observables (elements of a C∗-algebra
A ) as operators in a Hilbert space. I.e. we need to map each a ∈ A to
π(a) ∈ B(H) in a way compatible with algebra structure and ∗-operation (and
maybe norm).

Definition 6. A representation of a ∗-algebra A on a Hilbert space H is a
linear homomorphism π : A → B(H) which ”commutes with ∗”: π(a∗) = π(a)†,
∀a ∈ A .

This definition applies, in particular, to Banach ∗-algebras and C∗-algebras.
For a C∗-algebra, a representation always preserves positivity. Indeed, if a ∈ A +,
then we have a = b∗b, thus π(a) = π(b)†π(b) ≥ 0.

Proposition 2. If A is a Banach ∗-algebra, then every representation is
continuous, and in fact ∥π(a)∥ ≤ ∥a∥.

One says that a representation π is faithful if ker π = 0. ker π is a two-sided
ideal of A . We will be dealing with algebras which are ”simple” (i.e. have no
non-trivial two-sided ideals), so all our representations will be faithful. One
can show that for faithful representations ∥π(a)∥ = ∥a∥ (basically, because π
establishes an isomorphism between A and a C∗-sub-algebra of B(H), and thus
one can apply the preceding result to π−1 and deduce that ∥a∥ ≤ ∥π(a)∥).

Definition 7. Two representations π1 and π2 on Hilbert spaces H1 and H2 are
unitarily equivalent iff there exists a untary map U : H1 → H2 such that for all
a ∈ A we have

Uπ1(a) = π2(a)U.

Such a U is called an intertwiner.

Definition 8. A representation π : A → B(H) is called irreducible iff the only
closed π(A )-invariant subspaces of H are the zero subspace and the whole H.
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Definition 9. Let B be an algebra. For any S ⊂ B the commutant of S is the
set of all elements of B which commute with all elements of S. The commutant
of S is denoted S′.

Definition 10. A vector v ∈ H is called cyclic for a representation π : A →
B(H) iff the set of vectors of the form π(a)v, a ∈ A , is dense in H.

Proposition 3. The following conditions on π : A → B(H) are equivalent:

• π is irreducible

• Any v ∈ H is cyclic for π

• The commutant of π(A ) consists of multiples of 1H.

Proof. If v ∈ H is not cyclic, then the orthogonal complement of π(A )v is a
nontrivial closed linear subspace invariant under π(A ). Thus (1) implies (2).
Now assume (2). Suppose π(A )′ contains a. We can choose a to be self-adjoint,
and any spectral projection of a will also be in π(A )′. If the spectrum of a
contains more than one point, then we can choose a spectral projection which
does not contain some point λ ∈ σ(a), and any vector in the image of this
spectral projection will not be cyclic. Thus a must be a multiple of 1H, and
(2) implies (3). Now assume (3) and suppose that there is a closed invariant
subspace for π(A ). Then the projector to this subspace will be in π(A )′, which
means that (3) implies (1).

Remark 3. Obviously, {1}′ = B(H). Therefore, for an irreducible π : A → H,
we have π(A )′′ = B(H). But this does not mean that π(A) = B(H). That is,
typically not every A ∈ B(H) is of the form π(a). In some sense, this is to be
expected: for faithful representations (and in the cases of interest to us, A is
simple, and thus all representations are faithful), π is an isomorphism between A
and some C∗-sub-algebra of B(H), and if π(A ) were the whole B(H), it would
mean that if a faithful irreducible representation of A exists, A is isomorphic to
B(H), and the whole theory would ”trivialize”. This does not happen precisely
because π(A ) can be strictly smaller than π(A )′′.

10 The GNS construction
Turns out one can construct a representation of A starting with a state ω on A .

Start by defining an ”scalar product” on A :

(a, b) = ω(a∗b).

It has all the right properties except it can happen that (a, a) = 0 but a ̸= 0.
(In other words, ∥a∥2 =

√
(a, a) is not a norm, but a ”seminorm”). Let’s call

such a isotropic.

