KPZ limit for interacting particle systems -Coupled KPZ equation by paracontrolled calculus-

Tadahisa Funaki

Waseda University
December 1st+3rd, 2020

Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020 Lecture No 4

- F-Hoshino, JFA, 273, 2017
- F, in "Stochastic Dynamics Out of Equilibrium", Springer 2019

Plan of the course (10 lectures)
1 Introduction
2 Supplementary materials
Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales
3 Invariant measures of KPZ equation (F-Quastel, 2015)
4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)
5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
$5.3 n$-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation

Plan of this lecture

Coupled KPZ equation by paracontrolled calculus

1. Multi-component coupled KPZ equation

- Motivation: nonlinear fluctuating hydrodynamics
- Trilinear condition (T)

2. Two approximating equations, local well-posedness, invariant measure

- Convergence results due to paracontrolled calculus
- Difference of two limits
- Main theorems (Theorems 1 and 2)

3. Global existence for a.s.-initial values under invariant (stationary) measure
4. Ertaș-Kardar's example

- not satisfying (T) but having invariant measure

5. Role of trilinear condition (T)

- Invariant measure, renormalizations (for 4th order terms)

6. Extensions of Ertaș-Kardar's example
7. Proof of main theorems (Theorems 1 and 2)
8. Remarks for the case with diffusion constant σ
9. Multi-component coupled KPZ equation

- In Lectures No 1 and No 3, we studied scalar-valued KPZ equation (1) and the renormalized KPZ equation (2):

$$
\begin{align*}
& \partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\dot{W}(t, x), \tag{1}\\
& \partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\dot{W}(t, x) . \tag{2}
\end{align*}
$$

- In this lecture, we consider on $\mathbb{T}=[0,1)$.
- We used the Cole-Hopf transformation and Cole-Hopf solution $h(t, x):=\log Z(t, x)$, where Z is the solution of multiplicative linear stochastic heat equation.
- In this lecture, we consider a system of KPZ equations.
- For such equation, one cannot apply Cole-Hopf transformation in general.
- The method we use in the present part works also for scalar-valued equations (1) and (2).
- Our equation in this lecture has the following form.
- \mathbb{R}^{d}-valued KPZ eq for $h(t, x)=\left(h^{\alpha}(t, x)\right)_{\alpha=1}^{d}$ on \mathbb{T} :

$$
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} \quad(\sigma, \Gamma)_{K P Z}
$$

- We use Einstein's convention. i.e., the sums $\sum_{\beta, \gamma}, \sum_{\beta}$ are omitted.
- $\dot{W}(t, x)=\left(\dot{W}^{\alpha}(t, x)\right)_{\alpha=1}^{d}(\equiv \dot{W}(t, x))$ is an \mathbb{R}^{d}-valued space-time Gaussian white noise with covariance structure:

$$
E\left[\dot{W}^{\alpha}(t, x) \dot{W}^{\beta}(s, y)\right]=\delta^{\alpha \beta} \delta(x-y) \delta(t-s)
$$

- $\delta^{\alpha, \beta}$ is Kronecker's δ. This means that $\left(\dot{W}^{\alpha}(t, x)\right)_{\alpha=1}^{d}$ are independent \mathbb{R}-valued space-time Gaussian white noises.
- Coupled KPZ equation is ill-posed, since noise is irregular and conflicts with nonlinear term. ($h^{\alpha} \in C_{t, x}^{\frac{1}{4}-, \frac{1}{2}-}$ a.s. when $\Gamma=0$)
- We need to introduce approximations with smooth noises and renormalization for $(\sigma, \Gamma)_{K P Z}$. Indeed, one can introduce two types of approximations: one is simple, the other is suitable to find invariant measures (Lecture No 3: $d=1$, F-Quastel 2015).
- The constants $\Gamma_{\beta \gamma}^{\alpha}$ satisfy bilinear condition

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha} \text { for all } \alpha, \beta, \gamma, \tag{B}
\end{equation*}
$$

and (we sometimes assume) trilinear condition

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha}=\Gamma_{\beta \alpha}^{\gamma} \text { for all } \alpha, \beta, \gamma . \tag{T}
\end{equation*}
$$

(cf. Ferrari-Sasamoto-Spohn 2013, Kupiainen-Marcozz 2017)

- $\sigma=\left(\sigma_{\beta}^{\alpha}\right)$ is an invertible matrix.
- Similar SPDE appears to discuss motion of loops on a manifold, cf. Funaki 1992, Bruned-Gabriel-Hairer--Zambotti 2019; Dirichlet form approach, Röckner--Wu-Zhu-Zhu 2020, Chen-Wu-Zhu-Zhu 2020+.

$$
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} \quad(\sigma, \Gamma)_{K P Z}
$$

- Since σ is invertible, $\hat{h}=\sigma^{-1} h$ transforms $(\sigma, \Gamma)_{K P Z}$ to $(I, \hat{\Gamma}=\sigma \circ \Gamma)_{K P Z}$, where

$$
(\sigma \circ \Gamma)_{\beta \gamma}^{\alpha}:=\left(\sigma^{-1}\right)_{\alpha^{\prime}}^{\alpha} \Gamma_{\beta^{\prime} \gamma^{\prime}}^{\alpha^{\prime}} \sigma_{\beta}^{\beta^{\prime}} \sigma_{\gamma}^{\gamma^{\prime}} .
$$

Thus, the KPZ equation with $\sigma=I$ is considered as a canonical form.

- The operation (coordinate change) $\Gamma \mapsto \sigma \circ \Gamma$ keeps the bilinearity, but not the trilinearity.
- We should say (σ, Γ) satisfies trilinear condition, iff $\hat{\Gamma}:=\sigma \circ \Gamma$ satisfies (T).
- Thus, in the following, we assume $\sigma=I$. In Section 8, we remark how the results are modified for general σ.

Motivation to study the coupled KPZ equation

- Coupled KPZ equation appears in the study of nonlinear fluctuating hydrodynamics for a system with d-conserved quantities by taking 2 nd order terms into account. The problem goes back to Landau. cf. Spohn-Ferrari-Sasamoto-Stoltz JSP 2013, '14, '15.
- If some of $\Gamma_{\beta \gamma}^{\alpha}$ are degenerate, then the solution involves different (anomalous) scalings such as Diffusive $=\mathrm{OU}$, KPZ, $\frac{5}{3}, \frac{3}{2}$-Lévy scalings (they look different behavior in time-correlation functions).

Coupled KPZ equation with additional drifts

- Consider the equation with additional drift $c^{\alpha} \in \mathbb{R}$ for each component assuming $\sigma=I$:

$$
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+c^{\alpha} \partial_{x} h^{\alpha}+\dot{W}^{\alpha} .
$$

- This equation can be easily reduced to the case $c^{\alpha}=0$.
- Indeed, if $\left(h^{\alpha}\right)$ is a solution of this equation, $\tilde{h}^{\alpha}(t, x)$ $:=h^{\alpha}\left(t, x-c^{\alpha} t\right)$ satisfies the same equation with $c^{\alpha}=0$ and a new noise $\dot{W}^{\alpha}(t, x):=\dot{W}^{\alpha}\left(t, x-c^{\alpha} t\right)$, which is also an \mathbb{R}^{d}-valued space-time Gaussian white noise.

Why trilinear condition (T) plays a role: one reason

- For simplicity, consider $(\sigma, \Gamma)_{K P Z}$ without noise and at Burgers level for $u^{\alpha}:=\partial_{x} h^{\alpha}$:

$$
\partial_{t} u^{\alpha}=\frac{1}{2} \partial_{x}^{2} u^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x}\left(u^{\beta} u^{\gamma}\right)
$$

- If (T) is satisfied, the usual method of energy estimate works:

$$
\begin{aligned}
\partial_{t}\|u(t)\|_{L^{2}(\mathbb{T})}^{2} & =\partial_{t} \sum_{\alpha} \int_{\mathbb{T}}\left(u^{\alpha}\right)^{2} d x \\
& =2 \sum_{\alpha}\left(u^{\alpha}, \partial_{t} u^{\alpha}\right)_{L^{2}} \\
& =\sum_{\alpha}\left(u^{\alpha}, \partial_{x}^{2} u^{\alpha}\right)_{L^{2}}+\sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha}\left(u^{\alpha}, \partial_{x}\left(u^{\beta} u^{\gamma}\right)\right)_{L^{2}} \\
& =-\left\|\partial_{x} u\right\|_{L^{2}(\mathbb{T})}^{2} \leq 0,
\end{aligned}
$$

by integration by parts.

