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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of this lecture

Coupled KPZ equation by paracontrolled calculus

1. Multi-component coupled KPZ equation
- Motivation: nonlinear fluctuating hydrodynamics
- Trilinear condition (T)

2. Two approximating equations, local well-posedness, invariant
measure
- Convergence results due to paracontrolled calculus
- Difference of two limits
- Main theorems (Theorems 1 and 2)

3. Global existence for a.s.-initial values under invariant
(stationary) measure

4. Ertaş-Kardar’s example
- not satisfying (T) but having invariant measure

5. Role of trilinear condition (T)
- Invariant measure, renormalizations (for 4th order terms)

6. Extensions of Ertaş-Kardar’s example
7. Proof of main theorems (Theorems 1 and 2)
8. Remarks for the case with diffusion constant σ 3 / 56



1. Multi-component coupled KPZ equation

▶ In Lectures No 1 and No 3, we studied scalar-valued KPZ
equation (1) and the renormalized KPZ equation (2):

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + Ẇ (t, x), (1)

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x). (2)

▶ In this lecture, we consider on T = [0, 1).

▶ We used the Cole-Hopf transformation and Cole-Hopf
solution h(t, x) := log Z (t, x), where Z is the solution of
multiplicative linear stochastic heat equation.

▶ In this lecture, we consider a system of KPZ equations.

▶ For such equation, one cannot apply Cole-Hopf
transformation in general.

▶ The method we use in the present part works also for
scalar-valued equations (1) and (2).
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▶ Our equation in this lecture has the following form.

▶ Rd -valued KPZ eq for h(t, x) = (hα(t, x))dα=1 on T:

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ∂xh

β∂xh
γ + σα

βẆ
β (σ, Γ)KPZ

▶ We use Einstein’s convention. i.e., the sums
∑

β,γ,
∑

β

are omitted.

▶ Ẇ (t, x) = (Ẇ α(t, x))dα=1

(
≡ Ẇ (t, x)

)
is an Rd -valued

space-time Gaussian white noise with covariance
structure:

E [Ẇ α(t, x)Ẇ β(s, y)] = δαβδ(x − y)δ(t − s).

▶ δα,β is Kronecker’s δ. This means that (Ẇ α(t, x))dα=1 are
independent R-valued space-time Gaussian white noises.
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▶ Coupled KPZ equation is ill-posed, since noise is irregular

and conflicts with nonlinear term. (hα ∈ C
1
4
−, 1

2
−

t,x a.s.
when Γ = 0)

▶ We need to introduce approximations with smooth noises
and renormalization for (σ, Γ)KPZ . Indeed, one can
introduce two types of approximations: one is simple, the
other is suitable to find invariant measures (Lecture No 3:
d = 1, F-Quastel 2015).
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▶ The constants Γαβγ satisfy bilinear condition

Γαβγ = Γαγβ for all α, β, γ, (B)

and (we sometimes assume) trilinear condition

Γαβγ = Γαγβ = Γγβα for all α, β, γ. (T)

(cf. Ferrari-Sasamoto-Spohn 2013, Kupiainen-Marcozz 2017)

▶ σ = (σα
β ) is an invertible matrix.

▶ Similar SPDE appears to discuss motion of loops on a
manifold, cf. Funaki 1992, Bruned-Gabriel-Hairer-
-Zambotti 2019; Dirichlet form approach, Röckner-
-Wu-Zhu-Zhu 2020, Chen-Wu-Zhu-Zhu 2020+.

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ∂xh

β∂xh
γ + σα

βẆ
β (σ, Γ)KPZ
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▶ Since σ is invertible, ĥ = σ−1h transforms (σ, Γ)KPZ to
(I , Γ̂ = σ ◦ Γ)KPZ , where

(σ ◦ Γ)αβγ := (σ−1)αα′Γα
′

β′γ′σ
β′

β σγ′

γ .

Thus, the KPZ equation with σ = I is considered as a
canonical form.

▶ The operation (coordinate change) Γ 7→ σ ◦ Γ keeps the
bilinearity, but not the trilinearity.

▶ We should say (σ, Γ) satisfies trilinear condition, iff
Γ̂ := σ ◦ Γ satisfies (T).

▶ Thus, in the following, we assume σ = I . In Section 8, we
remark how the results are modified for general σ.
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Motivation to study the coupled KPZ equation

▶ Coupled KPZ equation appears in the study of nonlinear
fluctuating hydrodynamics for a system with d-conserved
quantities by taking 2nd order terms into account. The
problem goes back to Landau.
cf. Spohn-Ferrari-Sasamoto-Stoltz JSP 2013, ’14, ’15.

▶ If some of Γαβγ are degenerate, then the solution involves
different (anomalous) scalings such as Diffusive=OU,
KPZ, 5

3
, 3
2
-Lévy scalings (they look different behavior in

time-correlation functions).
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Coupled KPZ equation with additional drifts

▶ Consider the equation with additional drift cα ∈ R for
each component assuming σ = I :

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ∂xh

β∂xh
γ + cα∂xh

α + Ẇ α.

▶ This equation can be easily reduced to the case cα = 0.

▶ Indeed, if (hα) is a solution of this equation, h̃α(t, x)
:= hα(t, x − cαt) satisfies the same equation with cα = 0

and a new noise ˜̇W α(t, x) := Ẇ α(t, x − cαt), which is
also an Rd -valued space-time Gaussian white noise.

10 / 56



Why trilinear condition (T) plays a role: one reason

▶ For simplicity, consider (σ, Γ)KPZ without noise and at
Burgers level for uα := ∂xh

α:

∂tu
α = 1

2
∂2
xu

α + 1
2
Γαβγ∂x(u

βuγ).