Lemma 1. Let ω be a state on A . The set of isotropic elements for ω is a left
ideal of A .
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Proof. Suppose a is isotropic and b is arbitrary. By positivity of ω and Cauchy-
Schwarz, we have

(ba, ba)2 = ω(a∗b∗ba)2 ≤ ω(a∗a)ω(b∗baa∗b∗b) = 0.

Thus (ba, ba) = 0.

Now we can form the quotient of the vector space A by the ideal Jω of
isotropic elements. We will denote by [a] the equivalence class of a. The scalar
product descends to the quotient A /Jω (again because of Cauchy-Schwarz).
There are no nonzero isotropic elements in A /Jω, because we declared them to
be equivalent to zero. All that remains is to complete the space by adding the
limits of all Cauchy sequences. This gives a Hilbert space Hω.

For each a ∈ A we define a linear operator πω(a) : Hω → Hω for by

πω(a)[b] = [ab].

This operator is bounded because

(πω(a)[b], πω(a)[b]) = (ab, ab) = ω(b∗a∗ab) ≤ ω(b∗b)∥a∥2 = ([b], [b])∥a∥2.

In fact, the above computation shows that ∥πω(a)∥ ≤ ∥a∥.
We also have

πω(a)πω(b)[c] = [abc] = πω(ab)[c],

as well as

([b], πω(a∗)[c]) = ω(b∗a∗c) = ω((ab)∗c) = (πω(a)[b], [c]).

Thus πω(a∗) = πω(a)†.
All this means that a 7→ πω(a) is a representation of A . This representation

is called the GNS (Gelfand-Naimark-Segal) representation of A associated with
ω. It has a cyclic vector |0ω⟩ = Ωω = [1]. Note that (Ωω, Ωω) = ω(1) = 1.

Here is an important property of the GNS representation: every symmetry
of (A , ω) gives rise to a unitary operator U on B(Hω). More precisely, we have

Proposition 4. Let τ be a ∗-automorphism of A which preserves ω: ω ◦ τ = ω.
Then there exists a unique unitary operator U such that UΩω = Ωω and

πω(τ(a)) = Uπω(a)U−1.

One says that U implements symmetry τ .

Proof. U is defined on the image of πω by U [a] = [τ(a)]. It is easily checked that
this is a well-defined map (i.e. preserves Jω) and that it preserves the scalar
product. Then it extends to the whole Hω by the BLT theorem.

Lastly, we have

Theorem 1. πω is irreducible iff ω is pure.
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Proof. 1. Suppose ω is pure. If πω(A )′ contains elements other than multiples
of identity, then we can pick a self-adjoint A ∈ πω(A )′ such that A ̸= 1. The
spectrum of A has more than one point, hence we can choose a spectral projection
of A which is less than 1. It is also in πω(A )′. Now consider the following linear
functional on A :

σ(a) = (PΩω, πω(a)Ωω).
It is easy to check that σ ≥ 0, and also ω − σ ≥ 0. Thus it must be that σ = λω
(because ω is pure). In other words, for all a ∈ A we must have

(PΩω, πω(a)Ωω) = (PΩω, Ωω)(Ωω, πω(a)Ωω).

There are two ways it can happen. First, it may happen that Ωω is annihilated
by P . That is, σ = 0. Since P was an arbitrary spectral projection of an element
in πω(A )′ which is not a multiple of identity, this means that any element b in
πω(A )′ which is not a multiple of identity annihilates all vectors of the form
πω(a)Ωω. But these vectors are dense in Hω. So any such b is zero. So πω is
irreducible.

The other option is that πω(a)Ωω is proportional to Ωω, for all a ∈ A . But
since Ωω is a cyclic vector, the whole Hω is one-dimensional, and πω is irreducible
in a trivial way.

2. Now suppose πω is irreducible. Let σ be a positive linear functional
majorized by ω. Then by Cauchy-Schwartz

|σ(a∗b)|2 ≤ σ(a∗a)σ(b∗b) ≤ ω(a∗a)ω(b∗b).

This shows that the map (a, b) 7→ σ(a∗b) is bounded and vanishes when either a or
b are in Jω. Hence we can regard it as a bounded sesquilinear map Hω ×Hω → C.
It is well known from basic functional analysis that all such maps arise from
bounded operators. I.e. there is a bounded operator T ∈ B(Hω) such that

σ(a∗b) = ([a], T [b]).

