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Abstract

It is seen in simulations and con$rmed theoretically that: (i) the loss in accuracy of the Monte Carlo
approximation of the bootstrap estimate can be in$nite, due to the additional uncertainty introduced by $nite
resampling, and (ii) the dimension of the data or the estimate of interest a0ect drastically the quality of the
bootstrap samples and estimates.
Based on the $ndings, directions are provided to improve the bootstrap methodology.
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1. Introduction

The bootstrap was introduced by Efron (1979) to determine either the accuracy or the distribution
of an estimate T , when this was not achieved with classical statistical methods. The method has
gained much popularity and is considered a “general purpose tool” in statistics (Young, 1994), and
an extension of the maximum likelihood “plug-in principle” (Efron and Tibshirani, 1993, denoted by
E&T, in the sequel). Nevertheless, there has not been much discussion in the bootstrap literature on
simultaneous estimation and the associated simulations (Hu and KalbCeisch, 1999), and as a referee
mentioned “most theoretical assessments of bootstrap methodology ignore the fact that (in practice)
the number of bootstrap samples is $nite”.
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In applications, the bootstrap is used to estimate either the bias, or the variance or other parameters
of the distribution FT of a statistic T , all of which depend on the unknown distribution Fn;� (resp.
Fn) of the original sample Xn x d (denoted by Xd). Thus, the bootstrap is used to estimate a quantity
� = 	(T ) = 
(Fn;�) (resp. 
(Fn)), and related questions are examined when a $nite number B of
bootstrap samples is obtained. How much can we learn from these samples about Fn;� (resp. Fn)?
To what extent can the user of the bootstrap be sure of “hitting its target” � (Young, 1994)? What
measures the loss in accuracy of the bootstrap estimate �̂

∗
n;B; B¡∞?

It is seen that �̂
∗
n;B is inadmissible with respect to the mean square error (MSE) compared with

�̂n =E(�̂
∗
n;B|Xd), due to the additional randomisation introduced by $nite resampling. The amount of

inadmissibility E[Var(�∗n;B|Xd)] depends on Fn;� (resp. Fn) and therefore can be substantial. Often �̂n
is the theoretical bootstrap estimate, and then E[Var(�∗n;B|Xd)] measures the loss in accuracy using

�̂
∗
n;B instead. It is also seen from di0erent angles and for a large class of probability models that,
when the dimension d of the observations or that of T increases, the quality of the bootstrap sample
deteriorates compared with the original sample, and the chance �̂

∗
n;B will be more and more erroneous

than �̂n increases to one. These phenomena appear in simulations in Example 1, estimating a vector
of variances; �̂

∗
n;B is compared with a jackknife estimate �̂n; J (Quenouille, 1949) for which it always

holds Var(�̂n; J |Xd) = 0.
The results indicate that rules of thumb in the choice of B should be used with caution. Also,

that the bootstrap samples and �̂
∗
n;B cannot often provide more information than the original sample

Xd and �̂n, and suggestions are given how to stay respectively near each other. Hall and Presnell
(1997) lead in the same direction, selecting bootstrap samples by comparison with Xd. Then, the
chance to obtain better �̂

∗
n;B increases, but the potential of substantial inadmissibility remains.

E&T provide an introduction to the bootstrap also containing advanced material; Hall (1992)
provides a rigorous mathematical foundation on the subject.

2. The background, the motivation and the approach

2.1. The background

The usual elements in the bootstrap methodology are: the dimension d of each observation (called
model dimension); the size n of the original sample Xd; the size m and the number B of the
bootstrap samples; in parametric models, the estimate �̂n used to generate the bootstrap samples,
and its dimension k; the model Fn;� (resp. Fn) and Fn; �̂n

(resp. the c.d.f. F̂n), which constitute the
statistician’s original and bootstrap worlds (E&T, Beran, 1994); the nature and the dimension of the
estimate T , and the quantity of interest �= 	(T ) with its bootstrap estimate and �̂

∗
n;B.

The steps to apply the bootstrap methodology are:

(i) a distribution is chosen, that is usually either Fn; �̂n
or F̂n, or FT .

(ii) B samples of size m= n are subsequently drawn from this distribution, and
(iii) an estimate �̂

∗
n;B is obtained based on these samples.
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Bootstrap optimality results require B to increase to in$nity before n; while either d or k stays
$xed. In linear regression, when k is large, the bootstrap faces problems (Bickel and Friedman,
1981, p. 1211, l. 2–3). Comparing bootstrap with wild bootstrap in linear models with random
design, Mammen (1993) let d increase to in$nity with n to preserve asymptotically the model’s
dimensionality, and argued that the rates of convergence are di0erent because the bootstrap “has to
mimic a complex stochastic structure of high-dimensional distributions”.

2.2. The motivation and the approach

We examine problems a practitioner with n observations faces with $nite resampling, when d or
the dimension of T is large. The examples, the geometries and the propositions are motivated by
the heuristics that follow; the word distance denotes the Hellinger distance H (see Section 5; for its
properties see Le Cam and Yang, 1990):

(a) For $xed n, as d increases, it is expected that the distance between Fn;� (resp. Fn) and Fn; �̂n

(resp. F̂n) will increase, and asymptotically (in d) these distributions become singular. Thus, when
d is large, the chance to obtain a bootstrap sample “near” Fn;� (resp: Fn) and a “good” bootstrap
estimate of a location parameter is small. A similar situation occurs when the dimension of T
is large.

(b) Most important, drawing B bootstrap samples provides the statistical experiment with additional
randomisation. Thus, �̂

∗
n;B is not the function of a suRcient statistic and can be improved.