▶ If (T) is satisfied, the usual method of energy estimate
works:

∂t∥u(t)∥2L2(T) = ∂t
∑
α

∫
T
(uα)2dx

= 2
∑
α

(uα, ∂tu
α)L2

=
∑
α

(uα, ∂2
xu

α)L2 +
∑
α,β,γ

Γαβγ
(
uα, ∂x(u

βuγ)
)
L2

= −∥∂xu∥2L2(T) ≤ 0,

by integration by parts.
▶ The term with Γ vanishes by interchanging the role of

α, β, γ if Γ satisfies (T) (→ see next page).
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▶ Indeed,∑
α,β,γ

Γαβγ
(
uα, ∂x(u

βuγ)
)
L2

=
∑
α,β,γ

Γαβγ

∫
T
uα · ∂x(uβuγ)dx

= −
∑
α,β,γ

Γαβγ

∫
T
∂xu

α · uβuγdx

=
(T)

0,

since (LHS) = 2× (−RHS).

▶ This is similar to Navier-Stokes equation (or Euler
equation).
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2. Two approximating equations, local well-posedness,
invariant measure

▶ We will extend the results for scalar-valued equation in
Lecture No 3 (i.e. d = 1) to coupled equation.

▶ We replace the noise by smeared one.
As in Lecture No 3, take a symmetric convolution kernel:

ηε(x) := 1
ε
η( x

ε
) −→

ε↓0
δ0.

▶ Approximating equation-1 (simple): For hα = hε,α,

∂th
α = 1

2
∂2
xh

α + 1
2
Γαβγ(∂xh

β∂xh
γ − cεδβγ − Bε,βγ) + Ẇ α ∗ ηε,

(3)

where cε = 1
ε
∥η∥2L2(R) − 1 (= O(1

ε
)) and Bε,βγ

(= O(log 1
ε
) in general) is another renormalization factor.

▶ The renormalization Bε,βγ was unnecessary in the
scalar-valued case, and also in coupled case under (T).
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▶ Approx. equation-2 (suitable to find invariant measure):
For h̃α = h̃ε,α

∂t h̃
α = 1

2
∂2
x h̃

α + 1
2
Γαβγ(∂x h̃

β∂x h̃
γ − cεδβγ − B̃ε,βγ) ∗ ηε2 + Ẇ α ∗ ηε,

(4)

with a renormalization factor B̃ε,βγ, where ηε2 = ηε ∗ ηε.
▶ The idea behind (4) is the fluctuation-dissipation relation.

▶ Renormalization factor cε ≡ = O(1
ε
) is from 2nd order

terms in the expansion, while Renormalization factors
Bε,βγ and B̃ε,βγ = O(log 1

ε
) are from 4th order terms

involving C ε = ,Dε = (see → Section 7).
▶ For the solution of (4) (with B̃ = 0), F (Yor volume,

2015) showed (on R), under the trilinear condition (T),
the infinitesimal invariance of the distribution of
B ∗ ηε(x), where B is the Rd -valued two-sided Brownian
motion (with x ∈ R) (see → Thm 2-(2)).
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▶ Our goal is to study the limits of the solutions of
Approx-Eq-1 (3) and Approx-Eq-2 (4) as ε ↓ 0.

▶ As we saw, when d = 1 and Γ = σ = 1, the solution of
(3) with Bε = 0 converges as ε ↓ 0 to the Cole-Hopf
solution hCH of the KPZ equation, while the solution of
(4) with B̃ε = 0 converges to hCH + 1

24
t.

▶ Note that log-renormalization factors do not appear,
when d = 1.

▶ The method of F-Quastel is based on the Cole-Hopf
transform, which is not available for the coupled equation
with multi-components in general.

▶ Instead, we use the paracontrolled calculus due to
Gubinelli-Imkeller-Perkowski 2015.

▶ In particular, we study the difference between these two
limits.
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Summary of results of F-Hoshino 2017

▶ Convergence of hε and h̃ε and Local well-posedness of
coupled KPZ eq (σ, Γ)KPZ by applying paracontrolled
calculus due to Gubinelli-Imkeller-Perkowski 2015.
(Cole-Hopf doesn’t work for coupled eq. in general. In 1D, we

used it and showed Boltzmann-Gibbs principle, FQ 2015.)

▶ Approx-Eq-2 fits to identify invariant measure under (T).

▶ Global solvability for a.s.-initial data under an invariant
measure under (T) (similar to Da Prato-Debussche).

▶ Combine this with strong Feller property (i.e. continuity
of probability in initial value, Hairer-Mattingly 2016).

▶ Global well-posedness (existence, uniqueness) under (T)
Ergodicity and uniqueness of invariant measure.

▶ A priori estimates for Approx-Eq-1 (3) under (T).
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Convergence of hε and h̃ε and Local well-posedness of coupled
KPZ eq (σ, Γ)KPZ (we take σ = I ): Cκ = (Bκ

∞,∞(T))d , κ ∈ R
denotes Rd -valued (Hölder-)Besov space on T (see → Sect 7).

Theorem 1
(1) Assume h0 ∈ C0+ := ∪δ>0Cδ, then a unique solution hε of
(3) exists up to some T ε ∈ (0,∞] and T̄ = lim infε↓0 T

ε > 0
holds. With a proper choice of Bε,βγ, hε converges in prob. to
some h in C ([0,T ], C 1

2
−δ) for every δ > 0 and 0 < T ≤ T̄ .

(2) Similar result holds for the solution h̃ε of (4) with some
limit h̃. Under proper choices of Bε,βγ and B̃ε,βγ, we can
actually make h = h̃.