We claim that T is in the commutant of πω(A ). Indeed:

([a], πω(b)T [c]) = ([b∗a], T [c]) = σ(a∗bc) = ([a], T [bc]) = ([a], Tπω(b)[c]).

Since this is true for arbitrary a, b, c, T commutes with πω(b) for all b ∈ A .
Hence T = λ1 (because πω is irreducible), and thus σ = λω.

Remark 4. It is not true in general that for an irreducible π : A → B(H)
every operator A ∈ B(H) can be approximated arbitrarily well by elements of
the form π(a) (in the norm topology). This might seem surprising. On the
other hand, turns out there is a topology on B(H) (weak topology) in which
every element of π(A )′′ is in the closure of π(A ). As a result, π(A )′′ is always
”weakly” closed and thus is a very special kind of sub-algebra of B(H). Such
sub-algebras are called von Neumann algebras. For an irreducible π, we have
π(A )′′ = {1}′ = B(H), but if π is reducible, π(A )′′ can be something weird. For
example, if we take ω to be the tracial state on a quasi-local A (see Section 1),
the resulting von Neumann algebra πω(A )′′ is already weird (not isomorphic to
B(V) for any Hilbert space V.) This was one of von Neumann’s great discoveries.
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11 Dynamics
Let Aut(A ) be the group of ∗-automorphisms of A . Inner automorphisms are
automorphisms of the form

a 7→ uau∗,

where u is a unitary element of A . Inner automorphisms from a normal subgroup
of Aut(A ).

Definition 11. A one-parameter subgroup of automorphisms of a C∗-algebra
A is a homomorphism R → Aut(A ).

That is, we have t 7→ αt, and

αt ◦ αs = αt+s.

”Hamiltonian” time-evolution is represented by one-parameter subgroups (in the
Heisenberg picture). In the Schrödinger picture, we evolve states instead:

ω(0) 7→ ω(t) = ω(0) ◦ αt.

Sometimes one also considers one-parameter semigroups of positive linear maps
A → A . They are used to represent irreversible evolution of open systems.

Naively, would like to write αt(a) = eiHtae−iHt. But what is H? It is not
an element of A . To figure out what H means, let’s try taking derivatives of αt

w. r. to t.

Definition 12. A one-parameter subgroup of automorphisms is strongly contin-
uous if t 7→ αt(a) is a continuous function of t (for any a ∈ A ).

Actually, it is enough to require that limt→0 ∥αt(a) − a∥ = 0.

Definition 13. The generator of a strongly continuous 1-parameter family of
automorphisms is a linear map δ : D(δ) → A , D(δ) ⊂ A given by

δ(a) = lim
t→0

1
t
(αt(a) − a).

Definition 14. A (symmetric) derivation δ of a C∗-algebra A with a domain
D(δ) is a linear map D(δ) → A such that δ(a∗) = δ(a)∗ and δ(ab) = δ(a)b+aδ(b)
for all a, b ∈ D(δ).

Simplest derivations are inner derivations: derivations of the form

δ(a) = [b, a],

where b∗ = −b ∈ A . We will denote such a derivation adb. Inner derivations are
defined everywhere, i.e. one can take D(δ) = A .

Proposition 5. The generator of a strongly continuous family of automorphisms
is a derivation of A wwith a dense domain D(δ).
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Proof. The first property (δ(a∗) = δ(a)∗) is obvious. For the second one, we
write

αt(ab) − ab = αt(a)αt(b) − ab = (αt(a) − a)αt(b) + a(αt(b) − b).

Now divide by t and take the limit t → 0.
As for the domain, consider elements of the form

af =
∫ ∞

−∞
f(t)αt(a)dt,

where f : R → C is a smooth function with a compact support. It is easy to
check that δ(af ) is well-defined, namely

δ(af ) = a−f ′ .

Checking that elements of the form af are dense in A is left as an exercise.

