KPZ limit for interacting particle systems —Coupled KPZ equation by paracontrolled calculus—

Tadahisa Funaki

Waseda University

December 1st+3rd, 2020

Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020 Lecture No 4

[•] F-Hoshino, JFA, **273**, 2017

[•] F, in "Stochastic Dynamics Out of Equilibrium", Springer 2019

Plan of the course (10 lectures)

- 1 Introduction
- 2 Supplementary materials

Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales

- 3 Invariant measures of KPZ equation (F-Quastel, 2015)
- 4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino, 2017)
- 5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
 - 5.1 Independent particle systems
 - 5.2 Single species zero-range process
 - 5.3 *n*-species zero-range process
 - 5.4 Hydrodynamic limit, Linear fluctuation
 - 5.5 KPZ limit=Nonlinear fluctuation

Plan of this lecture

Coupled KPZ equation by paracontrolled calculus

- 1. Multi-component coupled KPZ equation
 - Motivation: nonlinear fluctuating hydrodynamics
 - Trilinear condition (T)
- 2. Two approximating equations, local well-posedness, invariant measure
 - Convergence results due to paracontrolled calculus
 - Difference of two limits
 - Main theorems (Theorems 1 and 2)
- 3. Global existence for a.s.-initial values under invariant (stationary) measure
- 4. Ertaş-Kardar's example
 - not satisfying (T) but having invariant measure
- 5. Role of trilinear condition (T)
 - Invariant measure, renormalizations (for 4th order terms)
- 6. Extensions of Ertaş-Kardar's example
- 7. Proof of main theorems (Theorems 1 and 2)
- 8. Remarks for the case with diffusion constant σ

1. Multi-component coupled KPZ equation

In Lectures No 1 and No 3, we studied scalar-valued KPZ equation (1) and the renormalized KPZ equation (2):

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} (\partial_x h)^2 + \dot{W}(t, x), \qquad (1)$$

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} \{ (\partial_x h)^2 - \delta_x(x) \} + \dot{W}(t, x).$$
 (2)

- In this lecture, we consider on $\mathbb{T} = [0, 1)$.
- We used the Cole-Hopf transformation and Cole-Hopf solution h(t, x) := log Z(t, x), where Z is the solution of multiplicative linear stochastic heat equation.
- ▶ In this lecture, we consider a system of KPZ equations.
- For such equation, one cannot apply Cole-Hopf transformation in general.
- The method we use in the present part works also for scalar-valued equations (1) and (2).

Our equation in this lecture has the following form.
 ℝ^d-valued KPZ eq for h(t,x) = (h^α(t,x))^d_{α=1} on T:

 $\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + \sigma^{\alpha}_{\beta} \dot{W}^{\beta} \qquad (\sigma, \Gamma)_{KPZ}$

- ▶ We use Einstein's convention. i.e., the sums $\sum_{\beta,\gamma}, \sum_{\beta}$ are omitted.
- W
 (t,x) = (W
 ^α(t,x))^d_{α=1}(≡ W
 (t,x)) is an ℝ^d-valued space-time Gaussian white noise with covariance structure:

$$E[\dot{W}^{lpha}(t,x)\dot{W}^{eta}(s,y)]=\delta^{lphaeta}\delta(x-y)\delta(t-s).$$

• $\delta^{\alpha,\beta}$ is Kronecker's δ . This means that $(\dot{W}^{\alpha}(t,x))_{\alpha=1}^{d}$ are independent \mathbb{R} -valued space-time Gaussian white noises.

- Coupled KPZ equation is ill-posed, since noise is irregular and conflicts with nonlinear term. (h^α ∈ C^{1/4-,1/2-}/_{t,x} a.s. when Γ = 0)
- We need to introduce approximations with smooth noises and renormalization for (σ, Γ)_{KPZ}. Indeed, one can introduce two types of approximations: one is simple, the other is suitable to find invariant measures (Lecture No 3: d = 1, F-Quastel 2015).

• The constants $\Gamma^{\alpha}_{\beta\gamma}$ satisfy bilinear condition

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} \text{ for all } \alpha, \beta, \gamma, \tag{B}$$

and (we sometimes assume) trilinear condition

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta} = \Gamma^{\gamma}_{\beta\alpha} \text{ for all } \alpha, \beta, \gamma.$$
 (**T**)

(cf. Ferrari-Sasamoto-Spohn 2013, Kupiainen-Marcozz 2017) $\bullet \ \sigma = (\sigma_{\beta}^{\alpha})$ is an invertible matrix.

 Similar SPDE appears to discuss motion of loops on a manifold, cf. Funaki 1992, Bruned-Gabriel-Hairer--Zambotti 2019; Dirichlet form approach, Röckner--Wu-Zhu-Zhu 2020, Chen-Wu-Zhu-Zhu 2020+.

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + \sigma^{\alpha}_{\beta} \dot{W}^{\beta} \qquad (\sigma, \Gamma)_{KPZ}$$

Since σ is invertible, $\hat{h} = \sigma^{-1}h$ transforms $(\sigma, \Gamma)_{KPZ}$ to $(I, \hat{\Gamma} = \sigma \circ \Gamma)_{KPZ}$, where

$$(\sigma \circ \Gamma)^{\alpha}_{\beta\gamma} := (\sigma^{-1})^{\alpha}_{\alpha'} \Gamma^{\alpha'}_{\beta'\gamma'} \sigma^{\beta'}_{\beta} \sigma^{\gamma'}_{\gamma}.$$

Thus, the KPZ equation with $\sigma = I$ is considered as a canonical form.

- The operation (coordinate change) Γ → σ ∘ Γ keeps the bilinearity, but not the trilinearity.
- ▶ Thus, in the following, we assume $\sigma = I$. In Section 8, we remark how the results are modified for general σ .

Motivation to study the coupled KPZ equation

- Coupled KPZ equation appears in the study of nonlinear fluctuating hydrodynamics for a system with *d*-conserved quantities by taking 2nd order terms into account. The problem goes back to Landau. cf. Spohn-Ferrari-Sasamoto-Stoltz JSP 2013, '14, '15.
- If some of Γ^α_{βγ} are degenerate, then the solution involves different (anomalous) scalings such as Diffusive=OU, KPZ, ⁵/₃, ³/₂-Lévy scalings (they look different behavior in time-correlation functions).

Coupled KPZ equation with additional drifts

Consider the equation with additional drift c^α ∈ ℝ for each component assuming σ = I:

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + c^{\alpha} \partial_x h^{\alpha} + \dot{W}^{\alpha}.$$

 This equation can be easily reduced to the case c^α = 0.
 Indeed, if (h^α) is a solution of this equation, h^α(t, x) := h^α(t, x - c^αt) satisfies the same equation with c^α = 0 and a new noise W^α(t, x) := W^α(t, x - c^αt), which is also an ℝ^d-valued space-time Gaussian white noise. Why trilinear condition (T) plays a role: one reason

For simplicity, consider (σ, Γ)_{KPZ} without noise and at Burgers level for u^α := ∂_xh^α:

$$\partial_t u^{\alpha} = \frac{1}{2} \partial_x^2 u^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x (u^{\beta} u^{\gamma}).$$

If (T) is satisfied, the usual method of energy estimate works:

$$\begin{split} \partial_t \|u(t)\|_{L^2(\mathbb{T})}^2 &= \partial_t \sum_{\alpha} \int_{\mathbb{T}} (u^{\alpha})^2 dx \\ &= 2 \sum_{\alpha} (u^{\alpha}, \partial_t u^{\alpha})_{L^2} \\ &= \sum_{\alpha} (u^{\alpha}, \partial_x^2 u^{\alpha})_{L^2} + \sum_{\alpha, \beta, \gamma} \Gamma^{\alpha}_{\beta\gamma} (u^{\alpha}, \partial_x (u^{\beta} u^{\gamma}))_{L^2} \\ &= - \|\partial_x u\|_{L^2(\mathbb{T})}^2 \leq 0, \end{split}$$

by integration by parts.