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεδβγ − Bε,βγ) + Ẇ α ∗ ηε (3)

∂t h̃
α = 1

2∂
2
x h̃

α + 1
2Γ

α
βγ(∂x h̃

β∂x h̃
γ − cεδβγ − B̃ε,βγ) ∗ ηε2 + Ẇ α ∗ ηε (4)

Cκ is defined in Fourier analytic way. In particular, for κ ∈ (0,∞) \ N,
Cκ = {u ∈ C k

b ; ∂
k
x u is (κ− k)-Hölder continuous}, where k = [κ] is the

integer part of κ. Note that for κ ∈ N, Cκ
b ⊊ Cκ.
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Results under (T): Unnecessity of Log-Renormalizations,
Invariant measure = Wiener measure, difference of two limits

Theorem 2
Assume the trilinear condition (T).
(1) Then, Bε,βγ, B̃ε,βγ = O(1) so that the solutions of (3)
with B = 0 and (4) with B̃ = 0 converge. In the limit, we
have

h̃α(t, x) = hα(t, x) + cαt, 1 ≤ α ≤ d ,
where

cα = 1
24

∑
γ1,γ2

ΓαβγΓ
β
γ1γ2

Γγγ1γ2
.

(2) Moreover, the distribution of (∂xB)x∈T (B = periodic
BM) is invariant under the tilt process u = ∂xh (or periodic

Wiener measure on the quotient space C 1
2
−δ/∼ where

h ∼ h + c).

Proofs of Theorems 1 and 2 → Section 7
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3. Global existence for a.s.-initial values under stationary meas

▶ We assume (T) and initial value h(0) is given by
h(0, 0) = 0 and u(0) := ∂xh(0) =

law
(∂xB)x∈T (i.e.,

stationary). Then, similarly to Da Prato-Debussche
(2002, for 2D stochastic Navier-Stokes equation; Galerkin
approximation), u = ∂xh satisfies

Theorem 3
For every T > 0, p ≥ 1, δ > 0, we have

E

[
sup

t∈[0,T ]

∥u(t; u0)∥p− 1
2−δ

]
< ∞

In particular, Tsurvival(u(0)) = ∞ for a.a.-u(0).

▶ Global existence for all given u(0): In the scalar-valued
case, this is immediate, since the limit is Cole-Hopf
solution. Hairer-Mattingly 2016 proved this for coupled
equation by showing the strong Feller property on
Cα−1, α ∈ (0, 1

2
).
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▶ For Approx-Eq-1 (3), under (T), we have∑
α,β,γ

Γαβγ

∫
T
uα∂x(u

βuγ)dx = 0.

This shows a priori estimate and global well-posedness for
(3) at least if h(0) ∈ H1(T).

▶ Therefore, Theorem 1-(1) holds globally in time if
h(0) ∈ H1(T).

▶ We expect Theorem 1-(2) also holds globally in time (by
showing strong Feller property for (4)).
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4. Ertaş and Kardar’s example

Unnecessity of Log-Renormalizations and ∃Invariant measure
without (T)

▶ Example (Ertaş and Kardar 1992: d = 2)

∂th
1 = 1

2
∂2
xh

1 + 1
2
{λ1(∂xh

1)2 + λ2(∂xh
2)2}+ Ẇ 1,

∂th
2 = 1

2
∂2
xh

2 + λ1∂xh
1∂xh

2 + Ẇ 2
(EK)

Γ satisfies (T) only when λ1=λ2 (Γ111=λ1, Γ
1
22=λ2, Γ

2
12=λ1).

▶ However, under the transform ĥ = sh with

s =
( λ1 (λ1λ2)1/2

λ1 −(λ1λ2)1/2

)
, (EK) is transformed into

∂t ĥ
α = 1

2
∂2
x ĥ

α + 1
2
(∂x ĥ

α)2 + sαβ Ẇ
β. (EKT )

i.e. nonlinear term is decoupled, but noise is coupled.
▶ Namely, Γ̂ = s ◦ Γ in (EKT ) is given by Γ̂ααα = 1,= 0

otherwise, so that Γ̂ satisfies (T). But, (EK) is the
canonical form (with σ = I ) and not (EKT ).
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▶ (EK) doesn’t satisfy (T).

▶ However, since nonlinear term is decoupled in (EKT ), the
Cole-Hopf transform Zα = exp ĥα works for each
component so that global well-posedness follows.

▶ In particular, log-renormalization factors are unnecessary.

▶ Invariant measure exists whose marginals are Wiener
measures, but the joint distribution of such invariant
measure is unclear (presumably non-Gaussian).

▶ Indeed, because of the tightness of marginals, Cesàro
mean µT = 1

T

∫ T

0
µ(t)dt of the distributions µ(t) of

∂x ĥ(t) having an initial distribution ⊗αµα is tight on the

space C− 1
2
−/∼, so that the limit (along subsequence) of

µT as T → ∞ is an invariant measure.
(Recall h ∼ h̃ if h = h̃ + c) (cf. Liggett, 1985, p.11)
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5. Role of trilinear condition (T)

Reason of unnecessity of log-renormalization factors
▶ Formulas of Renormalization factors Bε,βγ, B̃ε,βγ

(→see Section 7):

Bε,βγ = F βγC ε + 2G βγDε, B̃ε,βγ = F βγC̃ ε + 2G βγD̃ε,

where
Fβγ = Γβγ1γ2

Γγγ1γ2
, Gβγ = Γβγ1γ2

Γγ1
γγ2

,

C ε + 2Dε = − 1
12 + O(ε), C̃ ε + 2D̃ε = 0,

(C ε = ,Dε = from Wiener expansion)

▶ Trilinear condition (T) ⇐⇒ “F = G” ⇐⇒ B , B̃ = O(1)
▶ But, for unnecessity of log-renormalization factors, what we

really need is: “ΓB, ΓB̃ = O(1)”. This holds if ΓF = ΓG .

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεδβγ − Bε,βγ) + Ẇ α ∗ ηε (3)

∂t h̃
α = 1

2∂
2
x h̃

α + 1
2Γ

α
βγ(∂x h̃

β∂x h̃
γ − cεδβγ − B̃ε,βγ) ∗ ηε2 + Ẇ α ∗ ηε (4)
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▶ “ΓF = ΓG” holds iff Γ satisfies the condition

ΓαβγΓ
β
γ1γ2

Γγγ1γ2 = ΓαβγΓ
β
γ1γ2

Γγ1γγ2 ,
∀α

▶ This holds under (T) and also for Ertaş-Kardar’s example.