One can show that a derivation which is defined everywhere is bounded.
Sakai showed that for some C∗-algebras (for example, quasi-local algebras) all
bounded derivations are inner. Every inner derivation adb is a generator of a
1-parameter subgroup of inner automorphisms: just set αt(a) = etbae−tb. This
is well-defined because b is anti-self-adjoint. But these 1-parameter subgroups
are not terribly interesting: the corresponding evolution is non-trivial only near
some point (because b is quasi-local). That is, if we fix t and take a to be a local
observable sufficiently far out, αt(a) − a can be made arbitrarily small. This is
not a physically sensible evolution.
Definition 15. A C∗-dynamical system is a pair (A , αt) where A is a C∗-
algebra and αt is a strongly continuous 1-parameter group of automorphisms of
A .

Continuous symmetries, such as a U(1) symmetry, are also realized by 1-
parameter groups of automorphisms, except that the parameter t is periodically
identified (or more generally, takes value in the group manifold). More precisely,
one says that G is a symmetry of a C∗-dynamical system if one is given a
homomorphism τ : G → Aut(A ) such that τ(g) commutes with αt for all g ∈ G
and all t ∈ R. The corresponding generators live in the Lie algebra of the
symmetry group and formally commute with δ. Again, interesting generators
are not bounded. So strictly speaking the commutator of two derivations δ1, δ2
may not even be defined (if the domains of δ1, δ2 have no intersection). So for
example the statement that generators of symmetries form a Lie algebra does
not make sense, in general. It only makes sense if all symmetries (including
time-translation symmetry) have a common dense domain in A . We will see
later how to deal with this difficulty.

A related issue is how to ”integrate” a derivation to a 1-parameter subgroup.
Not every derivation with a dense domain can be integrated. Formally, one needs
to solve the differential equation

dαt(a)
dt

= αt(δ(a))
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or the equivalent integral equation. We will see later how this is done for special
classes of derivations.

12 Evolution and symmetries in Hilbert space
In ordinary QM, generators of symmetries are (typically, unbounded) self-adjoint
operators on the Hilbert space which commute with the Hamiltonian. Let’s see
how this comes about in the C∗-algebraic formalism.

First, we need to discuss/recall some facts about unbounded operators (see
Reed-Simon, Vol. 1, Chapter VIII for details).

Definition 16. An unbounded operator A on H with a domain D(A) (a linear
subspace of H) is a linear map D(A) → H.

One usually assumes that D(A) is dense in H, i.e. every element of H can
be approximated arbitarily well by an element of D(A).

Definition 17. An unbounded operator A is called symmetric if (v′, Av) =
(Av′, v) for all v, v′ ∈ D(A).

In the case when H is finite-dimensional, such operators are called self-adjoint.
But in general, a self-adjoint unbounded operator is a more subtle notion:

Definition 18. Let A be a symmetric operator A with a dense domain D(A).
Suppose the following condition holds: if v′, w ∈ H and for all v ∈ D(A) one has
(v′, Av) = (w, v), then v′ ∈ D(A) (and thus w = Av′). Equivalently, suppose for
any v′ ∈ H if there exists C > 0 such that (v′, Av) ≤ C∥v∥ for all v ∈ D(A),
then v′ ∈ D(A). Then A is called self-adjoint.

This notion is important because for self-adjoint unbounded operators there
is a generalization of functional calculus:

Theorem 2. If A is self-adjoint, there is a ∗-homomorphism ϕ from the C∗-
algebra of bounded measurable function on R to B(H) which is positive (and thus
norm-continuous,) and satisfies the following condition: if limn→∞ fn(x) → x
and |fn(x)| ≤ |x| for all x ∈ R, then limn(ϕ ◦ fn)v = Av for all v ∈ D(A).

So we can construct bounded operators from self-adjoint unbounded ones. In
particular, if A is self-adjoint, then U(t) = eiAt is a well-defined unitary operator
for all t ∈ R and U(t)U(s) = U(t + s). Moreover, U(t)v is a continuous function
of t for all v ∈ H. One says that U(t) is a strongly continuous one-parameter
group of unitaries. This is how we usually construct evolution in QM.