The term with Γ vanishes by interchanging the role of α, β, γ if Γ satisfies (T) (→ see next page).

$$\begin{split} \sum_{\alpha,\beta,\gamma} \Gamma^{\alpha}_{\beta\gamma} \big(u^{\alpha}, \partial_x (u^{\beta} u^{\gamma}) \big)_{L^2} &= \sum_{\alpha,\beta,\gamma} \Gamma^{\alpha}_{\beta\gamma} \int_{\mathbb{T}} u^{\alpha} \cdot \partial_x (u^{\beta} u^{\gamma}) dx \\ &= -\sum_{\alpha,\beta,\gamma} \Gamma^{\alpha}_{\beta\gamma} \int_{\mathbb{T}} \partial_x u^{\alpha} \cdot u^{\beta} u^{\gamma} dx \\ &= 0, \end{split}$$

since $(LHS) = 2 \times (-RHS)$.

 This is similar to Navier-Stokes equation (or Euler equation).

2. Two approximating equations, local well-posedness, invariant measure

- We will extend the results for scalar-valued equation in Lecture No 3 (i.e. d = 1) to coupled equation.
- We replace the noise by smeared one. As in Lecture No 3, take a symmetric convolution kernel: $\eta^{\varepsilon}(x) := \frac{1}{\varepsilon} \eta(\frac{x}{\varepsilon}) \xrightarrow[\varepsilon \downarrow 0]{\varepsilon \downarrow 0} \delta_{0}.$

• Approximating equation-1 (simple): For $h^{\alpha} = h^{\varepsilon, \alpha}$,

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \dot{W}^{\alpha} * \eta^{\varepsilon},$$
(3)

where c^ε = 1/ε ||η||²_{L²(ℝ)} - 1 (= O(1/ε)) and B^{ε,βγ} (= O(log 1/ε) in general) is another renormalization factor.
The renormalization B^{ε,βγ} was unnecessary in the scalar-valued case, and also in coupled case under (T). • Approx. equation-2 (suitable to find invariant measure): For $\tilde{h}^{\alpha} = \tilde{h}^{\varepsilon,\alpha}$

 $\partial_t \tilde{h}^{\alpha} = \frac{1}{2} \partial_x^2 \tilde{h}^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x \tilde{h}^{\beta} \partial_x \tilde{h}^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \dot{W}^{\alpha} * \eta^{\varepsilon},$ (4)

with a renormalization factor $\tilde{B}^{\varepsilon,\beta\gamma}$, where $\eta_2^{\varepsilon} = \eta^{\varepsilon} * \eta^{\varepsilon}$.

- The idea behind (4) is the fluctuation-dissipation relation.
- Renormalization factor $c^{\varepsilon} \equiv c_{\epsilon}^{\mathbf{V}} = O(\frac{1}{2})$ is from 2nd order terms in the expansion, while Renormalization factors $B^{\varepsilon,\beta\gamma}$ and $\tilde{B}^{\varepsilon,\beta\gamma} = O(\log \frac{1}{2})$ are from 4th order terms involving $C^{\varepsilon} = c_{\epsilon}^{\mathbf{W}}, D^{\varepsilon} = c_{\epsilon}^{\mathbf{W}}$ (see \rightarrow Section 7). For the solution of (4) (with $\tilde{B} = 0$), F (Yor volume, 2015) showed (on \mathbb{R}), under the trilinear condition (T), the infinitesimal invariance of the distribution of $B * \eta^{\varepsilon}(x)$, where B is the \mathbb{R}^d -valued two-sided Brownian motion (with $x \in \mathbb{R}$) (see \rightarrow Thm 2-(2)).

- Our goal is to study the limits of the solutions of Approx-Eq-1 (3) and Approx-Eq-2 (4) as ε ↓ 0.
- As we saw, when d = 1 and Γ = σ = 1, the solution of
 (3) with B^ε = 0 converges as ε ↓ 0 to the Cole-Hopf solution h_{CH} of the KPZ equation, while the solution of
 (4) with B^ε = 0 converges to h_{CH} + ¹/₂₄t.
- Note that log-renormalization factors do not appear, when d = 1.
- The method of F-Quastel is based on the Cole-Hopf transform, which is not available for the coupled equation with multi-components in general.
- Instead, we use the paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015.
- In particular, we study the difference between these two limits.

Summary of results of F-Hoshino 2017

- Convergence of h^ε and h̃^ε and Local well-posedness of coupled KPZ eq (σ, Γ)_{KPZ} by applying paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015. (Cole-Hopf doesn't work for coupled eq. in general. In 1D, we used it and showed Boltzmann-Gibbs principle, FQ 2015.)
- ► Approx-Eq-2 fits to identify invariant measure under (T).
- Global solvability for a.s.-initial data under an invariant measure under (T) (similar to Da Prato-Debussche).
- Combine this with strong Feller property (i.e. continuity of probability in initial value, Hairer-Mattingly 2016).
- Global well-posedness (existence, uniqueness) under (T) Ergodicity and uniqueness of invariant measure.
- A priori estimates for Approx-Eq-1 (3) under (T).

Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{\kappa PZ}$ (we take $\sigma = I$): $\mathcal{C}^{\kappa} = (\mathcal{B}^{\kappa}_{\infty,\infty}(\mathbb{T}))^d$, $\kappa \in \mathbb{R}$ denotes \mathbb{R}^d -valued (Hölder-)Besov space on \mathbb{T} (see \rightarrow Sect 7).

Theorem 1

(1) Assume $h_0 \in C^{0+} := \bigcup_{\delta > 0} C^{\delta}$, then a unique solution h^{ε} of (3) exists up to some $T^{\varepsilon} \in (0, \infty]$ and $\overline{T} = \liminf_{\varepsilon \downarrow 0} T^{\varepsilon} > 0$ holds. With a proper choice of $B^{\varepsilon,\beta\gamma}$, h^{ε} converges in prob. to some h in $C([0, T], C^{\frac{1}{2} - \delta})$ for every $\delta > 0$ and $0 < T \leq \overline{T}$.

(2) Similar result holds for the solution \tilde{h}^{ε} of (4) with some limit \tilde{h} . Under proper choices of $B^{\varepsilon,\beta\gamma}$ and $\tilde{B}^{\varepsilon,\beta\gamma}$, we can actually make $h = \tilde{h}$.

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \dot{W}^{\alpha} * \eta^{\varepsilon}$$
(3)

$$\partial_t \tilde{h}^{\alpha} = \frac{1}{2} \partial_x^2 \tilde{h}^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x \tilde{h}^{\beta} \partial_x \tilde{h}^{\gamma} - c^{\varepsilon} \delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \dot{W}^{\alpha} * \eta^{\varepsilon}$$
(4)

 C^{κ} is defined in Fourier analytic way. In particular, for $\kappa \in (0, \infty) \setminus \mathbb{N}$, $C^{\kappa} = \{ u \in C_b^k; \partial_x^k u \text{ is } (\kappa - k) \text{-Hölder continuous} \}$, where $k = [\kappa]$ is the integer part of κ . Note that for $\kappa \in \mathbb{N}$, $C_b^{\kappa} \subsetneq C^{\kappa}$. Results under (T): Unnecessity of Log-Renormalizations, Invariant measure = Wiener measure, difference of two limits

Theorem 2

Assume the trilinear condition (T).

(1) Then, $B^{\varepsilon,\beta\gamma}, \tilde{B}^{\varepsilon,\beta\gamma} = O(1)$ so that the solutions of (3) with B = 0 and (4) with $\tilde{B} = 0$ converge. In the limit, we have

where

$$egin{aligned} & ilde{h}^lpha(t,x) = h^lpha(t,x) + c^lpha t, \quad 1 \leq lpha \leq d, \ &c^lpha = rac{1}{24}\sum_{\gamma_1,\gamma_2} \Gamma^lpha_{eta\gamma}\Gamma^eta_{\gamma_1\gamma_2} \Gamma^\gamma_{\gamma_1\gamma_2}. \end{aligned}$$

(2) Moreover, the distribution of $(\partial_x B)_{x\in\mathbb{T}}$ (B = periodicBM) is invariant under the tilt process $u = \partial_x h$ (or periodic Wiener measure on the quotient space $C^{\frac{1}{2}-\delta}/\sim$ where $h \sim h + c$).