- The term with Γ vanishes by interchanging the role of α, β, γ if Γ satisfies (T) $(\rightarrow$ see next page).
- Indeed,

$$
\begin{aligned}
& \sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha}\left(u^{\alpha}, \partial_{x}\left(u^{\beta} u^{\gamma}\right)\right)_{L^{2}}=\sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha} \int_{\mathbb{T}} u^{\alpha} \cdot \partial_{x}\left(u^{\beta} u^{\gamma}\right) d x \\
&=-\sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha} \int_{\mathbb{T}} \partial_{x} u^{\alpha} \cdot u^{\beta} u^{\gamma} d x \\
&=0 \\
&(\mathrm{~T})
\end{aligned}
$$

since $(\mathrm{LHS})=2 \times(-\mathrm{RHS})$.

- This is similar to Navier-Stokes equation (or Euler equation).

2. Two approximating equations, local well-posedness, invariant measure

- We will extend the results for scalar-valued equation in Lecture No 3 (i.e. $d=1$) to coupled equation.
- We replace the noise by smeared one.

As in Lecture No 3, take a symmetric convolution kernel:

$$
\eta^{\varepsilon}(x):=\frac{1}{\varepsilon} \eta\left(\frac{x}{\varepsilon}\right) \underset{\varepsilon \downarrow 0}{\longrightarrow} \delta_{0} .
$$

- Approximating equation-1 (simple): For $h^{\alpha}=h^{\varepsilon, \alpha}$,

$$
\begin{equation*}
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\dot{W}^{\alpha} * \eta^{\varepsilon}, \tag{3}
\end{equation*}
$$

where $c^{\varepsilon}=\frac{1}{\varepsilon}\|\eta\|_{L^{(}(\mathbb{R})}^{2}-1\left(=O\left(\frac{1}{\varepsilon}\right)\right)$ and $B^{\varepsilon, \beta \gamma}$
$\left(=O\left(\log \frac{1}{\varepsilon}\right)\right.$ in general) is another renormalization factor.

- The renormalization $B^{\varepsilon, \beta \gamma}$ was unnecessary in the scalar-valued case, and also in coupled case under (T).
- Approx. equation-2 (suitable to find invariant measure): For $\tilde{h}^{\alpha}=\tilde{h}^{\varepsilon, \alpha}$

$$
\begin{equation*}
\partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \tilde{h}^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\alpha} * \eta^{\varepsilon} \tag{4}
\end{equation*}
$$

with a renormalization factor $\tilde{B}^{\varepsilon, \beta \gamma}$, where $\eta_{2}^{\varepsilon}=\eta^{\varepsilon} * \eta^{\varepsilon}$.

- The idea behind (4) is the fluctuation-dissipation relation.
- Renormalization factor $c^{\varepsilon} \equiv c_{\epsilon}^{V}=O\left(\frac{1}{\varepsilon}\right)$ is from 2 nd order terms in the expansion, while Renormalization factors $B^{\varepsilon, \beta \gamma}$ and $\tilde{B}^{\varepsilon, \beta \gamma}=O\left(\log \frac{1}{\varepsilon}\right)$ are from 4th order terms involving $C^{\varepsilon}=c_{\epsilon}^{\mathrm{vy}}, D^{\varepsilon}=c_{\epsilon}^{\text {§ }} \quad($ see \rightarrow Section 7).
- For the solution of (4) (with $\tilde{B}=0), F$ (Yor volume, 2015) showed (on \mathbb{R}), under the trilinear condition (T), the infinitesimal invariance of the distribution of $B * \eta^{\varepsilon}(x)$, where B is the \mathbb{R}^{d}-valued two-sided Brownian motion (with $x \in \mathbb{R}$) (see \rightarrow Thm 2-(2)).
- Our goal is to study the limits of the solutions of Approx-Eq-1 (3) and Approx-Eq-2 (4) as $\varepsilon \downarrow 0$.
- As we saw, when $d=1$ and $\Gamma=\sigma=1$, the solution of (3) with $B^{\varepsilon}=0$ converges as $\varepsilon \downarrow 0$ to the Cole-Hopf solution $h_{C H}$ of the KPZ equation, while the solution of (4) with $\tilde{B}^{\varepsilon}=0$ converges to $h_{C H}+\frac{1}{24} t$.
- Note that log-renormalization factors do not appear, when $d=1$.
- The method of F-Quastel is based on the Cole-Hopf transform, which is not available for the coupled equation with multi-components in general.
- Instead, we use the paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015.
- In particular, we study the difference between these two limits.

Summary of results of F-Hoshino 2017

- Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{K P Z}$ by applying paracontrolled calculus due to Gubinelli-Imkeller-Perkowski 2015. (Cole-Hopf doesn't work for coupled eq. in general. In 1D, we used it and showed Boltzmann-Gibbs principle, FQ 2015.)
- Approx-Eq-2 fits to identify invariant measure under (T).
- Global solvability for a.s.-initial data under an invariant measure under (T) (similar to Da Prato-Debussche).
- Combine this with strong Feller property (i.e. continuity of probability in initial value, Hairer-Mattingly 2016).
- Global well-posedness (existence, uniqueness) under (T) Ergodicity and uniqueness of invariant measure.
- A priori estimates for Approx-Eq-1 (3) under (T).

Convergence of h^{ε} and \tilde{h}^{ε} and Local well-posedness of coupled KPZ eq $(\sigma, \Gamma)_{K P Z}($ we take $\sigma=I): \quad \mathcal{C}^{\kappa}=\left(\mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{T})\right)^{d}, \kappa \in \mathbb{R}$ denotes \mathbb{R}^{d}-valued (Hölder-)Besov space on \mathbb{T} (see \rightarrow Sect 7).

Theorem 1

(1) Assume $h_{0} \in \mathcal{C}^{0+}:=\cup_{\delta>0} \mathcal{C}^{\delta}$, then a unique solution h^{ε} of (3) exists up to some $T^{\varepsilon} \in(0, \infty]$ and $\bar{T}=\lim \inf _{\varepsilon \downarrow 0} T^{\varepsilon}>0$ holds. With a proper choice of $B^{\varepsilon, \beta \gamma}$, h^{ε} converges in prob. to some h in $C\left([0, T], \mathcal{C}^{\frac{1}{2}-\delta}\right)$ for every $\delta>0$ and $0<T \leq \bar{T}$.
(2) Similar result holds for the solution \tilde{h}^{ε} of (4) with some limit \tilde{h}. Under proper choices of $B^{\varepsilon, \beta \gamma}$ and $\tilde{B}^{\varepsilon, \beta \gamma}$, we can actually make $h=\tilde{h}$.

$$
\begin{align*}
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\dot{W}^{\alpha} * \eta^{\varepsilon} \tag{3}\\
& \partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{\tilde{L}^{\alpha}}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\alpha} * \eta^{\varepsilon} \tag{4}
\end{align*}
$$

$\overline{\mathcal{C}^{\kappa}}$ is defined in Fourier analytic way. In particular, for $\kappa \in(0, \infty) \backslash \mathbb{N}$, $\mathcal{C}^{\kappa}=\left\{u \in C_{b}^{k} ; \partial_{x}^{k} u\right.$ is $(\kappa-k)$-Hölder continuous $\}$, where $k=[\kappa]$ is the integer part of κ. Note that for $\kappa \in \mathbb{N}, C_{b}^{\kappa} \subsetneq \mathcal{C}^{\kappa}$.

Results under (T): Unnecessity of Log-Renormalizations, Invariant measure $=$ Wiener measure, difference of two limits

Theorem 2

Assume the trilinear condition (\mathbf{T}).
(1) Then, $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}=O(1)$ so that the solutions of (3) with $B=0$ and (4) with $\tilde{B}=0$ converge. In the limit, we have
where

$$
\begin{gathered}
\tilde{h}^{\alpha}(t, x)=h^{\alpha}(t, x)+c^{\alpha} t, \quad 1 \leq \alpha \leq d, \\
c^{\alpha}=\frac{1}{24} \sum_{\gamma_{1}, \gamma_{2}} \Gamma_{\beta \gamma}^{\alpha} r_{\gamma_{1} \gamma_{2}}^{\beta} \gamma_{\gamma_{1} \gamma_{2}}^{\gamma} .
\end{gathered}
$$

(2) Moreover, the distribution of $\left(\partial_{x} B\right)_{x \in \mathbb{T}}$ ($B=$ periodic $B M$) is invariant under the tilt process $u=\partial_{x} h$ (or periodic Wiener measure on the quotient space $\mathcal{C}^{\frac{1}{2}-\delta} / \sim$ where $h \sim h+c$).

Proofs of Theorems 1 and $2 \rightarrow$ Section 7
3. Global existence for a.s.-initial values under stationary meas

- We assume (T) and initial value $h(0)$ is given by $h(0,0)=0$ and $u(0):=\partial_{x} h(0) \underset{\operatorname{law}}{=}\left(\partial_{x} B\right)_{x \in \mathbb{T}}$ (i.e., stationary). Then, similarly to Da Prato-Debussche (2002, for 2D stochastic Navier-Stokes equation; Galerkin approximation), $u=\partial_{x} h$ satisfies

Theorem 3
For every $T>0, p \geq 1, \delta>0$, we have

$$
E\left[\sup _{t \in[0, T]}\left\|u\left(t ; u_{0}\right)\right\|_{-\frac{1}{2}-\delta}^{p}\right]<\infty
$$

In particular, $T_{\text {surrival }}(u(0))=\infty$ for a.a.-u(0).