▶ We can summarize as

(T ) ⇐⇒ “F = G”

=⇒ “ΓF = ΓG”

⇐⇒ Unnecessity of log-renormalization factors
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Infinitesimal invariance (to explain the role of (T) heuristically)

▶ L = L0 +A: (pre) generator of coupled KPZ eq (σ = I ).
▶ L0 is the generator of OU (Ornstein-Uhlenbeck)-part,

while A is that of nonlinear part (we ignore
renormalization factors):

L0Φ =
1

2

∑
α

{∫
T
D2

hα(x)Φ dx +

∫
T
ḧα(x)Dhα(x)Φ dx

}
AΦ =

1

2

∑
α,β,γ

Γαβγ

∫
T
ḣβ(x)ḣγ(x)Dhα(x)Φ dx ,

where D,D2 denote 1st and 2nd Fréchet derivatives,
and ḣβ(x) := ∂xh

β(x), ḧα(x) := ∂2
xh

α(x).
▶ In Lecture No 2, we wrote down the generator of

finite-dimensional SDE by applying Itô’s formula.
▶ SPDE is an infinite-dimensional version of SDE with

infinite-dimensional BM W (t, x) (recall it was
constructed by a formal Fourier series). This generates
the infinite-dimensional Laplacian 1

2

∑
α

∫
TD

2
hα(x) · dx . 25 / 56



▶ Since h is not differentiable, the argument is heuristic.

▶ The infinitesimal invariance (ST )L for ν
⇐⇒
def

“
∫
LΦdν = 0,∀Φ”

▶ If the invariant measure ν is Gaussian, (ST )L0 is the
condition for 2nd order Wiener chaos of Φ, while (ST )A
is that for 3rd order Wiener chaos of Φ. Therefore, the
condition (ST )L is separated into two conditions:

(ST )L ⇐⇒ (ST )L0 + (ST )A

▶ L0 is (well-known) OU-operator and (ST )L0 determines
ν = Wiener measure.
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Trilinear condition (T) ⇐⇒ Wiener meas ν satisfies (ST )A
▶ We have the integration-by-parts formula for ν = Wiener

measure (actually we need to discuss at ε-level, since h is
not differentiable at ε = 0):∫

AΦdν = −1

2
Γαβγc

βγ
α ,

where

cβγα ≡ cβγα (Φ) := E ν

[
Φ

∫
T
ḣβ(x)ḣγ(x)ḧα(x)dx

]
.

▶ Indeed, heuristically,
ν ∝ e−

1
2
|ḣ|2dh and Dhα(x)e

− 1
2
|ḣ|2 = ḧα(x)e−

1
2
|ḣ|2 .

▶ c has the following properties:
(1) (bilinearity) cβγα = cγβα
(2) (integration by parts on T) cβγα + cγαβ + cαβγ = 0

▶ In particular, cααα = 0,∀ α. When d = 1, this implies
(ST )A:

∫
AΦdν = 0 for ∀Φ.
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▶ If Γ satisfies (T), by (2) for cβγα

Γαβγc
βγ
α =

1

3
Γαβγ(c

βγ
α + cγαβ + cαβγ ) = 0

Therefore, (T) implies (ST )A.

▶ Conversely, (ST )A implies (T). In fact, by (2) for cβγα

0 =
(ST )A

−2

∫
AΦdν = Γαβγc

βγ
α

=
∑
α ̸=β

(Γαββ − Γβαβ)c
ββ
α + 2

∑
α>β>γ

(Γαβγ − Γγαβ)c
βγ
α

+ 2
∑

β>α>γ

(Γαβγ − Γγαβ)c
βγ
α

and cββα , cβγα (α > β > γ, β > α > γ) move freely.
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▶ Ertaş-Kardar’s example does not satisfy (T), but has an
invariant measure. This should be “non-separating class”
(i.e. (ST )L ⇐⇒ (ST )L0 + (ST )A does not hold) and the
invariant measure is presumably non-Gaussian (but has
Gaussian marginal).
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6. Extensions of Ertaş-Kardar’s example

We give extensions to d-component system.

Extension-1: nonlinear term decoupling to scalar-KPZ eq’s
(but noise term is correlated)

▶ If Γ has the form

Γαβγ =
∑
α′

(s−1)αα′sα
′

β sα
′

γ ,

with invertible matrix s, the nonlinear term of the coupled
KPZ equation is decoupled for ĥα = sαβ h

β

∂t ĥ
α = 1

2
∂2
x ĥ

α + 1
2
(∂x ĥ

α)2 + sαβ σ
β
γ Ẇ

γ. (EK)ext

▶ The above Γ may not satisfy the trilinear condition.
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▶ However, since nonlinear term is decoupled in (EK)ext, the
Cole-Hopf transform Zα = exp ĥα works for each
component so that global well-posedness (global existence
of h in time) follows.

▶ Moreover, Log-renormalization factors are unnecessary.

▶ Invariant measure exists whose marginals are Wiener
measures (with diffusion coefficients), but the joint
distribution of such invariant measure is unclear.
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Extension-2: nonlinear term decoupling to coupled KPZ eq’s
satisfying (T) (but noise term is correlated)

▶ Consider KPZ (σ = I , Γ).

▶ This has an invariant measure
if ∃s ∈ GL(d), ∃decomposition ∆ = ∪k

i=1Ii (disjoint) of
{1, . . . , d} such that

• s ◦ Γ is decoupled under ∆,
i.e., (s ◦ Γ)αβγ = 0 if {α, β, γ} ̸⊂ Ii for

∀i
• (σi , s ◦ Γ|Ii ) are trilinear i.e., σi ∈ GL(|Ii |)

and σi ◦ (s ◦ Γ|Ii ) satisfy (T),

where σi =
√

(
∑d

γ=1 s
α
γ s

β
γ )α,β∈Ii and Γ|Ii = (Γαβγ)|α,β,γ∈Ii .