Proofs of Theorems 1 and 2 \rightarrow Section 7

3. Global existence for a.s.-initial values under stationary meas

 We assume (T) and initial value h(0) is given by h(0,0) = 0 and u(0) := ∂_xh(0) = (∂_xB)_{x∈T} (i.e., stationary). Then, similarly to Da Prato-Debussche (2002, for 2D stochastic Navier-Stokes equation; Galerkin approximation), u = ∂_xh satisfies

Theorem 3 For every $T > 0, p \ge 1, \delta > 0$, we have $E \begin{bmatrix} \sup_{t \in [0,T]} \|u(t;u_0)\|_{-\frac{1}{2}-\delta}^p \end{bmatrix} < \infty$

In particular, $T_{survival}(u(0)) = \infty$ for a.a.-u(0).

Global existence for all given u(0): In the scalar-valued case, this is immediate, since the limit is Cole-Hopf solution. Hairer-Mattingly 2016 proved this for coupled equation by showing the strong Feller property on C^{α-1}, α ∈ (0, ¹/₂).

► For Approx-Eq-1 (3), under (T), we have

$$\sum_{lpha,eta,\gamma} \Gamma^{lpha}_{eta\gamma} \int_{\mathbb{T}} u^{lpha} \partial_x (u^{eta} u^{\gamma}) dx = 0.$$

This shows a priori estimate and global well-posedness for (3) at least if $h(0) \in H^1(\mathbb{T})$.

- ► Therefore, Theorem 1-(1) holds globally in time if h(0) ∈ H¹(T).
- We expect Theorem 1-(2) also holds globally in time (by showing strong Feller property for (4)).

4. Ertaş and Kardar's example

Unnecessity of Log-Renormalizations and $^\exists \mathsf{Invariant}\xspace$ measure without (T)

• Example (Ertaş and Kardar 1992: d = 2)

$$\partial_t h^1 = \frac{1}{2} \partial_x^2 h^1 + \frac{1}{2} \{ \lambda_1 (\partial_x h^1)^2 + \lambda_2 (\partial_x h^2)^2 \} + \dot{W}^1,$$

$$\partial_t h^2 = \frac{1}{2} \partial_x^2 h^2 + \lambda_1 \partial_x h^1 \partial_x h^2 + \dot{W}^2$$
(EK)

 $\begin{array}{l} \label{eq:relation} \Gamma \text{ satisfies (T) only when } \lambda_1 = \lambda_2 \ (\Gamma_{11}^1 = \lambda_1, \Gamma_{22}^1 = \lambda_2, \Gamma_{12}^2 = \lambda_1). \end{array} \\ \\ \bullet \quad \text{However, under the transform } \hat{h} = sh \text{ with } \\ s = \left(\begin{matrix} \lambda_1 & (\lambda_1 \lambda_2)^{1/2} \\ \lambda_1 & -(\lambda_1 \lambda_2)^{1/2} \end{matrix} \right), \ (\text{EK}) \text{ is transformed into } \\ & \partial_t \hat{h}^\alpha = \frac{1}{2} \partial_x^2 \hat{h}^\alpha + \frac{1}{2} (\partial_x \hat{h}^\alpha)^2 + s_\beta^\alpha \dot{W}^\beta. \end{aligned} \tag{EK}_T$

i.e. nonlinear term is decoupled, but noise is coupled.
Namely, Γ̂ = s ∘ Γ in (EK_T) is given by Γ̂^α_{αα} = 1, = 0 otherwise, so that Γ̂ satisfies (T). But, (EK) is the canonical form (with σ = I) and not (EK_T).

- (EK) doesn't satisfy (T).
- However, since nonlinear term is decoupled in (EK_T) , the Cole-Hopf transform $Z^{\alpha} = \exp \hat{h}^{\alpha}$ works for each component so that global well-posedness follows.

In particular, log-renormalization factors are unnecessary.

- Invariant measure exists whose marginals are Wiener measures, but the joint distribution of such invariant measure is unclear (presumably non-Gaussian).
- Indeed, because of the tightness of marginals, Cesàro mean μ_T = ¹/_T ∫₀^T μ(t)dt of the distributions μ(t) of ∂_x ĥ(t) having an initial distribution ⊗_αμ_α is tight on the space C<sup>-¹/₂-/~, so that the limit (along subsequence) of μ_T as T → ∞ is an invariant measure. (Recall h ~ ĥ if h = ĥ + c) (cf. Liggett, 1985, p.11)
 </sup>

5. Role of trilinear condition (T)

Reason of unnecessity of log-renormalization factors

Formulas of Renormalization factors B^{ε,βγ}, B^{ε,βγ} (→see Section 7):

 $B^{\varepsilon,\beta\gamma} = F^{\beta\gamma}C^{\varepsilon} + 2G^{\beta\gamma}D^{\varepsilon}, \ \tilde{B}^{\varepsilon,\beta\gamma} = F^{\beta\gamma}\tilde{C}^{\varepsilon} + 2G^{\beta\gamma}\tilde{D}^{\varepsilon},$

where

$$\begin{split} F^{\beta\gamma} &= \Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma}_{\gamma_{1}\gamma_{2}}, \ G^{\beta\gamma} = \Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma_{1}}_{\gamma\gamma_{2}}, \\ C^{\varepsilon} &+ 2D^{\varepsilon} = -\frac{1}{12} + O(\varepsilon), \quad \tilde{C}^{\varepsilon} + 2\tilde{D}^{\varepsilon} = 0, \end{split}$$

$$(C^{arepsilon}=c^{oldsymbol{arepsilon}}_{\epsilon}, D^{arepsilon}=c^{oldsymbol{arepsilon}}_{\epsilon}$$
 from Wiener expansion)

- Trilinear condition (T) \iff "F = G" $\iff B, \tilde{B} = O(1)$
- But, for unnecessity of log-renormalization factors, what we really need is: " ΓB , $\Gamma \tilde{B} = O(1)$ ". This holds if $\Gamma F = \Gamma G$.

$$\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \dot{W}^{\alpha}*\eta^{\varepsilon}$$
(3)
$$\partial_{t}\tilde{h}^{\alpha} = \frac{1}{2}\partial_{x}^{2}\tilde{h}^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}\tilde{h}^{\beta}\partial_{x}\tilde{h}^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma})*\eta_{2}^{\varepsilon} + \dot{W}^{\alpha}*\eta^{\varepsilon}$$
(4)

• " $\Gamma F = \Gamma G$ " holds iff Γ satisfies the condition

$$\Gamma^{\alpha}_{\beta\gamma}\Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma}_{\gamma_{1}\gamma_{2}} = \Gamma^{\alpha}_{\beta\gamma}\Gamma^{\beta}_{\gamma_{1}\gamma_{2}}\Gamma^{\gamma_{1}}_{\gamma\gamma_{2}}, \quad \forall \alpha$$

This holds under (T) and also for Ertaş-Kardar's example.
We can summarize as

$$\begin{array}{l} (T) \iff ``F = G'' \\ \implies ``\Gamma F = \Gamma G'' \\ \Leftrightarrow \text{Unnecessity of log-renormalization factors} \end{array}$$

Infinitesimal invariance (to explain the role of (T) heuristically)

L = L₀ + A: (pre) generator of coupled KPZ eq (σ = I).
 L₀ is the generator of OU (Ornstein-Uhlenbeck)-part, while A is that of nonlinear part (we ignore renormalization factors):

$$\mathcal{L}_{0}\Phi = \frac{1}{2}\sum_{\alpha} \left\{ \int_{\mathbb{T}} D_{h^{\alpha}(x)}^{2} \Phi \, dx + \int_{\mathbb{T}} \ddot{h}^{\alpha}(x) D_{h^{\alpha}(x)} \Phi \, dx \right\}$$
$$\mathcal{A}\Phi = \frac{1}{2}\sum_{\alpha,\beta,\gamma} \Gamma_{\beta\gamma}^{\alpha} \int_{\mathbb{T}} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) D_{h^{\alpha}(x)} \Phi \, dx,$$

where D, D^2 denote 1st and 2nd Fréchet derivatives, and $\dot{h}^{\beta}(x) := \partial_x h^{\beta}(x), \ddot{h}^{\alpha}(x) := \partial_x^2 h^{\alpha}(x).$

- In Lecture No 2, we wrote down the generator of finite-dimensional SDE by applying Itô's formula.
- SPDE is an infinite-dimensional version of SDE with infinite-dimensional BM W(t, x) (recall it was constructed by a formal Fourier series). This generates the infinite-dimensional Laplacian ¹/₂ Σ_α ∫_T D²_{h^α(x)} · dx.