- Global existence for all given $u(0)$: In the scalar-valued case, this is immediate, since the limit is Cole-Hopf solution. Hairer-Mattingly 2016 proved this for coupled equation by showing the strong Feller property on $\mathcal{C}^{\alpha-1}, \alpha \in\left(0, \frac{1}{2}\right)$.
- For Approx-Eq-1 (3), under (T), we have

$$
\sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha} \int_{\mathbb{T}} u^{\alpha} \partial_{x}\left(u^{\beta} u^{\gamma}\right) d x=0
$$

This shows a priori estimate and global well-posedness for (3) at least if $h(0) \in H^{1}(\mathbb{T})$.

- Therefore, Theorem 1-(1) holds globally in time if $h(0) \in H^{1}(\mathbb{T})$.
- We expect Theorem 1-(2) also holds globally in time (by showing strong Feller property for (4)).

4. Ertaș and Kardar's example

Unnecessity of Log-Renormalizations and ${ }^{\exists}$ Invariant measure without (T)

- Example (Ertaș and Kardar 1992: $d=2$)

$$
\begin{align*}
& \partial_{t} h^{1}=\frac{1}{2} \partial_{x}^{2} h^{1}+\frac{1}{2}\left\{\lambda_{1}\left(\partial_{x} h^{1}\right)^{2}+\lambda_{2}\left(\partial_{x} h^{2}\right)^{2}\right\}+\dot{W}^{1} \tag{EK}\\
& \partial_{t} h^{2}=\frac{1}{2} \partial_{x}^{2} h^{2}+\lambda_{1} \partial_{x} h^{1} \partial_{x} h^{2}+\dot{W}^{2}
\end{align*}
$$

Γ satisfies (T) only when $\lambda_{1}=\lambda_{2}\left(\Gamma_{11}^{1}=\lambda_{1}, \Gamma_{22}^{1}=\lambda_{2}, \Gamma_{12}^{2}=\lambda_{1}\right)$.

- However, under the transform $\hat{h}=$ sh with
$s=\left(\begin{array}{ll}\lambda_{1} & \left(\lambda_{1} \lambda_{2}\right)^{1 / 2} \\ \lambda_{1} & -\left(\lambda_{1} \lambda_{2}\right)^{1 / 2}\end{array}\right),(E K)$ is transformed into

$$
\begin{equation*}
\partial_{t} \hat{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \hat{h}^{\alpha}+\frac{1}{2}\left(\partial_{x} \hat{h}^{\alpha}\right)^{2}+s_{\beta}^{\alpha} \dot{W}^{\beta} \tag{T}
\end{equation*}
$$

i.e. nonlinear term is decoupled, but noise is coupled.

- Namely, $\hat{\Gamma}=s \circ \Gamma$ in $\left(E K_{T}\right)$ is given by $\hat{\Gamma}_{\alpha \alpha}^{\alpha}=1,=0$ otherwise, so that $\hat{\Gamma}$ satisfies (T). But, (EK) is the canonical form (with $\sigma=l$) and not $\left(E K_{T}\right)$.
- (EK) doesn't satisfy (T).
- However, since nonlinear term is decoupled in $\left(\mathrm{EK}_{T}\right)$, the Cole-Hopf transform $Z^{\alpha}=\exp \hat{h}^{\alpha}$ works for each component so that global well-posedness follows.
- In particular, log-renormalization factors are unnecessary.
- Invariant measure exists whose marginals are Wiener measures, but the joint distribution of such invariant measure is unclear (presumably non-Gaussian).
- Indeed, because of the tightness of marginals, Cesàro mean $\mu_{T}=\frac{1}{T} \int_{0}^{T} \mu(t) d t$ of the distributions $\mu(t)$ of $\partial_{x} \hat{h}(t)$ having an initial distribution $\otimes_{\alpha} \mu_{\alpha}$ is tight on the space $\mathcal{C}^{-\frac{1}{2}-} / \sim$, so that the limit (along subsequence) of μ_{T} as $T \rightarrow \infty$ is an invariant measure.
(Recall $h \sim \tilde{h}$ if $h=\tilde{h}+c$) (cf. Liggett, 1985, p.11)

5. Role of trilinear condition (T)

Reason of unnecessity of log-renormalization factors

- Formulas of Renormalization factors $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}$
$(\rightarrow$ see Section 7):

$$
B^{\varepsilon, \beta \gamma}=F^{\beta \gamma} C^{\varepsilon}+2 G^{\beta \gamma} D^{\varepsilon}, \tilde{B}^{\varepsilon, \beta \gamma}=F^{\beta \gamma} \tilde{C}^{\varepsilon}+2 G^{\beta \gamma} \tilde{D}^{\varepsilon},
$$

where

$$
\begin{aligned}
& F^{\beta \gamma}=\Gamma_{\gamma_{1} 1_{2}}^{\beta} \Gamma_{\gamma_{1} 1_{2}}^{\gamma}, G^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma_{1}}, \\
& C^{\varepsilon}+2 D^{\varepsilon}=-\frac{1}{12}+O(\varepsilon), \quad \tilde{C}^{\varepsilon}+2 \tilde{D}^{\varepsilon}=0, \\
& \text { (} C^{\varepsilon}=c_{\epsilon}^{\text {ky }}, D^{\varepsilon}=c_{\epsilon}^{\text {y }} \quad \text { from Wiener expansion) }
\end{aligned}
$$

- Trilinear condition $(T) \Longleftrightarrow " F=G " \Longleftrightarrow B, \tilde{B}=O(1)$
- But, for unnecessity of log-renormalization factors, what we really need is: " $\ulcorner B, \Gamma \tilde{B}=O(1)$ ". This holds if $\Gamma F=\Gamma G$.

$$
\begin{align*}
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\dot{W}^{\alpha} * \eta^{\varepsilon} \tag{3}\\
& \partial_{t} \tilde{h}^{\alpha}=\frac{1}{2} \partial_{x}^{\tilde{L}^{\alpha}}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}^{\beta} \partial_{x} \tilde{h}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\alpha} * \eta^{\varepsilon} \tag{4}
\end{align*}
$$

- " $\Gamma F=\Gamma G$ " holds iff Γ satisfies the condition

$$
\Gamma_{\beta \gamma}^{\alpha} \Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma}=\Gamma_{\beta \gamma}^{\alpha} \Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma \gamma_{2}}^{\gamma_{1}}, \quad{ }_{\alpha}
$$

- This holds under (T) and also for Ertaș-Kardar's example.
- We can summarize as

$$
\begin{aligned}
(T) & \Longleftrightarrow " F=G " \\
& \Longleftrightarrow " \Gamma F=\Gamma G " \\
& \Longleftrightarrow \text { Unnecessity of log-renormalization factors }
\end{aligned}
$$

- $\mathcal{L}=\mathcal{L}_{0}+\mathcal{A}$: (pre) generator of coupled KPZ eq $(\sigma=I)$.
- \mathcal{L}_{0} is the generator of OU (Ornstein-Uhlenbeck)-part, while \mathcal{A} is that of nonlinear part (we ignore renormalization factors):

$$
\begin{aligned}
& \mathcal{L}_{0} \Phi=\frac{1}{2} \sum_{\alpha}\left\{\int_{\mathbb{T}} D_{h^{\alpha}(x)}^{2} \Phi d x+\int_{\mathbb{T}} \ddot{h}^{\alpha}(x) D_{h^{\alpha}(x)} \Phi d x\right\} \\
& \mathcal{A} \Phi=\frac{1}{2} \sum_{\alpha, \beta, \gamma} \Gamma_{\beta \gamma}^{\alpha} \int_{\mathbb{T}} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) D_{h^{\alpha}(x)} \Phi d x,
\end{aligned}
$$

where D, D^{2} denote 1st and 2nd Fréchet derivatives, and $\dot{h}^{\beta}(x):=\partial_{x} h^{\beta}(x), \ddot{h}^{\alpha}(x):=\partial_{x}^{2} h^{\alpha}(x)$.