The operator A can be recovered from U(t): for any v ∈ D(A) one has

lim
t→0

1
t
(U(t)v − v) = iAv,

Also, if for some v ∈ H this limit exists, then v ∈ D(A).
In fact, all strongly-continuous one-parameter groups of unitaries arise in

this way:
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Theorem 3. (Stone’s theorem) Let U(t) be a strongly-continuous one-parameter
group of unitaries in a Hilbert space H. Then there exists a self-adjoint un-
bounded A such that U(t) = eiAt.

Idea of the proof: for any infinitely-differentiable function f : R → C with
compact support, we can consider vectors of the form vf =

∫
f(s)U(s)vds. Then

U(t)vf =
∫

f(s)U(t + s)vds =
∫

f(s − t)U(s)vds.

Then for such vectors we can define

iAvf = v−f ′ .

With some work, one can show that A can be extended to a self-adjoint operator,
so eiAt is well-defined. And then it is straightforward to check that eiAt = U(t)
(basically, because they sastisfy the same differential equation). See Reed-Simon
I, Chapter VIII for details.

Now suppose αt is a strongly continuous one-parameter group of automor-
phisms of A which preserves a state ω:

ω(αt(a)) = ω(a), ∀a ∈ A .

Then we can define a unitary U(t) in the GNS representation (πω,Hω) such
that πω(αt(a)) = U(t)π(a)U(t)−1. We just set U(t)[a] = [αt(a)]. Clearly,
U(t)U(s)[a] = U(t + s)[a]. One can also show that U(t)[a] is a continuous
function of t. Thus by Stone’s theorem we have U(t) = eiHt for some self-
adjoint unbounded operator H on the GNS Hilbert space Hω. We finally got a
Hamiltonian on Hilbert space!

Note that U(t)Ωω = U(t)[1] = [αt(1)] = [1] = Ωω. By taking the derivative
w.r. to t at t = 0, we see that HΩω = 0. Thus the cyclic vector of the GNS
representation has zero energy by definition. No need to subtract out ”vacuum
energy”.

Let’s discuss an important notion of a ground state. Suppose ω is pure, so
that the GNS representation is irreducible, with the cyclic vector Ωω = [1]. Then
usually the spectrum of H is bounded from below. The most interesting case
is when Ωω has the lowest possible energy. Then we say that Ωω is the ground
state of H. Of course, if this is the case, then H ≥ 0.

Remark 5. It may happen that the ground state is not unique. For an infinite-
volume system this is rare though.

Turns out one can define what a ground state directly in terms of A and ω.

Definition 19. ω is a ground state of a strongly-continuous one-parameter
group of automorphisms of A iff for all a ∈ D(δ) we have ω(a∗(−iδ(a))) ≥ 0.

Then we have
(Ωω, πω(a)†[H, πω(a)]Ωω) ≥ 0,
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or equivalently
([a], H[a]) ≥ 0, ∀a ∈ D(δ).

Since D(δ) is dense in A , and vectors of the form [a] are dense in H, this implies
that H ≥ 0, and thus Ωω is a ground state of H.

13 Approximately inner derivations
First, let’s define a large class of derivations which are well-defined on Al. Let’s
fix an interaction Φ. For any finite Λ ⊂ Zd and any a ∈ Al we let

δΦ
Λ(a) =

∑
X⊂Λ

i[Φ(X), a]

This is obviously an inner derivation. We would like to define an ”approximately
inner” derivation Al → A by

δΦ(a) = lim
Λ

δΦ
Λ(a).

Theorem 4. Let an interaction Φ satisfy∑
X∋0

∥Φ(X)∥ < ∞.

Then the derivation δΦ is well-defined.

Proof. Suppose a ∈ AY for some finite Y and Λ′ ⊃ Λ. Then

δΦ
Λ′(a) − δΦ

Λ(a) =
∑

X⊂Λ′,X ̸⊂Λ

i[Φ(X), a].

The norm of the above expression is upper-bounded by

2∥a∥
∑
j∈Y

∑
X∋j,X⊂Λ′,X ̸⊂Λ

∥Φ(X)∥.