- Since h is not differentiable, the argument is heuristic.
- The infinitesimal invariance $(ST)_{\mathcal{L}}$ for ν $\underset{\text{def}}{\longleftrightarrow}$ " $\int \mathcal{L} \Phi d\nu = 0, \forall \Phi$ "
- If the invariant measure ν is Gaussian, (ST)_{L0} is the condition for 2nd order Wiener chaos of Φ, while (ST)_A is that for 3rd order Wiener chaos of Φ. Therefore, the condition (ST)_L is separated into two conditions:

$$(ST)_{\mathcal{L}} \iff (ST)_{\mathcal{L}_0} + (ST)_{\mathcal{A}}$$

\$\mathcal{L}_0\$ is (well-known) OU-operator and \$(ST)_{\mathcal{L}_0}\$ determines \$\nu\$ = Wiener measure.

Trilinear condition (T) \iff Wiener meas ν satisfies $(ST)_{\mathcal{A}}$

We have the integration-by-parts formula for ν = Wiener measure (actually we need to discuss at ε-level, since h is not differentiable at ε = 0):

$$\int {\cal A} \Phi d
u = -rac{1}{2} {\sf \Gamma}^lpha_{eta\gamma} {\sf c}^{eta\gamma}_lpha,$$

where

$$c^{eta\gamma}_lpha\equiv c^{eta\gamma}_lpha(\Phi):=E^
u\left[\Phi\int_{\mathbb{T}}\dot{h}^eta(x)\dot{h}^\gamma(x)\ddot{h}^lpha(x)dx
ight].$$

 Indeed, heuristically, ν ∝ e^{-¹/₂|*h*|²} dh and D_{h^α(x)}e^{-¹/₂|*h*|²} = *h*^α(x)e^{-¹/₂|*h*|²}.

 c has the following properties: (1) (bilinearity) c^{βγ}_α = c^{γβ}_α (2) (integration by parts on T) c^{βγ}_α + c^{γα}_β + c^{αβ}_γ = 0

 In particular, c^{αα}_α = 0,[∀] α. When d = 1, this implies (ST)_A: ∫ AΦdν = 0 for [∀]Φ.
 ▶ If Γ satisfies (T), by (2) for $c_{\alpha}^{\beta\gamma}$

$$\Gamma^{lpha}_{eta\gamma}c^{eta\gamma}_{lpha}=rac{1}{3}\Gamma^{lpha}_{eta\gamma}(c^{eta\gamma}_{lpha}+c^{\gammalpha}_{eta}+c^{lphaeta}_{\gamma})=0$$

Therefore, (T) implies $(ST)_{\mathcal{A}}$.

• Conversely, $(ST)_{\mathcal{A}}$ implies (T). In fact, by (2) for $c_{\alpha}^{\beta\gamma}$

$$0 = \int_{(ST)_{\mathcal{A}}} -2 \int \mathcal{A} \Phi d\nu = \Gamma^{\alpha}_{\beta\gamma} c^{\beta\gamma}_{\alpha}$$
$$= \sum_{\alpha \neq \beta} (\Gamma^{\alpha}_{\beta\beta} - \Gamma^{\beta}_{\alpha\beta}) c^{\beta\beta}_{\alpha} + 2 \sum_{\alpha > \beta > \gamma} (\Gamma^{\alpha}_{\beta\gamma} - \Gamma^{\gamma}_{\alpha\beta}) c^{\beta\gamma}_{\alpha}$$
$$+ 2 \sum_{\beta > \alpha > \gamma} (\Gamma^{\alpha}_{\beta\gamma} - \Gamma^{\gamma}_{\alpha\beta}) c^{\beta\gamma}_{\alpha}$$

and $c_{\alpha}^{\beta\beta}, c_{\alpha}^{\beta\gamma}(\alpha > \beta > \gamma, \beta > \alpha > \gamma)$ move freely.

► Ertaş-Kardar's example does not satisfy (T), but has an invariant measure. This should be "non-separating class" (i.e. (ST)_L ⇐⇒ (ST)_{L0} + (ST)_A does not hold) and the invariant measure is presumably non-Gaussian (but has Gaussian marginal).

6. Extensions of Ertaş-Kardar's example

We give extensions to *d*-component system.

Extension-1: nonlinear term decoupling to scalar-KPZ eq's (but noise term is correlated)

If Γ has the form

$${\sf \Gamma}^lpha_{eta\gamma} = \sum_{lpha'} ({\it s}^{-1})^lpha_{lpha'} {\it s}^{lpha'}_eta {\it s}^{lpha'}_\gamma,$$

with invertible matrix s, the nonlinear term of the coupled KPZ equation is decoupled for $\hat{h}^{\alpha} = s^{\alpha}_{\beta} h^{\beta}$

$$\partial_t \hat{h}^{\alpha} = \frac{1}{2} \partial_x^2 \hat{h}^{\alpha} + \frac{1}{2} (\partial_x \hat{h}^{\alpha})^2 + s^{\alpha}_{\beta} \sigma^{\beta}_{\gamma} \dot{W}^{\gamma}.$$
 (EK)_{ext}

• The above Γ may not satisfy the trilinear condition.

- However, since nonlinear term is decoupled in (EK)_{ext}, the Cole-Hopf transform Z^{\alpha} = exp h^{\alpha} works for each component so that global well-posedness (global existence of h in time) follows.
- Moreover, Log-renormalization factors are unnecessary.
- Invariant measure exists whose marginals are Wiener measures (with diffusion coefficients), but the joint distribution of such invariant measure is unclear.

Extension-2: nonlinear term decoupling to coupled KPZ eq's satisfying (T) (but noise term is correlated)

• Consider KPZ (
$$\sigma = I, \Gamma$$
).

• $s \circ \Gamma$ is decoupled under Δ , i.e., $(s \circ \Gamma)^{\alpha}_{\beta\gamma} = 0$ if $\{\alpha, \beta, \gamma\} \not\subset I_i$ for $\forall i$ • $(\sigma_i, s \circ \Gamma|_{I_i})$ are trilinear i.e., $\sigma_i \in GL(|I_i|)$ and $\sigma_i \circ (s \circ \Gamma|_{I_i})$ satisfy (T), where $\sigma_i = \sqrt{(\sum_{\gamma=1}^d s^{\alpha}_{\gamma} s^{\beta}_{\gamma})_{\alpha,\beta \in I_i}}$ and $\Gamma|_{I_i} = (\Gamma^{\alpha}_{\beta\gamma})|_{\alpha,\beta,\gamma \in I_i}$.

Γ does not satisfy (T) in general.

One can prove infinitesimal invariance for subclasses of Φ . (e.g., reflection-inv or shift-inv for each component)

Conjecture: For every Γ , invariant measure exists.

7. Proof of Theorems 1 and 2

Besov space and paraproducts

First we quickly introduce Besov space and paraproducts due to Fourier analysis. Basic reference is Gubinelli-Imkeller-Perkowski, Forum Math., Pi, **3**, 2015.

Dyadic partition of unity

• supp $ho_i \cap$ supp $ho_j = \emptyset$ if $|i - j| \ge 2$

Littlewood-Paley blocks

Bony's paraproducts scalar-valued case

▶ For two distributions $f, g \in S'(\mathbb{T})$

▶ $f \prec g := \sum_{i,j=-1}^{\infty} \Delta_i f \Delta_j g$: paraproduct ▶ $f \circ g := \sum_{i,j=-1}^{\infty} \Delta_i f \Delta_j g$: resonant term

Littlewood-Paley decomposition of product fg:

$$fg = f \prec g + f \circ g + g \prec f.$$

(Bony's estimates)

•
$$a \lesssim b$$
 means $a \leq \exists C b$

- For $\alpha > 0$ and $\beta \in \mathbb{R}$, $\|u \prec v\|_{C^{\beta}} \lesssim \|u\|_{L^{\infty}} \|v\|_{C^{\beta}}$.
- For $\alpha \neq 0$ and $\beta \in \mathbb{R}$, $\|u \prec v\|_{C^{(\alpha \land 0)+\beta}} \lesssim \|u\|_{C^{\alpha}} \|v\|_{C^{\beta}}$.
- For $\alpha + \beta > 0$, $||u \circ v||_{C^{\alpha+\beta}} \lesssim ||u||_{C^{\alpha}} ||v||_{C^{\beta}}$.
- Mollifier estimates (how mollifier improves regularity, convergence as ε ↓ 0), Schauder estimates (how parabolic operator improves regularity), commutator estimates (commutator makes sense, even if each term has no meaning)

Driving terms $\mathbb H,$ local-in-time solvability and continuity in $\mathbb H$

We think of the noise as the leading term and the nonlinear term as its perturbation by putting (small parameter) a > 0 in front of the nonlinear term, though we eventually take a = 1.

$$\mathcal{L}h^{lpha} = rac{a}{2}\Gamma^{lpha}_{\beta\gamma}\partial_{x}h^{eta}\partial_{x}h^{\gamma} + \dot{W}^{lpha},$$

where $\mathcal{L} = \partial_t - \frac{1}{2} \partial_x^2$.