- In Lecture No 2, we wrote down the generator of finite-dimensional SDE by applying Itô's formula.
- SPDE is an infinite-dimensional version of SDE with infinite-dimensional BM $W(t, x)$ (recall it was constructed by a formal Fourier series). This generates the infinite-dimensional Laplacian $\frac{1}{2} \sum_{\alpha} \int_{\mathbb{T}} D_{h^{\alpha}(x)}^{2} \cdot d x$.
- Since h is not differentiable, the argument is heuristic.
- The infinitesimal invariance $(S T)_{\mathcal{L}}$ for ν

$$
\underset{\operatorname{def}}{\overleftrightarrow{ }} " \int \mathcal{L} \Phi d \nu=0,{ }^{\forall} \Phi "
$$

- If the invariant measure ν is Gaussian, $(S T)_{\mathcal{L}_{0}}$ is the condition for 2nd order Wiener chaos of Φ, while $(S T)_{\mathcal{A}}$ is that for 3rd order Wiener chaos of Φ. Therefore, the condition $(S T)_{\mathcal{L}}$ is separated into two conditions:

$$
(S T)_{\mathcal{L}} \Longleftrightarrow(S T)_{\mathcal{L}_{0}}+(S T)_{\mathcal{A}}
$$

- \mathcal{L}_{0} is (well-known) OU-operator and $(S T)_{\mathcal{L}_{0}}$ determines $\nu=$ Wiener measure.

Trilinear condition $(\mathrm{T}) \Longleftrightarrow$ Wiener meas ν satisfies $(S T)_{\mathcal{A}}$

- We have the integration-by-parts formula for $\nu=$ Wiener measure (actually we need to discuss at ε-level, since h is not differentiable at $\varepsilon=0$):

$$
\int \mathcal{A} \Phi d \nu=-\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} c_{\alpha}^{\beta \gamma},
$$

where

$$
c_{\alpha}^{\beta \gamma} \equiv c_{\alpha}^{\beta \gamma}(\Phi):=E^{\nu}\left[\Phi \int_{\mathbb{T}} \dot{h}^{\beta}(x) \dot{h}^{\gamma}(x) \ddot{h}^{\alpha}(x) d x\right] .
$$

- Indeed, heuristically,

$$
\nu \propto e^{-\frac{1}{2}|\dot{h}|^{2}} d h \text { and } D_{h^{\alpha}(x)} e^{-\frac{1}{2}|\dot{h}|^{2}}=\ddot{h}^{\alpha}(x) e^{-\frac{1}{2}|\dot{h}|^{2}} .
$$

- c has the following properties:
(1) (bilinearity) $c_{\alpha}^{\beta \gamma}=c_{\alpha}^{\gamma \beta}$
(2) (integration by parts on \mathbb{T}) $c_{\alpha}^{\beta \gamma}+c_{\beta}^{\gamma \alpha}+c_{\gamma}^{\alpha \beta}=0$
- In particular, $c_{\alpha}^{\alpha \alpha}=0,{ }^{\forall} \alpha$. When $d=1$, this implies $(S T)_{\mathcal{A}}: \int \mathcal{A} \Phi d \nu=0$ for ${ }^{\forall} \Phi$.
- If Γ satisfies (T), by (2) for $c_{\alpha}^{\beta \gamma}$

$$
\Gamma_{\beta \gamma}^{\alpha} c_{\alpha}^{\beta \gamma}=\frac{1}{3} \Gamma_{\beta \gamma}^{\alpha}\left(c_{\alpha}^{\beta \gamma}+c_{\beta}^{\gamma \alpha}+c_{\gamma}^{\alpha \beta}\right)=0
$$

Therefore, (T) implies $(S T)_{\mathcal{A}}$.

- Conversely, (ST) $)_{\mathcal{A}}$ implies (T). In fact, by (2) for $c_{\alpha}^{\beta \gamma}$

$$
\begin{aligned}
& 0 \\
&{ }_{(S T} \overline{\bar{T}}_{\mathcal{A}}-2 \int \mathcal{A} \Phi d \nu=\Gamma_{\beta \gamma}^{\alpha} c_{\alpha}^{\beta \gamma} \\
&=\sum_{\alpha \neq \beta}\left(\Gamma_{\beta \beta}^{\alpha}-\Gamma_{\alpha \beta}^{\beta}\right) c_{\alpha}^{\beta \beta}+2 \sum_{\alpha>\beta>\gamma}\left(\Gamma_{\beta \gamma}^{\alpha}-\Gamma_{\alpha \beta}^{\gamma}\right) c_{\alpha}^{\beta \gamma} \\
&+2 \sum_{\beta>\alpha>\gamma}\left(\Gamma_{\beta \gamma}^{\alpha}-\Gamma_{\alpha \beta}^{\gamma}\right) c_{\alpha}^{\beta \gamma}
\end{aligned}
$$

and $c_{\alpha}^{\beta \beta}, c_{\alpha}^{\beta \gamma}(\alpha>\beta>\gamma, \beta>\alpha>\gamma)$ move freely.

- Ertaș-Kardar's example does not satisfy (T), but has an invariant measure. This should be "non-separating class" (i.e. $(S T)_{\mathcal{L}} \Longleftrightarrow(S T)_{\mathcal{L}_{0}}+(S T)_{\mathcal{A}}$ does not hold) and the invariant measure is presumably non-Gaussian (but has Gaussian marginal).

6. Extensions of Ertaș-Kardar's example

We give extensions to d-component system.
Extension-1: nonlinear term decoupling to scalar-KPZ eq's (but noise term is correlated)

- If Γ has the form

$$
\Gamma_{\beta \gamma}^{\alpha}=\sum_{\alpha^{\prime}}\left(s^{-1}\right)_{\alpha^{\prime}}^{\alpha} \alpha_{\beta}^{\alpha^{\prime}} s_{\gamma}^{\alpha^{\prime}}
$$

with invertible matrix s, the nonlinear term of the coupled KPZ equation is decoupled for $\hat{h}^{\alpha}=s_{\beta}^{\alpha} h^{\beta}$

$$
\begin{equation*}
\partial_{t} \hat{h}^{\alpha}=\frac{1}{2} \partial_{x}^{2} \hat{h}^{\alpha}+\frac{1}{2}\left(\partial_{x} \hat{h}^{\alpha}\right)^{2}+s_{\beta}^{\alpha} \sigma_{\gamma}^{\beta} \dot{W}^{\gamma} \tag{EK}
\end{equation*}
$$

- The above 「 may not satisfy the trilinear condition.
- However, since nonlinear term is decoupled in (EK) $)_{\text {ext }}$, the Cole-Hopf transform $Z^{\alpha}=\exp \hat{h}^{\alpha}$ works for each component so that global well-posedness (global existence of h in time) follows.
- Moreover, Log-renormalization factors are unnecessary.
- Invariant measure exists whose marginals are Wiener measures (with diffusion coefficients), but the joint distribution of such invariant measure is unclear.

Extension-2: nonlinear term decoupling to coupled KPZ eq's satisfying (T) (but noise term is correlated)

- Consider KPZ ($\sigma=І, Г$).
- This has an invariant measure if ${ }^{\exists} s \in G L(d)$, ${ }^{\exists}$ decomposition $\Delta=\cup_{i=1}^{k} I_{i}$ (disjoint) of $\{1, \ldots, d\}$ such that
- $s \circ \Gamma$ is decoupled under Δ,

$$
\text { i.e., }(s \circ \Gamma)_{\beta \gamma}^{\alpha}=0 \text { if }\{\alpha, \beta, \gamma\} \not \subset I_{i} \text { for } \forall_{i}
$$

- $\left(\sigma_{i},\left.s \circ \Gamma\right|_{i}\right)$ are trilinear i.e., $\sigma_{i} \in G L\left(\left|l_{i}\right|\right)$ and $\sigma_{i} \circ\left(s \circ \Gamma| |_{i}\right)$ satisfy (T),
where $\sigma_{i}=\sqrt{\left(\sum_{\gamma=1}^{d} s_{\gamma}^{\alpha} s_{\gamma}^{\beta}\right)_{\alpha, \beta \in l_{i}}}$ and $\left.\Gamma\right|_{I_{i}}=\left.\left(\Gamma_{\beta \gamma}^{\alpha}\right)\right|_{\alpha, \beta, \gamma \in l_{i}}$.
- Γ does not satisfy (T) in general.

One can prove infinitesimal invariance for subclasses of Φ.
(e.g., reflection-inv or shift-inv for each component)

Conjecture: For every Г, invariant measure exists.
7. Proof of Theorems 1 and 2

Besov space and paraproducts
First we quickly introduce Besov space and paraproducts due to Fourier analysis. Basic reference is
Gubinelli-Imkeller-Perkowski, Forum Math., Pi, 3, 2015.
Dyadic partition of unity

- χ, ρ : symmetric functions on \mathbb{R} such that
- $\operatorname{supp} \chi \subset\left[-\frac{4}{3}, \frac{4}{3}\right]$
- $\operatorname{supp} \rho \subset\left[-\frac{8}{3},-\frac{3}{4}\right] \cup\left[\frac{3}{4}, \frac{8}{3}\right]$
- $\sum_{j=-1}^{\infty} \rho_{j}(z)=1$, where $\rho_{-1}(z):=\chi(z), \rho_{j}(z)=\rho\left(\frac{z}{2^{j}}\right), j \geq 0$
$-\operatorname{supp} \rho_{i} \cap \operatorname{supp} \rho_{j}=\emptyset$ if $|i-j| \geq 2$

Littlewood-Paley blocks

- \mathcal{F} : Fourier transform for $u \in \mathcal{S}^{\prime}(\mathbb{R})$
- $\Delta_{j} u:=\mathcal{F}^{-1}\left(\rho_{j} \mathcal{F} u\right), \quad j \geq-1$
- Note $u=\sum_{j=-1}^{\infty} \Delta_{j} u$ for any $u \in \mathcal{S}^{\prime}(\mathbb{R})$.