▶ Γ does not satisfy (T) in general.

One can prove infinitesimal invariance for subclasses of Φ.
(e.g., reflection-inv or shift-inv for each component)

Conjecture: For every Γ, invariant measure exists.
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7. Proof of Theorems 1 and 2

Besov space and paraproducts

First we quickly introduce Besov space and paraproducts due
to Fourier analysis. Basic reference is
Gubinelli-Imkeller-Perkowski, Forum Math., Pi, 3, 2015.

Dyadic partition of unity
▶ χ, ρ: symmetric functions on R such that

▶ suppχ ⊂ [−4
3 ,

4
3 ]

▶ supp ρ ⊂ [−8
3 ,−

3
4 ] ∪ [34 ,

8
3 ]

▶ ∑∞
j=−1 ρj(z) = 1,

where ρ−1(z) := χ(z), ρj(z) = ρ( z
2j
), j ≥ 0

▶ supp ρi ∩ supp ρj = ∅ if |i − j | ≥ 2
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Littlewood-Paley blocks

▶ F : Fourier transform for u ∈ S ′(R)
▶ ∆ju := F−1(ρjFu), j ≥ −1

▶ Note u =
∑∞

j=−1∆ju for any u ∈ S ′(R).

Besov space scalar-valued case (i.e. d = 1), κ ∈ R
▶ Bκ

∞,∞(R) := {u ∈ S ′(R); ∥u∥Bκ
∞,∞ < ∞}, where

∥u∥Bκ
∞,∞ := supj≥−1 2

jκ∥∆ju∥L∞(R).

▶ Bκ
∞,∞(T) is a class of u ∈ Bκ

∞,∞(R) which are periodic
with period 1 (or sometimes 2π)

▶ We denote Cκ := Bκ
∞,∞(T).

▶ In particular, for κ ∈ (0,∞) \ N,
Cκ = {u ∈ C k

b ; ∂
k
x u is (κ− k)-Hölder continuous},

where k = [κ] is the integer part of κ.

▶ Note that for κ ∈ N, Cκ
b ⊊ Cκ.

▶ Recall Cκ = (Cκ(T))d denotes Rd -valued Besov space.
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Bony’s paraproducts scalar-valued case

▶ For two distributions f , g ∈ S ′(T)
▶ f ≺ g :=

∑∞
i ,j=−1:i≤j−2∆i f∆jg : paraproduct

▶ f ◦ g :=
∑∞

i ,j=−1:|i−j |≤1∆i f∆jg : resonant term

▶ Littlewood-Paley decomposition of product fg :
fg = f ≺ g + f ◦ g + g ≺ f .

▶ (Bony’s estimates)
▶ a ≲ b means a ≤∃C b
▶ For α > 0 and β ∈ R, ∥u ≺ v∥Cβ ≲ ∥u∥L∞∥v∥Cβ .
▶ For α ̸= 0 and β ∈ R, ∥u ≺ v∥C (α∧0)+β ≲ ∥u∥Cα∥v∥Cβ .
▶ For α+ β > 0, ∥u ◦ v∥Cα+β ≲ ∥u∥Cα∥v∥Cβ .

▶ Mollifier estimates (how mollifier improves regularity,
convergence as ε ↓ 0), Schauder estimates (how parabolic
operator improves regularity), commutator estimates
(commutator makes sense, even if each term has no
meaning)
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Driving terms H, local-in-time solvability and continuity in H
▶ We think of the noise as the leading term and the

nonlinear term as its perturbation by putting (small
parameter) a > 0 in front of the nonlinear term, though
we eventually take a = 1.

Lhα =
a

2
Γαβγ∂xh

β∂xh
γ + Ẇ α,

where L = ∂t − 1
2
∂2
x .

▶ We expand the solution h of the coupled KPZ eq
(I , Γ)KPZ in a: hα =

∑∞
k=0 a

khαk . Then, we have

∞∑
k=0

akLhαk = Ẇ α +
a

2

∞∑
k1,k2=0

ak1+k2Γαβγ∂xh
β
k1
∂xh

γ
k2
.
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▶ Comparing the terms of order a0, a1, a2, a3, . . . in both
sides and noting the bilinearity condition (B), we obtain
the followings:

Lhα0 = Ẇ α,

Lhα1 = 1
2
Γαβγ∂xh

β
0∂xh

γ
0 ,

Lhα2 = Γαβγ∂xh
β
0∂xh

γ
1 ,

Lhα3 = 1
2
Γαβγ∂xh

β
1∂xh

γ
1 + Γαβγ∂xh

β
0∂xh

γ
2 ,

· · ·

▶ hα0 ∈ C
1
2
− is linear OU (Ornstein-Uhlenbeck)-process and

well-defined:

hα0 (t, x) =

∫ t

0

∫
T
p(t − s, x , y)dW α(s, y)dy

+

∫
T
hα0 (0, y)p(t, x , y)dy

where p is the heat kernel on T.
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▶ To define hα1 , we need to define the product ∂xh
β
0∂xh

γ
0

(product of two generalized functions), but this is
ill-defined.

▶ Indeed, hα0 is a 1st order Wiener functional (chaos) of Ẇ ,
so that ∂xh

β
0∂xh

γ
0 is considered as a sum of (2nd+0th)

order Wiener chaos of Ẇ .

▶ To define hα1 , similarly as we did in Lecture No 3, we take
only 2nd order part and cut the diverging 0th order part.

▶ This procedure corresponds to the renormalization
(→ see below).

▶ Assume hα1 ∈ C 1− (and ∈ H2) is defined in the above
sense (note −1

2
− 1

2
+ 2 = 1, +2 is by Schauder effect).