• We expand the solution *h* of the coupled KPZ eq $(I, \Gamma)_{KPZ}$ in *a*: $h^{\alpha} = \sum_{k=0}^{\infty} a^k h_k^{\alpha}$. Then, we have

$$\sum_{k=0}^{\infty} a^{k} \mathcal{L} h_{k}^{\alpha} = \dot{W}^{\alpha} + \frac{a}{2} \sum_{k_{1},k_{2}=0}^{\infty} a^{k_{1}+k_{2}} \Gamma^{\alpha}_{\beta\gamma} \partial_{x} h_{k_{1}}^{\beta} \partial_{x} h_{k_{2}}^{\gamma}.$$

Comparing the terms of order a⁰, a¹, a², a³, ... in both sides and noting the bilinearity condition (B), we obtain the followings:

$$\mathcal{L}h_{0}^{\alpha} = \dot{W}^{\alpha}, \\ \mathcal{L}h_{1}^{\alpha} = \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}\partial_{x}h_{0}^{\beta}\partial_{x}h_{0}^{\gamma}, \\ \mathcal{L}h_{2}^{\alpha} = \Gamma_{\beta\gamma}^{\alpha}\partial_{x}h_{0}^{\beta}\partial_{x}h_{1}^{\gamma}, \\ \mathcal{L}h_{3}^{\alpha} = \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}\partial_{x}h_{1}^{\beta}\partial_{x}h_{1}^{\gamma} + \Gamma_{\beta\gamma}^{\alpha}\partial_{x}h_{0}^{\beta}\partial_{x}h_{2}^{\gamma}, \\ \cdots$$

h₀^α ∈ C^{1/2−} is linear OU (Ornstein-Uhlenbeck)-process and well-defined:

$$egin{aligned} h_0^lpha(t,x) &= \int_0^t \int_{\mathbb{T}} p(t-s,x,y) dW^lpha(s,y) dy \ &+ \int_{\mathbb{T}} h_0^lpha(0,y) p(t,x,y) dy \end{aligned}$$

where p is the heat kernel on \mathbb{T} .

- To define h_1^{α} , we need to define the product $\partial_x h_0^{\beta} \partial_x h_0^{\gamma}$ (product of two generalized functions), but this is ill-defined.
- ► Indeed, h_0^{α} is a 1st order Wiener functional (chaos) of \dot{W} , so that $\partial_x h_0^{\beta} \partial_x h_0^{\gamma}$ is considered as a sum of (2nd+0th) order Wiener chaos of \dot{W} .
- To define h^α₁, similarly as we did in Lecture No 3, we take only 2nd order part and cut the diverging 0th order part.
- ► This procedure corresponds to the renormalization (→ see below).
- ► Assume $h_1^{\alpha} \in C^{1-}$ (and $\in \mathcal{H}_2$) is defined in the above sense (note $-\frac{1}{2} \frac{1}{2} + 2 = 1$, +2 is by Schauder effect).

►
$$h_2^{lpha} \in C^{rac{3}{2}-}$$
 (and $\in \mathcal{H}_3 \oplus \mathcal{H}_1$) (note $-rac{1}{2} + 0 + 2 = rac{3}{2}$).

- We denote h_0^{α} , h_1^{α} , h_2^{α} with stationary initial values by H_0^{α} , H_1^{α} , H_2^{α} and call driving terms.
- After defining H_0^{α} , H_1^{α} , H_2^{α} in the above way, the KPZ equation for $h^{\alpha} = H_0^{\alpha} + H_1^{\alpha} + H_2^{\alpha} + h_{\geq 3}^{\alpha}$ can be rewritten as $\mathcal{L}h_{\geq 3}^{\alpha} = \Phi^{\alpha} + \mathcal{L}h_3^{\alpha}$, (5)

where $\Phi^{\alpha} = \Phi^{\alpha}(H_0, H_1, H_2, h_{\geq 3})$ is given by

$$\begin{split} \Phi^{\alpha} = & \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta}_{\geq 3} \partial_x H^{\gamma}_0 + \Gamma^{\alpha}_{\beta\gamma} (\partial_x H^{\beta}_2 + \partial_x h^{\beta}_{\geq 3}) \partial_x H^{\gamma}_1 \\ &+ \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x H^{\beta}_2 + \partial_x h^{\beta}_{\geq 3}) (\partial_x H^{\gamma}_2 + \partial_x h^{\gamma}_{\geq 3}). \end{split}$$

► To define h^α_{≥3}, we need to introduce four more objects as driving terms:

$$\begin{split} H_{3,1}^{\beta\gamma} &= \frac{1}{2} \partial_x H_1^{\beta} \partial_x H_1^{\gamma}, \\ H_{3,3}^{\alpha} &= \text{solution of } ``\mathcal{L} H_{3,3}^{\alpha} &= \partial_x H_0^{\alpha}'', \quad H_{3,4}^{\beta\gamma} &= \partial_x H_{3,3}^{\beta} \circ \partial_x H_0^{\gamma}. \end{split}$$

First two terms H^{βγ}_{3,1}, H^{βγ}_{3,2} (∈ H₄ ⊕ H₂) appear in h^α₃.
H^α_{3,3}, H^{βγ}_{3,4} appear to solve (5), to take care of ∂_xH^γ₀ in Φ^α.

• $\mathbb{H} := (H_0^{\alpha}, H_1^{\alpha}, H_2^{\alpha}, H_{3,1}^{\beta\gamma}, H_{3,2}^{\beta\gamma}, H_{3,3}^{\alpha}, H_{3,4}^{\beta\gamma})$ are called driving terms. The class of driving terms $\mathcal{H}_{KPZ}^{\kappa}$ is defined for $\kappa \in (\frac{1}{3}, \frac{1}{2})$ (i.e. $\kappa = \frac{1}{2}$ -) as follows:

$$\begin{aligned} \mathcal{H}_{KPZ}^{\kappa} = & C([0, T], \mathcal{C}^{\kappa}) \times C([0, T], \mathcal{C}^{2\kappa}) \\ & \times \{ C([0, T], \mathcal{C}^{\kappa+1}) \cap C^{\frac{1-\kappa}{2}}([0, T], \mathcal{C}^{2\kappa}) \} \\ & \times C([0, T], \mathcal{C}^{2\kappa-1}) \times C([0, T], \mathcal{C}^{2\kappa-1}) \\ & \times C([0, T], \mathcal{C}^{\kappa+1}) \times C([0, T], \mathcal{C}^{2\kappa-1}). \end{aligned}$$

- Once III is given, the rest can be analyzed by deterministic argument.
- The following theorem (deterministic part) is due to the paracontrolled calculus and fixed point theorem.

Theorem 4

Let $\mathbb{H} \in \mathcal{H}_{KPZ}^{\kappa}$ be given. Then, the above equation (5) for $h_{\geq 3}$ is solvable (in a proper space controlled by driving terms) up to time $T = T(\|h_{\geq 3}(0)\|_{\mu+1}, \|\mathbb{H}\|), \mu \in (\frac{1}{3}, \kappa)$ and the solution map $h = S(h_{\geq 3}(0), \mathbb{H})$ is continuous in $(h_{\geq 3}(0), \mathbb{H})$.