Besov space scalar-valued case (i.e. $d=1$), $\kappa \in \mathbb{R}$
$-\mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{R}):=\left\{u \in \mathcal{S}^{\prime}(\mathbb{R}) ;\|u\|_{\mathcal{B}_{\infty, \infty}^{\kappa}}<\infty\right\}$, where

$$
\|u\|_{\mathcal{B}_{\infty, \infty}^{\kappa}}:=\sup _{j \geq-1} 2^{j \kappa}\left\|\Delta_{j} u\right\|_{L^{\infty}(\mathbb{R})} .
$$

- $\mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{T})$ is a class of $u \in \mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{R})$ which are periodic with period 1 (or sometimes 2π)
- We denote $C^{\kappa}:=\mathcal{B}_{\infty, \infty}^{\kappa}(\mathbb{T})$.
- In particular, for $\kappa \in(0, \infty) \backslash \mathbb{N}$,

$$
C^{\kappa}=\left\{u \in C_{b}^{k} ; \partial_{x}^{k} u \text { is }(\kappa-k) \text {-Hölder continuous }\right\}
$$

where $k=[\kappa]$ is the integer part of κ.

- Note that for $\kappa \in \mathbb{N}, C_{b}^{\kappa} \subsetneq C^{\kappa}$.
- Recall $\mathcal{C}^{\kappa}=\left(C^{\kappa}(\mathbb{T})\right)^{d}$ denotes \mathbb{R}^{d}-valued Besov space.

Bony's paraproducts scalar-valued case

- For two distributions $f, g \in \mathcal{S}^{\prime}(\mathbb{T})$
- $f \prec g:=\sum_{i, j=-1: i \leq j-2}^{\infty} \Delta_{i} f \Delta_{j} g$: paraproduct
- $f \circ g:=\sum_{i, j=-1:|i-j| \leq 1}^{\infty} \Delta_{i} f \Delta_{j} g$: resonant term
- Littlewood-Paley decomposition of product $f g$:

$$
f g=f \prec g+f \circ g+g \prec f
$$

- (Bony's estimates)
- $a \lesssim b$ means $a \leq{ }^{\exists} C b$
- For $\alpha>0$ and $\beta \in \mathbb{R},\|u \prec v\|_{C^{\beta}} \lesssim\|u\|_{L^{\infty}}\|v\|_{C^{\beta}}$.
- For $\alpha \neq 0$ and $\beta \in \mathbb{R},\|u \prec v\|_{C^{(\alpha \wedge 0)+\beta}} \lesssim\|u\|_{C^{\alpha}}\|v\|_{C^{\beta}}$.
- For $\alpha+\beta>0,\|u \circ v\|_{C^{\alpha+\beta}} \lesssim\|u\|_{C^{\alpha}}\|v\|_{C^{\beta}}$.
- Mollifier estimates (how mollifier improves regularity, convergence as $\varepsilon \downarrow 0$), Schauder estimates (how parabolic operator improves regularity), commutator estimates (commutator makes sense, even if each term has no meaning)

Driving terms \mathbb{H}, local-in-time solvability and continuity in \mathbb{H}

- We think of the noise as the leading term and the nonlinear term as its perturbation by putting (small parameter) $a>0$ in front of the nonlinear term, though we eventually take $a=1$.

$$
\mathcal{L} h^{\alpha}=\frac{a}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\dot{W}^{\alpha}
$$

where $\mathcal{L}=\partial_{t}-\frac{1}{2} \partial_{x}^{2}$.

- We expand the solution h of the coupled KPZ eq $(I, \Gamma)_{K P Z}$ in $a: h^{\alpha}=\sum_{k=0}^{\infty} a^{k} h_{k}^{\alpha}$. Then, we have

$$
\sum_{k=0}^{\infty} a^{k} \mathcal{L} h_{k}^{\alpha}=\dot{W}^{\alpha}+\frac{a}{2} \sum_{k_{1}, k_{2}=0}^{\infty} a^{k_{1}+k_{2}} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{k_{1}}^{\beta} \partial_{x} h_{k_{2}}^{\gamma}
$$

- Comparing the terms of order $a^{0}, a^{1}, a^{2}, a^{3}, \ldots$ in both sides and noting the bilinearity condition (B), we obtain the followings:

$$
\begin{aligned}
\mathcal{L} h_{0}^{\alpha} & =\dot{W}^{\alpha} \\
\mathcal{L} h_{1}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{0}^{\beta} \partial_{x} h_{0}^{\gamma}, \\
\mathcal{L} h_{2}^{\alpha} & =\Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{0}^{\beta} \partial_{x} h_{1}^{\gamma}, \\
\mathcal{L} h_{3}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{1}^{\beta} \partial_{x} h_{1}^{\gamma}+\Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{0}^{\beta} \partial_{x} h_{2}^{\gamma},
\end{aligned}
$$

- $h_{0}^{\alpha} \in C^{\frac{1}{2}-}$ is linear OU (Ornstein-Uhlenbeck)-process and well-defined:

$$
\begin{aligned}
h_{0}^{\alpha}(t, x)= & \int_{0}^{t} \int_{\mathbb{T}} p(t-s, x, y) d W^{\alpha}(s, y) d y \\
& +\int_{\mathbb{T}} h_{0}^{\alpha}(0, y) p(t, x, y) d y
\end{aligned}
$$

where p is the heat kernel on \mathbb{T}.

- To define h_{1}^{α}, we need to define the product $\partial_{x} h_{0}^{\beta} \partial_{x} h_{0}^{\gamma}$ (product of two generalized functions), but this is ill-defined.
- Indeed, h_{0}^{α} is a 1st order Wiener functional (chaos) of \dot{W}, so that $\partial_{x} h_{0}^{\beta} \partial_{x} h_{0}^{\gamma}$ is considered as a sum of (2nd +0 th) order Wiener chaos of W.
- To define h_{1}^{α}, similarly as we did in Lecture No 3, we take only 2nd order part and cut the diverging 0th order part.
- This procedure corresponds to the renormalization (\rightarrow see below).
- Assume $h_{1}^{\alpha} \in C^{1-}$ (and $\in \mathcal{H}_{2}$) is defined in the above sense (note $-\frac{1}{2}-\frac{1}{2}+2=1,+2$ is by Schauder effect).
- $h_{2}^{\alpha} \in C^{\frac{3}{2}-}\left(\right.$ and $\left.\in \mathcal{H}_{3} \oplus \mathcal{H}_{1}\right)\left(\right.$ note $\left.-\frac{1}{2}+0+2=\frac{3}{2}\right)$.
- We denote $h_{0}^{\alpha}, h_{1}^{\alpha}, h_{2}^{\alpha}$ with stationary initial values by $H_{0}^{\alpha}, H_{1}^{\alpha}, H_{2}^{\alpha}$ and call driving terms.
- After defining $H_{0}^{\alpha}, H_{1}^{\alpha}, H_{2}^{\alpha}$ in the above way, the KPZ equation for $h^{\alpha}=H_{0}^{\alpha}+H_{1}^{\alpha}+H_{2}^{\alpha}+h_{\geq 3}^{\alpha}$ can be rewritten as

$$
\begin{equation*}
\mathcal{L} h_{\geq 3}^{\alpha}=\Phi^{\alpha}+\mathcal{L} h_{3}^{\alpha}, \tag{5}
\end{equation*}
$$

where $\Phi^{\alpha}=\Phi^{\alpha}\left(H_{0}, H_{1}, H_{2}, h_{\geq 3}\right)$ is given by

$$
\begin{aligned}
\Phi^{\alpha}= & \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{\geq 3}^{\beta} \partial_{x} H_{0}^{\gamma}+\Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} H_{2}^{\beta}+\partial_{x} h_{\geq 3}^{\beta}\right) \partial_{x} H_{1}^{\gamma} \\
& +\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} H_{2}^{\beta}+\partial_{x} h_{\geq 3}^{\beta}\right)\left(\partial_{x} H_{2}^{\gamma}+\partial_{x} h_{\geq 3}^{\gamma}\right) .
\end{aligned}
$$