▶ hα2 ∈ C
3
2
− (and ∈ H3 ⊕H1) (note −1

2
+ 0 + 2 = 3

2
).
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▶ We denote hα0 , h
α
1 , h

α
2 with stationary initial values by

Hα
0 ,H

α
1 ,H

α
2 and call driving terms.

▶ After defining Hα
0 ,H

α
1 ,H

α
2 in the above way, the KPZ

equation for hα = Hα
0 + Hα

1 + Hα
2 + hα≥3 can be rewritten

as Lhα≥3 = Φα + Lhα3 , (5)

where Φα = Φα(H0,H1,H2, h≥3) is given by

Φα =Γαβγ∂xh
β
≥3∂xH

γ
0 + Γαβγ(∂xH

β
2 + ∂xh

β
≥3)∂xH

γ
1

+ 1
2Γ

α
βγ(∂xH

β
2 + ∂xh

β
≥3)(∂xH

γ
2 + ∂xh

γ
≥3).

▶ To define hα≥3, we need to introduce four more objects as
driving terms:

Hβγ
3,1 =

1
2
∂xH

β
1 ∂xH

γ
1 , Hβγ

3,2 = ∂xH
β
0 ◦ ∂xHγ

2 ,

Hα
3,3 = solution of “LHα

3,3 = ∂xH
α
0 ”, Hβγ

3,4 = ∂xH
β
3,3 ◦ ∂xH

γ
0 .

▶ First two terms Hβγ
3,1,H

βγ
3,2 (∈ H4 ⊕H2) appear in hα3 .

▶ Hα
3,3,H

βγ
3,4 appear to solve (5), to take care of ∂xH

γ
0 in Φα.
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▶ H := (Hα
0 ,H

α
1 ,H

α
2 ,H

βγ
3,1 ,H

βγ
3,2 ,H

α
3,3,H

βγ
3,4) are called driving terms.

The class of driving terms Hκ
KPZ is defined for κ ∈ ( 13 ,

1
2 ) (i.e.

κ = 1
2−) as follows:

Hκ
KPZ =C ([0,T ], Cκ)× C ([0,T ], C2κ)

× {C ([0,T ], Cκ+1) ∩ C
1−κ
2 ([0,T ], C2κ)}

× C ([0,T ], C2κ−1)× C ([0,T ], C2κ−1)

× C ([0,T ], Cκ+1)× C ([0,T ], C2κ−1).

▶ Once H is given, the rest can be analyzed by deterministic
argument.

▶ The following theorem (deterministic part) is due to the
paracontrolled calculus and fixed point theorem.

Theorem 4
Let H ∈ Hκ

KPZ be given. Then, the above equation (5) for h≥3

is solvable (in a proper space controlled by driving terms) up
to time T = T (∥h≥3(0)∥µ+1, ∥H∥), µ ∈ (1

3
, κ) and the

solution map h = S(h≥3(0),H) is continuous in (h≥3(0),H).
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Renormalizations

(1) Coupled KPZ Approximating equation-1

▶ By replacing Ẇ α by Ẇ α ∗ ηε and introducing the renormalization
factors cεδβγ ,Cβγ ,Dβγ , we have the expansion for the coupled
KPZ approx. eq-1 (simple) (3):

Lhα0 = Ẇ α ∗ ηε,

Lhα1 = 1
2Γ

α
βγ(∂xh

β
0 ∂xh

γ
0 − cεδβγ),

Lhα2 = Γαβγ∂xh
β
0 ∂xh

γ
1 ,

Lhα3 = 1
2Γ

α
βγ(∂xh

β
1 ∂xh

γ
1 − C ε,βγ) + Γαβγ(∂xh

β
0 ∂xh

γ
2 − Dε,βγ).

▶ See next pages for renormalization constants cε,C ε,βγ ,Dε,βγ .

▶ From this, we see that hε = (hε,α) := S(h≥3(0),Hε) solves

∂th
α = 1

2∂
2
xh

α+ 1
2Γ

α
βγ(∂xh

β∂xh
γ−cεδβγ−C ε,βγ−2Dε,βγ)+Ẇ α∗ηε,

i.e., (3) with
Bε,βγ = C ε,βγ + 2Dε,βγ .

▶ Theorem 4 (especially, continuity in H) combined with the
convergence of driving terms Hε (multiple Wiener integrals in Ẇ α’s
cut 0th order terms) to H shows Theorem 1-(1).
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▶ We especially see how cε is determined.
▶ The stationary solution hα0 ∈ C

1
2
− of the first equation

“Lhα0 = Ẇ α ∗ ηε” is given by

hα0 (t, x) =

∫ t

−∞

∫
T
p(t − s, x , y)d(W α ∗ ηε)(s, y)dy ,

where p is the heat kernel on T. Ẇ (t, x) is extended for
t < 0 as an Rd -valued space-time Gaussian white noise
on R× T.

▶ The renormalization constant cε is defined by

cε = E
[
(∂xh

α
0 (t, x))

2].

Note E
[
∂xh

β
0 (t, x)∂xh

γ
0(t, x)] = 0 if β ̸= γ.

▶ Since

∂xh
α
0 (t, x) =

∫ t

−∞

∫
T
dy

∫
T
∂xp(t − s, x , y)ηε(y − z)dW α(s, z)dz ,

we have by Itô isometry

cε =

∫ t

−∞
ds

∫
T
dz

(∫
T
∂xp(t − s, x , y)ηε(y − z)dy

)2
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▶ Thus, using Chapman-Kolmogorov identity,

cε =

∫ ∞

0

ds

∫
T
dz

(∫
T
∂xp(s, x , y1 − z)ηε(y1)dy1

)
×
(∫

T
∂xp(s, x , y2 − z)ηε(y2)dy2

)
=

∫ ∞

0

ds

∫
T2

−∂2
xp(2s, y1, y2)η

ε(y1)η
ε(y2)dy1dy2

= −
∫ ∞

0

ds

∫
T2

∂sp(2s, y1, y2)η
ε(y1)η

ε(y2)dy1dy2

=

∫
T2

ηε(y1)η
ε(y2)

(
δ(y1 − y2)− 1)dy1dy2

= ∥ηε∥2L2(T) − 1.