Renormalizations

(1) Coupled KPZ Approximating equation-1

By replacing W
^α by W
^α * η^ε and introducing the renormalization factors c^εδ^{βγ}, C^{βγ}, D^{βγ}, we have the expansion for the coupled KPZ approx. eq-1 (simple) (3):

$$\begin{split} \mathcal{L}h_{0}^{\alpha} &= \dot{W}^{\alpha} * \eta^{\varepsilon}, \\ \mathcal{L}h_{1}^{\alpha} &= \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}(\partial_{x}h_{0}^{\beta}\partial_{x}h_{0}^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma}), \\ \mathcal{L}h_{2}^{\alpha} &= \Gamma_{\beta\gamma}^{\alpha}\partial_{x}h_{0}^{\beta}\partial_{x}h_{1}^{\gamma}, \\ \mathcal{L}h_{3}^{\alpha} &= \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}(\partial_{x}h_{1}^{\beta}\partial_{x}h_{1}^{\gamma} - C^{\varepsilon,\beta\gamma}) + \Gamma_{\beta\gamma}^{\alpha}(\partial_{x}h_{0}^{\beta}\partial_{x}h_{2}^{\gamma} - D^{\varepsilon,\beta\gamma}). \end{split}$$

► See next pages for renormalization constants c^ε, C^{ε,βγ}, D^{ε,βγ}.

From this, we see that $h^{\varepsilon} = (h^{\varepsilon,\alpha}) := S(h_{\geq 3}(0), \mathbb{H}^{\varepsilon})$ solves

$$\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma} - C^{\varepsilon,\beta\gamma} - 2D^{\varepsilon,\beta\gamma}) + W^{\alpha}*\eta^{\varepsilon},$$

i.e., (3) with
$$B^{\varepsilon,\beta\gamma} = C^{\varepsilon,\beta\gamma} + 2D^{\varepsilon,\beta\gamma}.$$

Theorem 4 (especially, continuity in 𝔄) combined with the convergence of driving terms 𝔄^ε (multiple Wiener integrals in 𝔅^α's cut 0th order terms) to 𝔄 shows Theorem 1-(1).

- We especially see how c^{ε} is determined.
- The stationary solution $h_0^{\alpha} \in C^{\frac{1}{2}-}$ of the first equation " $\mathcal{L}h_0^{\alpha} = \dot{W}^{\alpha} * \eta^{\varepsilon}$ " is given by

$$h_0^{\alpha}(t,x) = \int_{-\infty}^t \int_{\mathbb{T}} p(t-s,x,y) d(W^{\alpha} * \eta^{\varepsilon})(s,y) dy$$

where p is the heat kernel on \mathbb{T} . $\dot{W}(t,x)$ is extended for t < 0 as an \mathbb{R}^d -valued space-time Gaussian white noise on $\mathbb{R} \times \mathbb{T}$.

• The renormalization constant c^{ε} is defined by

$$c^{\varepsilon} = E[(\partial_x h_0^{\alpha}(t,x))^2].$$

Note $E[\partial_x h_0^{\beta}(t,x)\partial_x h_0^{\gamma}(t,x)] = 0$ if $\beta \neq \gamma$. Since

$$\partial_{x}h_{0}^{\alpha}(t,x) = \int_{-\infty}^{t}\int_{\mathbb{T}}dy\int_{\mathbb{T}}\partial_{x}p(t-s,x,y)\eta^{\varepsilon}(y-z)dW^{\alpha}(s,z)dz,$$

we have by Itô isometry

$$c^{\varepsilon} = \int_{-\infty}^{t} ds \int_{\mathbb{T}} dz \left(\int_{\mathbb{T}} \partial_{x} p(t-s,x,y) \eta^{\varepsilon}(y-z) dy \right)^{2}$$

Thus, using Chapman-Kolmogorov identity,

$$\begin{split} c^{\varepsilon} &= \int_{0}^{\infty} ds \int_{\mathbb{T}} dz \Big(\int_{\mathbb{T}} \partial_{x} p(s, x, y_{1} - z) \eta^{\varepsilon}(y_{1}) dy_{1} \Big) \\ &\times \Big(\int_{\mathbb{T}} \partial_{x} p(s, x, y_{2} - z) \eta^{\varepsilon}(y_{2}) dy_{2} \Big) \\ &= \int_{0}^{\infty} ds \int_{\mathbb{T}^{2}} -\partial_{x}^{2} p(2s, y_{1}, y_{2}) \eta^{\varepsilon}(y_{1}) \eta^{\varepsilon}(y_{2}) dy_{1} dy_{2} \\ &= -\int_{0}^{\infty} ds \int_{\mathbb{T}^{2}} \partial_{s} p(2s, y_{1}, y_{2}) \eta^{\varepsilon}(y_{1}) \eta^{\varepsilon}(y_{2}) dy_{1} dy_{2} \\ &= \int_{\mathbb{T}^{2}} \eta^{\varepsilon}(y_{1}) \eta^{\varepsilon}(y_{2}) \big(\delta(y_{1} - y_{2}) - 1 \big) dy_{1} dy_{2} \\ &= \|\eta^{\varepsilon}\|_{L^{2}(\mathbb{T})}^{2} - 1. \end{split}$$

▶ -1 appears on \mathbb{T} , but not on \mathbb{R} .

In terms of Fourier transform, we also have the following formula: $c^{\epsilon} = \sum \omega^2(k)$

$$c^{arepsilon} = \sum_{k
eq 0} arphi_{arepsilon}^2(k)$$

where $\varphi(k) = \mathcal{F}\eta(k), \varphi_{\varepsilon}(k) = \varphi(\varepsilon k).$

- In fact, by Plancherel's identity and noting φ_ε(0) = 1, this also shows c^ε = ||η^ε||²_{L²(T)} − 1.
- Similarly, and using diagram formula similar to Lecture No 3 but now in the noise $\dot{W}(t,x)$, the fourth order renormalization factors can be computed as

$$\begin{split} C^{\varepsilon,\beta\gamma} &= F^{\beta\gamma}C^{\varepsilon} \text{ with } C^{\varepsilon} = \frac{1}{4\pi^2}\sum_{k_1,k_2}^* \frac{\varphi_{\varepsilon}(k_1)^2\varphi_{\varepsilon}(k_2)^2}{k_1^2 + k_1k_2 + k_2^2},\\ D^{\varepsilon,\beta\gamma} &= G^{\beta\gamma}D^{\varepsilon} \text{ with } D^{\varepsilon} = -\frac{1}{4\pi^2}\sum_{k_1,k_2}^* \frac{(k_1 + k_2)\varphi_{\varepsilon}(k_1)^2\varphi_{\varepsilon}(k_2)^2}{k_2(k_1^2 + k_1k_2 + k_2^2)}, \end{split}$$

where $\varphi(k) = \mathcal{F}\eta(k), \varphi_{\varepsilon}(k) = \varphi(\varepsilon k), \sum^{*}$ means the sum over k_1, k_2 s.t. $k_1 \neq 0, k_2 \neq 0, k_1 + k_2 \neq 0$ and

Remark: Our notation and those in [Hairer, Gubinelli, ...] studying the case d = 1 (i.e. scalar-valued case) correspond with each other as follows:

$$H_{0} = X_{\epsilon}^{\dagger}, H_{1} = X_{\epsilon}^{\flat}, H_{2} = X_{\epsilon}^{\flat}, h_{\geq 3} = X_{\epsilon}^{\flat} + X_{\epsilon}^{\flat} + \cdots,$$

$$c^{\varepsilon} \delta^{\beta \gamma} = c_{\epsilon}^{\flat}, C^{\varepsilon,\beta \gamma} = c_{\epsilon}^{\flat}, D^{\varepsilon,\beta \gamma} = c_{\epsilon}^{\flat}.$$

(2) Coupled KPZ Approximating equation-2

• We do similar for the coupled KPZ equation with $*\eta_2^{\varepsilon}$ for the nonlinear term. Then, by the expansion, we have

$$\begin{split} \mathcal{L}\tilde{h}^{\alpha}_{0} &= \dot{W}^{\alpha}, \\ \mathcal{L}\tilde{h}^{\alpha}_{1} &= \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}\tilde{h}^{\beta}_{0}\partial_{x}\tilde{h}^{\gamma}_{0}) * \eta^{\varepsilon}_{2}, \\ \mathcal{L}\tilde{h}^{\alpha}_{2} &= \Gamma^{\alpha}_{\beta\gamma}(\partial_{x}\tilde{h}^{\beta}_{0}\partial_{x}\tilde{h}^{\gamma}_{1}) * \eta^{\varepsilon}_{2}, \\ \mathcal{L}\tilde{h}^{\alpha}_{3} &= \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}\tilde{h}^{\beta}_{1}\partial_{x}\tilde{h}^{\gamma}_{1}) * \eta^{\varepsilon}_{2} + \Gamma^{\alpha}_{\beta\gamma}(\partial_{x}\tilde{h}^{\beta}_{0}\partial_{x}\tilde{h}^{\gamma}_{2}) * \eta^{\varepsilon}_{2}. \end{split}$$

Theorem 5

There exists a solution map $\tilde{h} = S_{\varepsilon}(h_{\geq 3}(0), \mathbb{H})$. Note that S_{ε} means that the equation has the factor $*\eta_2^{\varepsilon}$.