- To define $h_{\geq 3}^{\alpha}$, we need to introduce four more objects as driving terms:
$H_{3,1}^{\beta \gamma}=\frac{1}{2} \partial_{x} H_{1}^{\beta} \partial_{x} H_{1}^{\gamma}$,

$$
H_{3,2}^{\beta \gamma}=\partial_{x} H_{0}^{\beta} \circ \partial_{x} H_{2}^{\gamma}
$$

$$
H_{3,3}^{\alpha}=\text { solution of " } \mathcal{L} H_{3,3}^{\alpha}=\partial_{x} H_{0}^{\alpha "}, \quad H_{3,4}^{\beta \gamma}=\partial_{x} H_{3,3}^{\beta} \circ \partial_{x} H_{0}^{\gamma}
$$

- First two terms $H_{3,1}^{\beta \gamma}, H_{3,2}^{\beta \gamma}\left(\in \mathcal{H}_{4} \oplus \mathcal{H}_{2}\right)$ appear in h_{3}^{α}.
- $H_{3,3}^{\alpha}, H_{3,4}^{\beta \gamma}$ appear to solve (5), to take care of $\partial_{x} H_{0}^{\gamma}$ in Φ^{α}.
- $\mathbb{H}:=\left(H_{0}^{\alpha}, H_{1}^{\alpha}, H_{2}^{\alpha}, H_{3,1}^{\beta \gamma}, H_{3,2}^{\beta \gamma}, H_{3,3}^{\alpha}, H_{3,4}^{\beta \gamma}\right)$ are called driving terms. The class of driving terms $\mathcal{H}_{K P Z}^{\kappa}$ is defined for $\kappa \in\left(\frac{1}{3}, \frac{1}{2}\right)$ (i.e. $\kappa=\frac{1}{2}-$) as follows:

$$
\begin{aligned}
\mathcal{H}_{\kappa P Z}^{\kappa}= & C\left([0, T], \mathcal{C}^{\kappa}\right) \times C\left([0, T], \mathcal{C}^{2 \kappa}\right) \\
& \times\left\{C\left([0, T], \mathcal{C}^{\kappa+1}\right) \cap C^{\frac{1-\kappa}{2}}\left([0, T], \mathcal{C}^{2 \kappa}\right)\right\} \\
& \times C\left([0, T], \mathcal{C}^{2 \kappa-1}\right) \times C\left([0, T], \mathcal{C}^{2 \kappa-1}\right) \\
& \times C\left([0, T], \mathcal{C}^{\kappa+1}\right) \times C\left([0, T], \mathcal{C}^{2 \kappa-1}\right)
\end{aligned}
$$

- Once \mathbb{H} is given, the rest can be analyzed by deterministic argument.
- The following theorem (deterministic part) is due to the paracontrolled calculus and fixed point theorem.

Theorem 4
Let $\mathbb{H} \in \mathcal{H}_{\text {KPZ }}^{\kappa}$ be given. Then, the above equation (5) for $h_{\geq 3}$ is solvable (in a proper space controlled by driving terms) up to time $T=T\left(\left\|h_{\geq 3}(0)\right\|_{\mu+1},\|\mathbb{H}\|\right), \mu \in\left(\frac{1}{3}, \kappa\right)$ and the solution map $h=S\left(h_{\geq 3}(0), \mathbb{H}\right)$ is continuous in $\left(h_{\geq 3}(0), \mathbb{H}\right)$.

Renormalizations

(1) Coupled KPZ Approximating equation-1

- By replacing \dot{W}^{α} by $\dot{W}^{\alpha} * \eta^{\varepsilon}$ and introducing the renormalization factors $c^{\varepsilon} \delta^{\beta \gamma}, C^{\beta \gamma}, D^{\beta \gamma}$, we have the expansion for the coupled KPZ approx. eq-1 (simple) (3):

$$
\begin{aligned}
\mathcal{L} h_{0}^{\alpha} & =\dot{W}^{\alpha} * \eta^{\varepsilon}, \\
\mathcal{L} h_{1}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h_{0}^{\beta} \partial_{x} h_{0}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}\right), \\
\mathcal{L} h_{2}^{\alpha} & =\Gamma_{\beta \gamma}^{\alpha} \partial_{x} h_{0}^{\beta} \partial_{x} h_{1}^{\gamma}, \\
\mathcal{L} h_{3}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h_{1}^{\beta} \partial_{x} h_{1}^{\gamma}-C^{\varepsilon, \beta \gamma}\right)+\Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h_{0}^{\beta} \partial_{x} h_{2}^{\gamma}-D^{\varepsilon, \beta \gamma}\right) .
\end{aligned}
$$

- See next pages for renormalization constants $C^{\varepsilon}, C^{\varepsilon, \beta \gamma}, D^{\varepsilon, \beta \gamma}$.
- From this, we see that $h^{\varepsilon}=\left(h^{\varepsilon, \alpha}\right):=S\left(h_{\geq 3}(0), \mathbb{H}^{\varepsilon}\right)$ solves $\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-C^{\varepsilon, \beta \gamma}-2 D^{\varepsilon, \beta \gamma}\right)+\dot{W}^{\alpha} * \eta^{\varepsilon}$, i.e., (3) with

$$
B^{\varepsilon, \beta \gamma}=C^{\varepsilon, \beta \gamma}+2 D^{\varepsilon, \beta \gamma} .
$$

- Theorem 4 (especially, continuity in \mathbb{H}) combined with the convergence of driving terms \mathbb{H}^{ε} (multiple Wiener integrals in \dot{W}^{α} s cut 0th order terms) to \mathbb{H} shows Theorem 1-(1).
- We especially see how c^{ε} is determined.
- The stationary solution $h_{0}^{\alpha} \in C^{\frac{1}{2}-}$ of the first equation " $\mathcal{L} h_{0}^{\alpha}=\dot{W}^{\alpha} * \eta^{\varepsilon "}$ is given by

$$
h_{0}^{\alpha}(t, x)=\int_{-\infty}^{t} \int_{\mathbb{T}} p(t-s, x, y) d\left(W^{\alpha} * \eta^{\varepsilon}\right)(s, y) d y
$$

where p is the heat kernel on $\mathbb{T} . \dot{W}(t, x)$ is extended for $t<0$ as an \mathbb{R}^{d}-valued space-time Gaussian white noise on $\mathbb{R} \times \mathbb{T}$.

- The renormalization constant c^{ε} is defined by

$$
c^{\varepsilon}=E\left[\left(\partial_{x} h_{0}^{\alpha}(t, x)\right)^{2}\right] .
$$

Note $E\left[\partial_{x} h_{0}^{\beta}(t, x) \partial_{x} h_{0}^{\gamma}(t, x)\right]=0$ if $\beta \neq \gamma$.

- Since

$$
\partial_{x} h_{0}^{\alpha}(t, x)=\int_{-\infty}^{t} \int_{\mathbb{T}} d y \int_{\mathbb{T}} \partial_{x} p(t-s, x, y) \eta^{\varepsilon}(y-z) d W^{\alpha}(s, z) d z
$$

we have by Itô isometry

$$
c^{\varepsilon}=\int_{-\infty}^{t} d s \int_{\mathbb{T}} d z\left(\int_{\mathbb{T}} \partial_{x} p(t-s, x, y) \eta^{\varepsilon}(y-z) d y\right)^{2}
$$

- Thus, using Chapman-Kolmogorov identity,

$$
\begin{aligned}
c^{\varepsilon}= & \int_{0}^{\infty} d s \int_{\mathbb{T}} d z\left(\int_{\mathbb{T}} \partial_{x} p\left(s, x, y_{1}-z\right) \eta^{\varepsilon}\left(y_{1}\right) d y_{1}\right) \\
& \times\left(\int_{\mathbb{T}} \partial_{x} p\left(s, x, y_{2}-z\right) \eta^{\varepsilon}\left(y_{2}\right) d y_{2}\right) \\
= & \int_{0}^{\infty} d s \int_{\mathbb{T}^{2}} \partial_{x}^{2} p\left(2 s, y_{1}, y_{2}\right) \eta^{\varepsilon}\left(y_{1}\right) \eta^{\varepsilon}\left(y_{2}\right) d y_{1} d y_{2} \\
= & -\int_{0}^{\infty} d s \int_{\mathbb{T}^{2}} \partial_{s} p\left(2 s, y_{1}, y_{2}\right) \eta^{\varepsilon}\left(y_{1}\right) \eta^{\varepsilon}\left(y_{2}\right) d y_{1} d y_{2} \\
= & \int_{\mathbb{T}^{2}}^{\varepsilon} \eta^{\varepsilon}\left(y_{1}\right) \eta^{\varepsilon}\left(y_{2}\right)\left(\delta\left(y_{1}-y_{2}\right)-1\right) d y_{1} d y_{2} \\
= & \left\|\eta^{\varepsilon}\right\|_{L^{2}(\mathbb{T})}^{2}-1 .
\end{aligned}
$$

- - 1 appears on \mathbb{T}, but not on \mathbb{R}.
- In terms of Fourier transform, we also have the following formula:

$$
c^{\varepsilon}=\sum_{k \neq 0} \varphi_{\varepsilon}^{2}(k)
$$

where $\varphi(k)=\mathcal{F} \eta(k), \varphi_{\varepsilon}(k)=\varphi(\varepsilon k)$.