▶ −1 appears on T , but not on R.
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▶ In terms of Fourier transform, we also have the following
formula: cε =

∑
k ̸=0

φ2
ε(k)

where φ(k) = Fη(k), φε(k) = φ(εk).
▶ In fact, by Plancherel’s identity and noting φε(0) = 1,

this also shows cε = ∥ηε∥2L2(T) − 1.
▶ Similarly, and using diagram formula similar to Lecture

No 3 but now in the noise Ẇ (t, x), the fourth order
renormalization factors can be computed as

C ε,βγ = FβγC ε with C ε =
1

4π2

∑
k1,k2

∗ φε(k1)
2φε(k2)

2

k2
1 + k1k2 + k2

2

,

Dε,βγ = GβγDε with Dε = − 1

4π2

∑
k1,k2

∗ (k1 + k2)φε(k1)
2φε(k2)

2

k2(k2
1 + k1k2 + k2

2 )
,

where φ(k) = Fη(k), φε(k) = φ(εk),
∑∗

means the sum
over k1, k2 s.t. k1 ̸= 0, k2 ̸= 0, k1 + k2 ̸= 0 and

Fβγ = Γβγ1γ2
Γγγ1γ2

,

Gβγ = Γβγ1γ2
Γγ1
γγ2

.
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▶ Remark: Our notation and those in [Hairer, Gubinelli,
. . . ] studying the case d = 1 (i.e. scalar-valued case)
correspond with each other as follows:

H0 = ,H1 = ,H2 = , h≥3 = + + · · · ,

cεδβγ = ,C ε,βγ = ,Dε,βγ = .
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(2) Coupled KPZ Approximating equation-2

▶ We do similar for the coupled KPZ equation with ∗ηε2 for the
nonlinear term. Then, by the expansion, we have

Lh̃α0 = Ẇ α,

Lh̃α1 = 1
2Γ

α
βγ(∂x h̃

β
0 ∂x h̃

γ
0 ) ∗ η

ε
2 ,

Lh̃α2 = Γαβγ(∂x h̃
β
0 ∂x h̃

γ
1 ) ∗ η

ε
2 ,

Lh̃α3 = 1
2Γ

α
βγ(∂x h̃

β
1 ∂x h̃

γ
1 ) ∗ η

ε
2 + Γαβγ(∂x h̃

β
0 ∂x h̃

γ
2 ) ∗ η

ε
2 .

Theorem 5
There exists a solution map h̃ = Sε(h≥3(0),H). Note that Sε means that
the equation has the factor ∗ηε2 .
Furthermore, we have:

Theorem 6
If hε≥3(0) → h≥3(0) in Cµ+1 and Hε → H in Hκ

KPZ , then we have that
Sε(h

ε
≥3(0),Hε) → S(h≥3(0),H).
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▶ By replacing Ẇ α by Ẇ α ∗ ηε and introducing the renormalization
factors −cεδβγ , C̃βγ , D̃βγ , we have the expansion related to the
coupled KPZ approx. eq-2 (suitable for studying inv measures) (4):

Lh̃α0 = Ẇ α ∗ ηε,

Lh̃α1 = 1
2Γ

α
βγ(∂x h̃

β
0 ∂x h̃

γ
0 − cεδβγ) ∗ ηε2 ,

Lh̃α2 = Γαβγ∂x h̃
β
0 ∂x h̃

γ
1 ∗ ηε2 ,

Lh̃α3 = 1
2Γ

α
βγ(∂x h̃

β
1 ∂x h̃

γ
1 − C̃ ε,βγ) ∗ ηε2 + Γαβγ(∂x h̃

β
0 ∂x h̃

γ
2 − D̃ε,βγ) ∗ ηε2 .

▶ From this, we see that h̃ε = (h̃ε,α) := Sε(h≥3(0),Hε) solves

∂th
α = 1

2∂
2
xh

α+ 1
2Γ

α
βγ(∂xh

β∂xh
γ−cεδβγ−C̃ ε,βγ−2D̃ε,βγ)∗ηε2+Ẇ α∗ηε,

i.e., (4) with
B̃ε,βγ = C̃ ε,βγ + 2D̃ε,βγ .

▶ Theorems 5, 6 together with the convergence of driving terms show
Theorem 1-(2).
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Difference of solutions of two approximating eq-1 and -2

▶ We show Theorem 2-(1).

▶ From the above computation, the difference of solutions
of two approximating equations with Bε,βγ, B̃ε,βγ = 0 are
given by

h̃ε,α
B̃=0

− hε,αB=0 =
(
h̃ε,α
B̃

− hε,αB

)
+

t

2
Γαβγ

(
B̃ε,βγ − Bε,βγ

)
and by Theorem 1-(2),

(
h̃ε,α
B̃

− hε,αB

)
→ 0.