Furthermore, we have:

Theorem 6

If $h_{\geq 3}^{\varepsilon}(0) \to h_{\geq 3}(0)$ in $\mathcal{C}^{\mu+1}$ and $\mathbb{H}^{\varepsilon} \to \mathbb{H}$ in $\mathcal{H}_{KPZ}^{\kappa}$, then we have that $S_{\varepsilon}(\overline{h}_{\geq 3}^{\varepsilon}(0), \mathbb{H}^{\varepsilon}) \to S(h_{\geq 3}(0), \mathbb{H}).$

► By replacing \dot{W}^{α} by $\dot{W}^{\alpha} * \eta^{\varepsilon}$ and introducing the renormalization factors $-c^{\varepsilon}\delta^{\beta\gamma}, \tilde{C}^{\beta\gamma}, \tilde{D}^{\beta\gamma}$, we have the expansion related to the coupled KPZ approx. eq-2 (suitable for studying inv measures) (4):

$$\begin{split} \mathcal{L}\tilde{h}_{0}^{\alpha} &= \dot{W}^{\alpha} * \eta^{\varepsilon}, \\ \mathcal{L}\tilde{h}_{1}^{\alpha} &= \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}(\partial_{x}\tilde{h}_{0}^{\beta}\partial_{x}\tilde{h}_{0}^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma}) * \eta_{2}^{\varepsilon}, \\ \mathcal{L}\tilde{h}_{2}^{\alpha} &= \Gamma_{\beta\gamma}^{\alpha}\partial_{x}\tilde{h}_{0}^{\beta}\partial_{x}\tilde{h}_{1}^{\gamma} * \eta_{2}^{\varepsilon}, \\ \mathcal{L}\tilde{h}_{3}^{\alpha} &= \frac{1}{2}\Gamma_{\beta\gamma}^{\alpha}(\partial_{x}\tilde{h}_{1}^{\beta}\partial_{x}\tilde{h}_{1}^{\gamma} - \tilde{C}^{\varepsilon,\beta\gamma}) * \eta_{2}^{\varepsilon} + \Gamma_{\beta\gamma}^{\alpha}(\partial_{x}\tilde{h}_{0}^{\beta}\partial_{x}\tilde{h}_{2}^{\gamma} - \tilde{D}^{\varepsilon,\beta\gamma}) * \eta_{2}^{\varepsilon}. \end{split}$$

▶ From this, we see that $\tilde{h}^{\varepsilon} = (\tilde{h}^{\varepsilon,\alpha}) := S_{\varepsilon}(h_{\geq 3}(0), \mathbb{H}^{\varepsilon})$ solves

$$\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma} - c^{\varepsilon}\delta^{\beta\gamma} - \tilde{C}^{\varepsilon,\beta\gamma} - 2\tilde{D}^{\varepsilon,\beta\gamma})*\eta_{2}^{\varepsilon} + \dot{W}^{\alpha}*\eta^{\varepsilon},$$

i.e., (4) with
$$\tilde{B}^{\varepsilon,\beta\gamma} = \tilde{C}^{\varepsilon,\beta\gamma} + 2\tilde{D}^{\varepsilon,\beta\gamma}$$

Theorems 5, 6 together with the convergence of driving terms show Theorem 1-(2). Difference of solutions of two approximating eq-1 and -2

- ▶ We show Theorem 2-(1).
- From the above computation, the difference of solutions of two approximating equations with B^{ε,βγ}, B̃^{ε,βγ} = 0 are given by

$$ilde{h}^{arepsilon,lpha}_{ ilde{B}=0}-h^{arepsilon,lpha}_{B=0}=ig(ilde{h}^{arepsilon,lpha}_{ ilde{B}}-h^{arepsilon,lpha}_{B}ig)+rac{t}{2}\Gamma^{lpha}_{eta\gamma}ig(ilde{B}^{arepsilon,eta\gamma}-B^{arepsilon,eta\gamma}ig)$$

and by Theorem 1-(2), $(\tilde{h}_{\tilde{B}}^{\varepsilon,\alpha} - h_{B}^{\varepsilon,\alpha}) \rightarrow 0.$

In particular, we have

$$\lim_{\varepsilon \downarrow 0} \left(\tilde{h}_{\tilde{B}=0}^{\varepsilon,\alpha} - h_{B=0}^{\varepsilon,\alpha} \right) = \frac{t}{2} \Gamma^{\alpha}_{\beta\gamma} \lim_{\varepsilon \downarrow 0} \left(\tilde{B}^{\varepsilon,\beta\gamma} - B^{\varepsilon,\beta\gamma} \right).$$

▶ We can explicitly compute the renormalization factors:

$$\begin{split} \mathcal{C}^{\varepsilon,\beta\gamma} &= \mathcal{F}^{\beta\gamma} \mathcal{C}^{\varepsilon} \text{ with } \mathcal{C}^{\varepsilon} = \frac{1}{4\pi^2} \sum_{k_1,k_2}^{*} \frac{\varphi_{\varepsilon}(k_1)^2 \varphi_{\varepsilon}(k_2)^2}{k_1^2 + k_1 k_2 + k_2^2}, \\ \mathcal{D}^{\varepsilon,\beta\gamma} &= \mathcal{G}^{\beta\gamma} \mathcal{D}^{\varepsilon} \text{ with } \mathcal{D}^{\varepsilon} = -\frac{1}{4\pi^2} \sum_{k_1,k_2}^{*} \frac{(k_1 + k_2) \varphi_{\varepsilon}(k_1)^2 \varphi_{\varepsilon}(k_2)^2}{k_2 (k_1^2 + k_1 k_2 + k_2^2)}, \\ \tilde{\mathcal{C}}^{\varepsilon,\beta\gamma} &= \mathcal{F}^{\beta\gamma} \tilde{\mathcal{C}}^{\varepsilon} \text{ with } \tilde{\mathcal{C}}^{\varepsilon} = \frac{1}{4\pi^2} \sum_{k_1,k_2}^{*} \frac{\varphi_{\varepsilon}(k_1)^2 \varphi_{\varepsilon}(k_2)^2 \varphi_{\varepsilon}(k_1 + k_2)^4}{k_1^2 + k_1 k_2 + k_2^2}, \\ \tilde{\mathcal{D}}^{\varepsilon,\beta\gamma} &= \mathcal{G}^{\beta\gamma} \tilde{\mathcal{D}}^{\varepsilon} \text{ with } \tilde{\mathcal{D}}^{\varepsilon} = -\frac{1}{4\pi^2} \sum_{k_1,k_2}^{*} \frac{(k_1 + k_2) \varphi_{\varepsilon}(k_1)^2 \varphi_{\varepsilon}(k_2)^2 \varphi_{\varepsilon}(k_1 + k_2)^4}{k_2 (k_1^2 + k_1 k_2 + k_2^2)}, \\ \text{where } \varphi(k) &= \mathcal{F}\eta(k), \varphi_{\varepsilon}(k) = \varphi(\varepsilon k), \sum_{k_1,k_2}^{*} \text{ means the sum over } \\ k_1, k_2 \text{ s.t. } k_1 \neq 0, \ k_2 \neq 0, \ k_1 + k_2 \neq 0 \text{ and} \\ \mathcal{F}^{\beta\gamma} &= \Gamma_{\gamma_1\gamma_2}^{\beta} \Gamma_{\gamma_1\gamma_2}^{\gamma}, \\ \mathcal{G}^{\beta\gamma} &= \Gamma_{\varepsilon}^{\beta} \approx \Gamma_{\varepsilon}^{\gamma_1} \\ \end{array}$$

$$\mathcal{G}^{\beta\gamma} = \mathsf{\Gamma}^{\beta}_{\gamma_1\gamma_2}\mathsf{\Gamma}^{\gamma_1}_{\gamma\gamma_2}.$$