- In fact, by Plancherel's identity and noting $\varphi_{\varepsilon}(0)=1$, this also shows $c^{\varepsilon}=\left\|\eta^{\varepsilon}\right\|_{L^{2}(\mathbb{T})}^{2}-1$.
- Similarly, and using diagram formula similar to Lecture No 3 but now in the noise $\dot{W}(t, x)$, the fourth order renormalization factors can be computed as

$$
\begin{aligned}
& C^{\varepsilon, \beta \gamma}=F^{\beta \gamma} C^{\varepsilon} \text { with } C^{\varepsilon}=\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}}^{*} \frac{\varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2}}{k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}}, \\
& D^{\varepsilon, \beta \gamma}=G^{\beta \gamma} D^{\varepsilon} \text { with } D^{\varepsilon}=-\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}}^{*} \frac{\left(k_{1}+k_{2}\right) \varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2}}{k_{2}\left(k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}\right)},
\end{aligned}
$$

where $\varphi(k)=\mathcal{F} \eta(k), \varphi_{\varepsilon}(k)=\varphi(\varepsilon k), \sum^{*}$ means the sum over k_{1}, k_{2} s.t. $k_{1} \neq 0, k_{2} \neq 0, k_{1}+k_{2} \neq 0$ and

$$
\begin{aligned}
& F^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma}, \\
& G^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma_{2}} .
\end{aligned}
$$

- Remark: Our notation and those in [Hairer, Gubinelli, ...] studying the case $d=1$ (i.e. scalar-valued case) correspond with each other as follows:

$$
\begin{aligned}
& H_{0}=X_{\epsilon}^{\mathbf{\}}, H_{1}=X_{\epsilon}^{Y}, H_{2}=X_{\epsilon}^{Y}, h_{\geq 3}=X_{\epsilon}^{\text {㐅у }}+X_{\epsilon}^{\text {Y }}+\cdots, \\
& c^{\varepsilon} \delta^{\beta \gamma}=c_{\epsilon}^{\vee}, C^{\varepsilon, \beta \gamma}=c_{\epsilon}^{\text {ソУ }}, D^{\varepsilon, \beta \gamma}=c_{\epsilon}^{\text {४ }} .
\end{aligned}
$$

(2) Coupled KPZ Approximating equation-2

- We do similar for the coupled KPZ equation with $* \eta_{2}^{\varepsilon}$ for the nonlinear term. Then, by the expansion, we have

$$
\begin{aligned}
\mathcal{L} \tilde{h}_{0}^{\alpha} & =\dot{W}^{\alpha} \\
\mathcal{L} \tilde{h}_{1}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{0}^{\gamma}\right) * \eta_{2}^{\varepsilon} \\
\mathcal{L} \tilde{h}_{2}^{\alpha} & =\Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{1}^{\gamma}\right) * \eta_{2}^{\varepsilon} \\
\mathcal{L} \tilde{h}_{3}^{\alpha} & =\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{1}^{\beta} \partial_{x} \tilde{h}_{1}^{\gamma}\right) * \eta_{2}^{\varepsilon}+\Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{2}^{\gamma}\right) * \eta_{2}^{\varepsilon}
\end{aligned}
$$

Theorem 5

There exists a solution map $\tilde{h}=S_{\varepsilon}\left(h_{\geq 3}(0), \mathbb{H}\right)$. Note that S_{ε} means that the equation has the factor $* \eta_{2}^{\varepsilon}$.
Furthermore, we have:
Theorem 6
If $h_{\geq 3}^{\varepsilon}(0) \rightarrow h_{\geq 3}(0)$ in $\mathcal{C}^{\mu+1}$ and $\mathbb{H}^{\varepsilon} \rightarrow \mathbb{H}$ in $\mathcal{H}_{K P Z}^{\kappa}$, then we have that $S_{\varepsilon}\left(h_{\geq 3}^{\varepsilon}(0), \mathbb{H}^{\varepsilon}\right) \rightarrow S\left(h_{\geq 3}(0), \mathbb{H}\right)$.

- By replacing \dot{W}^{α} by $\dot{W}^{\alpha} * \eta^{\varepsilon}$ and introducing the renormalization factors $-c^{\varepsilon} \delta^{\beta \gamma}, \tilde{C}^{\beta \gamma}, \tilde{D}^{\beta \gamma}$, we have the expansion related to the coupled KPZ approx. eq-2 (suitable for studying inv measures) (4):
$\mathcal{L} \tilde{h}_{0}^{\alpha}=\dot{W}^{\alpha} * \eta^{\varepsilon}$,
$\mathcal{L} \tilde{h}_{1}^{\alpha}=\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{0}^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}\right) * \eta_{2}^{\varepsilon}$,
$\mathcal{L} \tilde{h}_{2}^{\alpha}=\Gamma_{\beta \gamma}^{\alpha} \partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{1}^{\gamma} * \eta_{2}^{\varepsilon}$,
$\mathcal{L} \tilde{h}_{3}^{\alpha}=\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{1}^{\beta} \partial_{x} \tilde{h}_{1}^{\gamma}-\tilde{C}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} \tilde{h}_{0}^{\beta} \partial_{x} \tilde{h}_{2}^{\gamma}-\tilde{D}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}$.
- From this, we see that $\tilde{h}^{\varepsilon}=\left(\tilde{h}^{\varepsilon, \alpha}\right):=S_{\varepsilon}\left(h_{\geq 3}(0), \mathbb{H}^{\varepsilon}\right)$ solves
$\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} \delta^{\beta \gamma}-\tilde{C}^{\varepsilon, \beta \gamma}-2 \tilde{D}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\alpha} * \eta^{\varepsilon}$,
i.e., (4) with

$$
\tilde{B}^{\varepsilon, \beta \gamma}=\tilde{C}^{\varepsilon, \beta \gamma}+2 \tilde{D}^{\varepsilon, \beta \gamma} .
$$

- Theorems 5, 6 together with the convergence of driving terms show Theorem 1-(2).

Difference of solutions of two approximating eq- 1 and -2

- We show Theorem 2-(1).
- From the above computation, the difference of solutions of two approximating equations with $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}=0$ are given by

$$
\tilde{h}_{\tilde{B}=0}^{\varepsilon, \alpha}-h_{B=0}^{\varepsilon, \alpha}=\left(\tilde{h}_{\tilde{B}}^{\varepsilon, \alpha}-h_{B}^{\varepsilon, \alpha}\right)+\frac{t}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\tilde{B}^{\varepsilon, \beta \gamma}-B^{\varepsilon, \beta \gamma}\right)
$$

and by Theorem 1-(2), $\left(\tilde{h}_{\tilde{B}}^{\varepsilon, \alpha}-h_{B}^{\varepsilon, \alpha}\right) \rightarrow 0$.

- In particular, we have

$$
\lim _{\varepsilon \nless 0}\left(\tilde{h}_{\tilde{B}=0}^{\varepsilon, \alpha}-h_{B=0}^{\varepsilon, \alpha}\right)=\frac{t}{2} \Gamma_{\beta \gamma}^{\alpha} \lim _{\varepsilon \downarrow 0}\left(\tilde{B}^{\varepsilon, \beta \gamma}-B^{\varepsilon, \beta \gamma}\right) .
$$

- We can explicitly compute the renormalization factors:

$$
\begin{aligned}
& C^{\varepsilon, \beta \gamma}=F^{\beta \gamma} C^{\varepsilon} \text { with } C^{\varepsilon}=\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}}^{*} \frac{\varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2}}{k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}}, \\
& D^{\varepsilon, \beta \gamma}=G^{\beta \gamma} D^{\varepsilon} \text { with } D^{\varepsilon}=-\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}}^{*} \frac{\left(k_{1}+k_{2}\right) \varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2}}{k_{2}\left(k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}\right)}, \\
& \tilde{C}^{\varepsilon, \beta \gamma}=F^{\beta \gamma} \tilde{C}^{\varepsilon} \text { with } \tilde{C}^{\varepsilon}=\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}}^{*} \frac{\varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2} \varphi_{\varepsilon}\left(k_{1}+k_{2}\right)^{4}}{k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}},
\end{aligned}
$$

$$
\tilde{D}^{\varepsilon, \beta \gamma}=G^{\beta \gamma} \tilde{D}^{\varepsilon} \text { with } \tilde{D}^{\varepsilon}=-\frac{1}{4 \pi^{2}} \sum_{k_{1}, k_{2}} \frac{\left(k_{1}+k_{2}\right) \varphi_{\varepsilon}\left(k_{1}\right)^{2} \varphi_{\varepsilon}\left(k_{2}\right)^{2} \varphi_{\varepsilon}\left(k_{1}+k_{2}\right)^{4}}{k_{2}\left(k_{1}^{2}+k_{1} k_{2}+k_{2}^{2}\right)}
$$

where $\varphi(k)=\mathcal{F} \eta(k), \varphi_{\varepsilon}(k)=\varphi(\varepsilon k), \sum^{*}$ means the sum over k_{1}, k_{2} s.t. $k_{1} \neq 0, k_{2} \neq 0, k_{1}+k_{2} \neq 0$ and

$$
\begin{aligned}
& F^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma}, \\
& G^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma_{2}} .
\end{aligned}
$$