▶ In particular, we have

lim
ε↓0

(
h̃ε,α
B̃=0

− hε,αB=0

)
=

t

2
Γαβγ lim

ε↓0

(
B̃ε,βγ − Bε,βγ

)
.
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▶ We can explicitly compute the renormalization factors:

C ε,βγ = FβγC ε with C ε =
1

4π2

∑
k1,k2

∗ φε(k1)
2φε(k2)

2

k2
1 + k1k2 + k2

2

,

Dε,βγ = GβγDε with Dε = − 1

4π2

∑
k1,k2

∗ (k1 + k2)φε(k1)
2φε(k2)

2

k2(k2
1 + k1k2 + k2

2 )
,

C̃ ε,βγ = FβγC̃ ε with C̃ ε =
1

4π2

∑
k1,k2

∗ φε(k1)
2φε(k2)

2φε(k1 + k2)
4

k2
1 + k1k2 + k2

2

,

D̃ε,βγ = GβγD̃ε with D̃ε=− 1

4π2

∑
k1,k2

∗(k1 + k2)φε(k1)
2φε(k2)

2φε(k1 + k2)
4

k2(k2
1 + k1k2 + k2

2 )
,

where φ(k) = Fη(k), φε(k) = φ(εk),
∑∗

means the sum over
k1, k2 s.t. k1 ̸= 0, k2 ≠ 0, k1 + k2 ̸= 0 and

Fβγ = Γβγ1γ2
Γγγ1γ2

,

Gβγ = Γβγ1γ2
Γγ1
γγ2

.
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▶ Assume the trilinear condition (T). Then, as we already saw, we
have

Fβγ = Gβγ = Γβγ1γ2
Γγγ1γ2

.

▶ Thus,

B̃ε,βγ − Bε,βγ = (C̃ ε,βγ + 2D̃ε,βγ)− (C ε,βγ + 2Dε,βγ)

= Fβγ
(
(C̃ ε + 2D̃ε)− (C ε + 2Dε)

)
.

▶ However, by the explicit computation (for scalar-valued case),

C̃ ε + 2D̃ε = 0, C ε + 2Dε = − 1
12 + O(ε).

▶ Therefore, in the limit, we have

h̃α
B̃=0

(t, x) = hαB=0(t, x) + cαt, 1 ≤ α ≤ d ,

where
cα :=

1

24
ΓαβγF

βγ =
1

24

∑
γ1,γ2

ΓαβγΓ
β
γ1γ2

Γγγ1γ2
.

▶ This concludes the proof of Theorem 2-(1).
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Invariant measure

▶ We finally give the outline of the proof of Theorem 2-(2).

▶ We actually consider the coupled KPZ-Burgers equation
for uα := ∂xh

α as in Lecture No 3.

▶ We move to the Fourier mode {uα,k}k∈Z and introduce a
cut-off, i.e. we use Galerkin approximation.

▶ We show the infinitesimal invariance of Gaussian measure
with cut-off by applying Echeveria’s criterion for the
finite-dimensional SDE. Trilinear condition (T) is essential
(as we saw at least heuristically above).

▶ Moreover, the energy estimate holds uniformly in cut-off
by noting that the nonlinear term cancels under (T).

▶ We finally take the limit.
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8. Remarks for the case with diffusion constant σ

▶ Coupled KPZ approx. eq-1: Simple

∂th
α = 1

2∂
2
xh

α+ 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεAβγ − Bε,βγ) + σα

β Ẇ
β ∗ ηε, (6)

where Aβγ =
∑d

δ=1 σ
β
δ σ

γ
δ , c

ε = 1
ε∥η∥

2
L2(R) − 1 and Bε,βγ

(= O(− log ε) in general) is another renormalization factor.

▶ Coupled KPZ approx. eq-2: suitable for studying inv measures

∂th
α = 1

2∂
2
xh

α+ 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεAβγ − B̃ε,βγ) ∗ ηε2 +σα

β Ẇ
β ∗ ηε,

(7)

with a renormalization factor B̃ε,βγ .
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▶ For the solution of (7) (with B̃ = 0), F (’15, Yor volume)
showed (on R), under the additional (trilinear) condition:

Γ̂αβγ = Γ̂γαβ = Γ̂γβα (8)

for all α, βγ (second equality is by bilinearity), where

Γ̂αβγ := ταα′Γα
′

β′γ′σ
β′

β σγ′

γ , τ = σ−1,

the (infinitesimal) invariance of the distribution of
(σB) ∗ ηε(x), where B is the Rd -valued two-sided
Brownian motion (with x ∈ R).

▶ Our goal is to study the limits of the solutions of (6) and
(7) as ε ↓ 0.
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Theorem 1 holds with σα
β .

Theorem 7 (cf. Theorem 2)
Assume trilinear condition (8). Then, Bε,βγ, B̃ε,βγ = O(1) so
that the solutions of (6) with B = 0 and (7) with B̃ = 0
converge. In the limit, we have

h̃α(t, x) = hα(t, x) + cαt, 1 ≤ α ≤ d ,
where

cα =
1

24

∑
γ,γ′

σα
β Γ̂

β
α′α′′ Γ̂

α′

γγ′ Γ̂α
′′

γγ′ .

Moreover, the distribution of {σB}x∈T (note: infinite measure)
is invariant under h. Or, the distribution of {σ∂xB}x∈T (finite
measure) is invariant under the tilt process ∂xh.

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεAβγ − Bε,βγ) + σα

β Ẇ
β ∗ ηε (6)

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ(∂xh

β∂xh
γ − cεAβγ − B̃ε,βγ) ∗ ηε2 + σα

β Ẇ
β ∗ ηε (7)
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▶ (cf. Theorem 3) Under the trilinear condition (8), global
existence holds for a.s.-initial values under stationary
measure, and then for all given u(0) as before.
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Summary of this lecture.

1. Coupled KPZ equation (mostly with σ = I ):

∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ∂xh

β∂xh
γ + σα

β Ẇ
α, x ∈ T.

2. For ∀Γ, convergence of two approximating solutions hε, h̃ε and
local well-posedness of coupled KPZ equation (σ, Γ) by applying
paracontrolled calculus.

3. For Γ satisfying (T), Wiener measure is invariant and
global well-posedness of coupled KPZ equation holds, first for
a.a.-initial values under stationary measure, then for all initial
values.

4. (T ) ⇐⇒ “F = G” ⇐⇒ (ST )A for Wiener meas. ν
=⇒ “ΓF = ΓG” ⇐⇒ Cancellation of log-renormalization factors

5. Extensions of Ertaş-Kardar’s example
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