Assume the trilinear condition (T). Then, as we already saw, we have

$$F^{\beta\gamma} = G^{\beta\gamma} = \Gamma^{\beta}_{\gamma_1\gamma_2}\Gamma^{\gamma}_{\gamma_1\gamma_2}.$$

Thus,

$$egin{aligned} & ilde{B}^{arepsilon,eta\gamma}-B^{arepsilon,eta\gamma}&=(ilde{C}^{arepsilon,eta\gamma}+2 ilde{D}^{arepsilon,eta\gamma})-(C^{arepsilon,eta\gamma}+2D^{arepsilon,eta\gamma})\ &=F^{eta\gamma}ig((ilde{C}^{arepsilon}+2 ilde{D}^{arepsilon})-(C^{arepsilon}+2D^{arepsilon})ig). \end{aligned}$$

However, by the explicit computation (for scalar-valued case),

$$ilde{C}^arepsilon+2 ilde{D}^arepsilon=0, \quad C^arepsilon+2D^arepsilon=-rac{1}{12}+O(arepsilon).$$

Therefore, in the limit, we have

$$\tilde{h}^{\alpha}_{\tilde{B}=0}(t,x) = h^{\alpha}_{B=0}(t,x) + c^{\alpha}t, \quad 1 \leq \alpha \leq d,$$

where

$$c^{lpha}:=rac{1}{24} \Gamma^{lpha}_{eta\gamma} F^{eta\gamma}=rac{1}{24} \sum_{\gamma_1,\gamma_2} \Gamma^{lpha}_{eta\gamma} \Gamma^{eta}_{\gamma_1\gamma_2} \Gamma^{\gamma}_{\gamma_1\gamma_2}.$$

This concludes the proof of Theorem 2-(1).

Invariant measure

- ▶ We finally give the outline of the proof of Theorem 2-(2).
- We actually consider the coupled KPZ-Burgers equation for $u^{\alpha} := \partial_x h^{\alpha}$ as in Lecture No 3.
- We move to the Fourier mode {u^{α,k}}_{k∈Z} and introduce a cut-off, i.e. we use Galerkin approximation.
- We show the infinitesimal invariance of Gaussian measure with cut-off by applying Echeveria's criterion for the finite-dimensional SDE. Trilinear condition (T) is essential (as we saw at least heuristically above).
- Moreover, the energy estimate holds uniformly in cut-off by noting that the nonlinear term cancels under (T).
- We finally take the limit.

8. Remarks for the case with diffusion constant σ

Coupled KPZ approx. eq-1: Simple

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} A^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \frac{\sigma^{\alpha}_{\beta}}{W} \dot{W}^{\beta} * \eta^{\varepsilon}, \quad (6)$$

where $A^{\beta\gamma} = \sum_{\delta=1}^{d} \sigma_{\delta}^{\beta} \sigma_{\delta}^{\gamma}$, $c^{\varepsilon} = \frac{1}{\varepsilon} ||\eta||_{L^{2}(\mathbb{R})}^{2} - 1$ and $B^{\varepsilon,\beta\gamma}$ (= $O(-\log \varepsilon)$ in general) is another renormalization factor.

• Coupled KPZ approx. eq-2: suitable for studying inv measures $\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} (\partial_x h^{\beta} \partial_x h^{\gamma} - c^{\varepsilon} A^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma}) * \eta_2^{\varepsilon} + \sigma^{\alpha}_{\beta} \dot{W}^{\beta} * \eta^{\varepsilon},$ (7)

with a renormalization factor $\tilde{B}^{\varepsilon,\beta\gamma}$.

For the solution of (7) (with $\tilde{B} = 0$), F ('15, Yor volume) showed (on \mathbb{R}), under the additional (trilinear) condition:

$$\hat{\Gamma}^{\alpha}_{\beta\gamma} = \hat{\Gamma}^{\gamma}_{\alpha\beta} = \hat{\Gamma}^{\gamma}_{\beta\alpha} \tag{8}$$

for all $\alpha, \beta\gamma$ (second equality is by bilinearity), where

$$\hat{\Gamma}^{\alpha}_{\beta\gamma} := \tau^{\alpha}_{\alpha'} \Gamma^{\alpha'}_{\beta'\gamma'} \sigma^{\beta'}_{\beta} \sigma^{\gamma'}_{\gamma}, \quad \tau = \sigma^{-1},$$

the (infinitesimal) invariance of the distribution of $(\sigma B) * \eta^{\varepsilon}(x)$, where B is the \mathbb{R}^d -valued two-sided Brownian motion (with $x \in \mathbb{R}$).

Our goal is to study the limits of the solutions of (6) and (7) as ε ↓ 0. Theorem 1 holds with σ_{β}^{α} .

Theorem 7 (cf. Theorem 2)

Assume trilinear condition (8). Then, $B^{\varepsilon,\beta\gamma}, \tilde{B}^{\varepsilon,\beta\gamma} = O(1)$ so that the solutions of (6) with B = 0 and (7) with $\tilde{B} = 0$ converge. In the limit, we have

$$ilde{h}^lpha(t,x)=h^lpha(t,x)+c^lpha t, \quad 1\leq lpha\leq d,$$

where

$$c^{lpha} = rac{1}{24} \sum_{\gamma,\gamma'} \sigma^{lpha}_{eta} \hat{\Gamma}^{eta}_{lpha'lpha''} \hat{\Gamma}^{lpha'}_{\gamma\gamma'} \hat{\Gamma}^{lpha''}_{\gamma\gamma'}.$$

Moreover, the distribution of $\{\sigma B\}_{x \in \mathbb{T}}$ (note: infinite measure) is invariant under h. Or, the distribution of $\{\sigma \partial_x B\}_{x \in \mathbb{T}}$ (finite measure) is invariant under the tilt process $\partial_x h$.

$$\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma} - c^{\varepsilon}A^{\beta\gamma} - B^{\varepsilon,\beta\gamma}) + \sigma^{\alpha}_{\beta}\dot{W}^{\beta}*\eta^{\varepsilon}$$
(6)
$$\partial_{t}h^{\alpha} = \frac{1}{2}\partial_{x}^{2}h^{\alpha} + \frac{1}{2}\Gamma^{\alpha}_{\beta\gamma}(\partial_{x}h^{\beta}\partial_{x}h^{\gamma} - c^{\varepsilon}A^{\beta\gamma} - \tilde{B}^{\varepsilon,\beta\gamma})*\eta^{\varepsilon}_{2} + \sigma^{\alpha}_{\beta}\dot{W}^{\beta}*\eta^{\varepsilon}$$
(7)

 (cf. Theorem 3) Under the trilinear condition (8), global existence holds for a.s.-initial values under stationary measure, and then for all given u(0) as before.

Summary of this lecture.

1. Coupled KPZ equation (mostly with $\sigma = I$):

$$\partial_t h^{\alpha} = \frac{1}{2} \partial_x^2 h^{\alpha} + \frac{1}{2} \Gamma^{\alpha}_{\beta\gamma} \partial_x h^{\beta} \partial_x h^{\gamma} + \sigma^{\alpha}_{\beta} \dot{W}^{\alpha}, \quad x \in \mathbb{T}.$$

- 2. For ${}^{\forall}\Gamma$, convergence of two approximating solutions h^{ε} , \tilde{h}^{ε} and local well-posedness of coupled KPZ equation (σ, Γ) by applying paracontrolled calculus.
- 3. For Γ satisfying (T), Wiener measure is invariant and global well-posedness of coupled KPZ equation holds, first for a.a.-initial values under stationary measure, then for all initial values.
- 4. $(T) \iff "F = G" \iff (ST)_{\mathcal{A}}$ for Wiener meas. ν $\implies "\Gamma F = \Gamma G" \iff$ Cancellation of log-renormalization factors
- 5. Extensions of Ertaş-Kardar's example