For any ε > 0 we can always choose R so that∑
X∋0,X ̸⊂B0(R)

∥Φ(X)∥ < ε.

Then we for all Λ which contain Bj(R) for all j ∈ Y the above expression will
be upper bounded by 2ε∥a∥|Y |. So δΛ(a) is a Cauchy net and converges to some
element in A .

Now we want is to exponentiate δΦ and get a well-defined αt. That is, we
want to solve the equation

dαΦ
t (a)
dt

= αΦ
t (δΦ(a)).

14



This requires further conditions on Φ.
Fix Φ. Note that δΛ is an inner derivation of AΛ, which is a matrix algebra.

So we can define αΛ
t by exponentiation without any problems. Namely, for

a ∈ AΛ we have

αΛ
t (a) = e

it
∑

X⊂Λ
Φ(X)

ae
−it

∑
X⊂Λ

Φ(X)
.

It clearly solves the equation we wanted to solve. αΛ
t is defined everywhere on

AΛ. If we want, we can extend it to the whole Al using the fact that Al is the
tensor product of AΛ and ⊗j /∈ΛAj . αΛ

t maps Al to itself.
We want to ensure that

αt(a) = lim
Λ

αΛ
t (a)

exists for any a ∈ Al.

Definition 20. For any r > 0 let

∥Φ∥(r) =
∑
X∋0

er(|X|−1)∥Φ(X)∥

The set of interactions with ∥Φ∥(r) < ∞ forms a Banach space B(r).

Lemma 2. Let adΦ,Λ(a) =
∑

X⊂Λ[Φ(X), a]. Then for Φ ∈ B(r) and a ∈ AY we
have

∥ adn
Φ,Λ(a)∥ ≤ n!

(
2
r

∥Φ∥(r)
)n

er|Y |∥a∥.

Proof.
adn

Φ,Λ(a) =
∑

X1,...,Xn⊂Λ

[Φ(Xn), . . . , [Φ(X1), a] . . .].

The sets which contribute to this sum form a ”chain” of overlapping sets: X1
overlaps with Y , X2 overlaps with either X1 or Y , etc. Let

ϕm =
∑

X∋0,|X|=m

∥Φ(X)∥.

Let’s fix X1, . . . , Xn of sizes m1, . . . , mn. We call the corresponding contribution
fn(X1, . . . , Xn). There are at most |Y | +

∑n−1
j=1 (mj − 1) points in the union of

Y and X1, . . . , Xn−1. Therefore summation over possible Xn with |Xn| = mn

gives fn(X1, . . . , Xn) whose norm is upper-bounded by

2ϕmn
(|Y | +

n−1∑
j=1

(mj − 1))∥fn−1(X1, . . . , Xn−1)∥.

Iterating this and summing over m1, . . . , mn we get an estimate for the multiple
commutator:

∥a∥
∑

mi≥1

n∏
k=1

(|Y | +
k−1∑
j=1

−(k − 1))
∏

k

(2ϕmk
)
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Now, we can upper-bound the above expression by

∥a∥
∑

mi≥1

|Y | +
n∑

j=1
(mj − 1)

n
n∏

k=1
(2ϕmk

).

Then for any r > 0 we can write

yn ≤ n!eryr−n.

Using this in the above expression, we can upper-bound it by

∥a∥n!(2/r)ner|Y |
∑

mi≥1

n∏
j=1

er(mj−1)ϕmj
= ∥a∥n!(2/r)ner|Y | (∥Φ∥r)n

Theorem 5. Fix r > 0 and a Φ ∈ B(r). For any finite Y ⊂ Zd, any a ∈ AY

there exists T > 0 such that for any |t| < T0 the limit

lim
Λ

αΛ
t (a)

exists, and the convergence is uniform in t.

Proof. Just set T = r
k (∥Φ∥(r))−1 for any k > 2 and use the estimate from the

previous lemma.

Theorem 6. The family of ∗-homomorhisms αt : Al → A , |t| < T , extends
to a strongly continuous 1-parameter group of automorphisms of A . These
automorphisms commute with spatial translations.