- Assume the trilinear condition (T). Then, as we already saw, we have

$$
F^{\beta \gamma}=G^{\beta \gamma}=\Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma} .
$$

- Thus,

$$
\begin{aligned}
\tilde{B}^{\varepsilon, \beta \gamma}-B^{\varepsilon, \beta \gamma} & =\left(\tilde{C}^{\varepsilon, \beta \gamma}+2 \tilde{D}^{\varepsilon, \beta \gamma}\right)-\left(C^{\varepsilon, \beta \gamma}+2 D^{\varepsilon, \beta \gamma}\right) \\
& =F^{\beta \gamma}\left(\left(\tilde{C}^{\varepsilon}+2 \tilde{D}^{\varepsilon}\right)-\left(C^{\varepsilon}+2 D^{\varepsilon}\right)\right)
\end{aligned}
$$

- However, by the explicit computation (for scalar-valued case),

$$
\tilde{C}^{\varepsilon}+2 \tilde{D}^{\varepsilon}=0, \quad C^{\varepsilon}+2 D^{\varepsilon}=-\frac{1}{12}+O(\varepsilon)
$$

- Therefore, in the limit, we have

$$
\tilde{h}_{\tilde{B}=0}^{\alpha}(t, x)=h_{B=0}^{\alpha}(t, x)+c^{\alpha} t, \quad 1 \leq \alpha \leq d,
$$

where

$$
c^{\alpha}:=\frac{1}{24} \Gamma_{\beta \gamma}^{\alpha} F^{\beta \gamma}=\frac{1}{24} \sum_{\gamma_{1}, \gamma_{2}} \Gamma_{\beta \gamma}^{\alpha} \Gamma_{\gamma_{1} \gamma_{2}}^{\beta} \Gamma_{\gamma_{1} \gamma_{2}}^{\gamma} .
$$

- This concludes the proof of Theorem 2-(1).
- We finally give the outline of the proof of Theorem 2-(2).
- We actually consider the coupled KPZ-Burgers equation for $u^{\alpha}:=\partial_{x} h^{\alpha}$ as in Lecture No 3.
- We move to the Fourier mode $\left\{u^{\alpha, k}\right\}_{k \in \mathbb{Z}}$ and introduce a cut-off, i.e. we use Galerkin approximation.
- We show the infinitesimal invariance of Gaussian measure with cut-off by applying Echeveria's criterion for the finite-dimensional SDE. Trilinear condition (T) is essential (as we saw at least heuristically above).
- Moreover, the energy estimate holds uniformly in cut-off by noting that the nonlinear term cancels under (T).
- We finally take the limit.

8. Remarks for the case with diffusion constant σ

- Coupled KPZ approx. eq-1: Simple

$$
\begin{equation*}
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} A^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} * \eta^{\varepsilon}, \tag{6}
\end{equation*}
$$

where $A^{\beta \gamma}=\sum_{\delta=1}^{d} \sigma_{\delta}^{\beta} \sigma_{\delta}^{\gamma}, c^{\varepsilon}=\frac{1}{\varepsilon}\|\eta\|_{L^{2}(\mathbb{R})}^{2}-1$ and $B^{\varepsilon, \beta \gamma}$
$(=O(-\log \varepsilon)$ in general) is another renormalization factor.

- Coupled KPZ approx. eq-2: suitable for studying inv measures

$$
\begin{equation*}
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} A^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon} \quad+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} * \eta^{\varepsilon}, \tag{7}
\end{equation*}
$$

with a renormalization factor $\tilde{B}^{\varepsilon, \beta \gamma}$.

- For the solution of (7) (with $\tilde{B}=0$), F ('15, Yor volume) showed (on \mathbb{R}), under the additional (trilinear) condition:

$$
\begin{equation*}
\hat{\Gamma}_{\beta \gamma}^{\alpha}=\hat{\Gamma}_{\alpha \beta}^{\gamma}=\hat{\Gamma}_{\beta \alpha}^{\gamma} \tag{8}
\end{equation*}
$$

for all $\alpha, \beta \gamma$ (second equality is by bilinearity), where

$$
\hat{\Gamma}_{\beta \gamma}^{\alpha}:=\tau_{\alpha^{\prime}}^{\alpha}{ }^{\prime} \alpha_{\beta^{\prime} \gamma^{\prime}}^{\prime^{\prime}} \sigma_{\beta}^{\beta^{\prime}} \sigma_{\gamma}^{\gamma^{\prime}}, \quad \sigma^{-1},
$$

the (infinitesimal) invariance of the distribution of $(\sigma B) * \eta^{\varepsilon}(x)$, where B is the \mathbb{R}^{d}-valued two-sided Brownian motion (with $x \in \mathbb{R}$).

- Our goal is to study the limits of the solutions of (6) and (7) as $\varepsilon \downarrow 0$.

Theorem 1 holds with σ_{β}^{α}.

Theorem 7 (cf. Theorem 2)

Assume trilinear condition (8). Then, $B^{\varepsilon, \beta \gamma}, \tilde{B}^{\varepsilon, \beta \gamma}=O(1)$ so that the solutions of (6) with $B=0$ and (7) with $\tilde{B}=0$ converge. In the limit, we have
where

$$
\tilde{h}^{\alpha}(t, x)=h^{\alpha}(t, x)+c^{\alpha} t, \quad 1 \leq \alpha \leq d
$$

$$
c^{\alpha}=\frac{1}{24} \sum_{\gamma, \gamma^{\prime}} \sigma_{\beta}^{\alpha} \hat{\Gamma}_{\alpha^{\prime} \alpha^{\prime \prime}}^{\beta} \hat{\Gamma}_{\gamma \gamma^{\prime}}^{\alpha^{\prime}} \hat{\Gamma}_{\gamma \gamma^{\prime}}^{\alpha^{\prime \prime}}
$$

Moreover, the distribution of $\{\sigma B\}_{x \in \mathbb{T}}$ (note: infinite measure) is invariant under h. Or, the distribution of $\left\{\sigma \partial_{x} B\right\}_{x \in \mathbb{T}}$ (finite measure) is invariant under the tilt process $\partial_{x} h$.

$$
\begin{align*}
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} A^{\beta \gamma}-B^{\varepsilon, \beta \gamma}\right)+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} * \eta^{\varepsilon} \tag{6}\\
& \partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha}\left(\partial_{x} h^{\beta} \partial_{x} h^{\gamma}-c^{\varepsilon} A^{\beta \gamma}-\tilde{B}^{\varepsilon, \beta \gamma}\right) * \eta_{2}^{\varepsilon}+\sigma_{\beta}^{\alpha} \dot{W}^{\beta} * \eta^{\varepsilon} \tag{7}
\end{align*}
$$

- (cf. Theorem 3) Under the trilinear condition (8), global existence holds for a.s.-initial values under stationary measure, and then for all given $u(0)$ as before.

Summary of this lecture.

1. Coupled KPZ equation (mostly with $\sigma=I$):

$$
\partial_{t} h^{\alpha}=\frac{1}{2} \partial_{x}^{2} h^{\alpha}+\frac{1}{2} \Gamma_{\beta \gamma}^{\alpha} \partial_{x} h^{\beta} \partial_{x} h^{\gamma}+\sigma_{\beta}^{\alpha} \dot{W}^{\alpha}, \quad x \in \mathbb{T} .
$$

2. For ${ }^{\forall} \Gamma$, convergence of two approximating solutions $h^{\varepsilon}, \tilde{h}^{\varepsilon}$ and local well-posedness of coupled KPZ equation (σ, Γ) by applying paracontrolled calculus.
3. For Γ satisfying (T), Wiener measure is invariant and global well-posedness of coupled KPZ equation holds, first for a.a.-initial values under stationary measure, then for all initial values.
4. $(T) \Longleftrightarrow " F=G " \Longleftrightarrow(S T)_{\mathcal{A}}$ for Wiener meas. ν $\Longrightarrow " \Gamma F=\Gamma G$ " \Longleftrightarrow Cancellation of log-renormalization factors
5. Extensions of Ertasp-Kardar's example