Proof. First, since αΛ
t is norm-preserving, so is αt. Thus, by BLT theorem, we

can uniquely extend it to A to a norm-presrving homomorphism. It is actually
an automorphism, with the inverse of αt being α−t.

Second, let s, r ∈ [−T, T ]. Then

αΛ
s+r(a) − αsαr(a) = αΛ

s (αΛ
r (a) − αr(a)) + (αΛ

s − αs)(αr(a)).

Now let’s take the limit over Λ. Both terms converge on the r.h.s. converge
to zero, so αΛ

s+r converges to αsαr(a). It follows from this that convergence is
uniform on [−2T, 2T ], and by iteration for any bounded interval of t.

Third, since αΛ
s αΛ

t = αΛ
t+s, by passing to the limit we get that αt is a

one-parameter group of automorphisms.
Fourth, uniform convergence on any bounded subset for t and continuity of

αΛ
t (a) as a function of t imply continuity of αt(a) as a function of t.

Fifth, translational invariance of αt follows from the translational covariance
of αΛ

t and the convergence of αΛ
t to αt.
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14 Lieb-Robinson bounds
Turns out if ∥Φ(X)∥ decays rapidly with the size of X, dynamics defined by the
interaction X 7→ Φ(X) approximately preserves locality. That is, if a ∈ Aℓ is
supported on some finite subset Γ, then for any fixed t ∥[b, a(t)]∥ becomes very
small if the support of b ∈ Aℓ is far from Γ. The first such estimate is due to
Lieb and Robinson who assumed finite-range interactions. Then the decay with
the distance to Γ is exponential. Many generalizations of this result are also
called Lieb-Robinson bound. Here is one example.

Theorem 7. Let F : [0, +∞) → (0, +∞) be a monotonically decreasing function
such that ∑

x∈Zd

F (|x|) < ∞

and ∑
y∈Zd

F (|x − y|)F (|y − z|) ≤ CF F (|x − z|)

for some C > 0. Let Φ satisfy

∥Φ∥F = sup
x,y

1
F (|x − y|)

∑
Z∋x,y

∥Φ(Z)∥ < ∞.

Then for any finite subsets X, Y ⊂ Zd and any a ∈ AX and b ∈ AY and any
t ∈ R one has

∥[a(t), b]∥ ≤ 2
CF

∥a∥∥b∥
(

e2∥Φ∥F CF |t| − θ(d(X, Y ))
) ∑

x∈X,y∈Y

F (|x − y|).

For a proof, see https://arxiv.org/abs/1102.0842 .
These bounds have many applications. For example, they imply that if ω is

a gapped state and interactions are finite-range, then ω(ab) − ω(a)ω(b) decays
exponentially with the distance between supports of a and b (M. Hastings).

15 The noncommutative Chern number
As an aside, let’s recall how the Hall conductance can be computed for systems
of non-interacting electrons on Z2. There one works with 1-particle Hilbert
space K which can be taken as ⊕j∈Z2Lj , where Lj is the Hilbert space labelling
fermionic creation and annihilation operators on site j. This can be used to
construct a C∗-algebra (called CAR algebra, i.e. creation-annihilation algebras).
A state of non-interacting electrons is entirely specified by the 2-point function,
namely:

Pij = ω(c†
i cj).

It can be viewed as a bounded operator on K satisfying 0 ≤ P ≤ 1. Moreover,
ω is pure if and only if P is a projector, P 2 = P .
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For any region X ⊂ Zd let ΠX : K → K be an operator which projects to X.
That is, ΠX,ij = 1 if i, j ∈ X and 0 otherwise.

If X is bounded, Tr ΠX is equal to
∑

j∈X dim Vj . If X is not bounded, ΠX

is not a trace-class operator. However, one can show that if R2 is decomposed
into a union of three cones A1, A2, A3, then

[PΠA0P, PΠA1P ]

is trace-class, thus
Tr P [PΠA0P, PΠA1P ]

is well-defined. In fact, one can show that it is an integer times 4πi and is
independent of the choice of cones once the orientation of R2 has been chosen.
This integer is called the noncommutative Chern number of the state defined by
the projector P (Avron, Seiler, Simon; Bellissard, van Elst, Schulz-Baldes).
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