A new element is introduced to con$rm (a): the estimates �̂
∗
n; i; i = 1; : : : ; B obtained by plugging

the bootstrap samples in �̂n. The distances H (Fn;�; Fn; �̂
∗
n; i
); i = 1; : : : ; B, reCect the quality of the

bootstrap samples used to estimate � = 
(Fn;�), and thus indirectly Fn;� and �; those smaller than
H (Fn;�; Fn; �̂n

) determine the better bootstrap samples. For several distributions, the Euclidean distance
‖�−�‖ ∼ H (Fn;�; Fn;�), and the proportion of better bootstrap samples is measured by the probability
P[H (Fn;�; Fn; �̂

∗)6H (Fn;�; Fn; �̂n
)] = P[‖�̂ ∗ − �‖6 ‖�̂n − �‖].

The e0ect of the additional randomisation on the quality of �̂
∗
n;B as estimate of � is observed

through the variance identity:

Var(�̂
∗
n;B) = Var[E(�̂

∗
n;B|Xd)] + E[Var(�̂

∗
n;B|Xd)] = Var(�̂n) + E[Var(�̂

∗
n;B|Xd)]: (1)

�̂
∗
n;B and �̂n = E(�̂

∗
n;B|Xd) have the same bias. E[Var(�̂

∗
n;B|Xd)] is the expected cushion error due

to $nite resampling; its value depends on Fn;� (resp. Fn). In some cases, sup� {MSE(�̂
∗
n;B; �) −

MSE(�̂n; �)} = ∞; �̂n may be the theoretical bootstrap estimate, as for example when � is an ex-
pectation. By letting B increase to in$nity before n, the term E[Var(�̂

∗
n;B|Xd)] vanishes, since �∗n;B

becomes, solely, the function of Xd.
To study the e0ect of Fn;� (resp. Fn) in the accuracy of �∗n;B, several �-values are considered,

and d or the dimension of T may increase to in$nity; w.l.o.g. B is $xed, assuming E[Var(�̂
∗
n;B|Xd)]

increases to in$nity for selected �-values and since it is decreasing in B. The $ndings “at the limit”
provide an idea about the e0ects of the model and the large dimension. Some results are proved
assuming independence of the coordinate vectors and are not expected to improve under dependence.
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3. Examples

In Example 1, the e0ects of the values of the model parameters and of d are revealed by comparing
in simulations �̂

∗
n;B with a jackknife estimate �̂n; J . In Example 2, as d increases, the distribution of

a minimal suRcient statistic separates more from the distribution of the same statistic evaluated at
a bootstrap sample.

Example 1. Let X=(X1; X2; : : : ; Xd) be a normal d-dimensional vector with uncorrelated components;
means �j = j and variances �2

j = 1; j = 1; : : : ; d. Consider n independent copies (Xi;1; Xi;2; : : : ; Xi;d)
of X ; and let TX j = n−1 ∑n

i=1 Xi;j; �1; j =Var( TX j) = n−1; �2; j =Var(n−1 ∑n
i=1 X 2

i; j) = 2n−1 + 4n−1j2;
�1 = (�1;1; : : : ; �1;d) and �2 = (�2;1; : : : ; �2;d). The quantities of interest �1; �2 are chosen such that
one of them (that is; �2) depends also on the location parameters. In each column j; the sample
variance of the observations {Xi;j; i = 1; : : : ; n} and {X 2

i; j ; i = 1; : : : ; n} is computed; and is used to
estimate �1; j ; �2; j ; j = 1; : : : ; d; these jackknife vector-estimates are denoted by �̂n; k ; k = 1; 2. The
bootstrap estimates of �1; j and �2; j are obtained using; in column j; the function “bootstrap” in E&T
(p. 404; 411); let �̂

∗
n;B;1; �̂

∗
n;B;2 denote these vector-estimates of �1; �2. Computations are made using

n= m= 20; w.l.o.g. B= 50; and are repeated 100 times for each of the values d= 1; 5; 10; 20; 200.
Similar phenomena were observed for n= m= 50 and B= 500.
The di0erence of the squared norms Dk = ‖�̂n; k − �k‖2 − ‖�̂∗n;B;k − �k‖2; k = 1; 2, is computed

for each repetition. A positive di0erence indicates that �̂
∗
n;B;k is more accurate than �̂n; k , and also

reCects on the quality of the bootstrap sample. The proportion of positive di0erences measures
how often good bootstrap samples and estimates are obtained. The size of the di0erences gives
one an idea about the expected estimation precision and the e0ect of the parameter
values.

The results appear in Fig. 1; odd numbered plots concern �1 and those even numbered, �2. In the
best situation, that is for d = 1; �̂

∗
n;B;k is better than �̂n; k roughly 50% of the time (see proposition

2(i)). For a given d value, the error of �̂
∗
n;B;k may be dramatically larger than that of �̂n; k , and depends

on the values of the population parameters in the estimand; compare plots 9, 10. The proportion of
points sliding through zero, taking negative values, increases with d; compare plots 1, 3, 5, 7, 9.
An interesting phenomenon is the cushion-error “lying” on the line at zero, towards the side of the
negative di0erences, which is clearly observed in plots 9 and 10; most negative di0erences are at a
distance larger than the cushion-error from the line.

In Fig. 2, simulation results are presented for Dk; k=1; 2, with d=1; n=m=20; B=50; �2 =1
and to show the dependence of the cushion-error on the parameter values, the means are 10j; j =
0; 2; 4; 6; 8. The e0ect of the increase in E[Var(�̂

∗
n;B;2|Xd)] is clear, from the range of the values

in plots 2, 4, 6, 8, 10.

Example 2. In the set-up of Example 1 with known common variance �2 =1; the bootstrap samples
are obtained using the normality assumption. The conditional and the unconditional distributions of
the bootstrap sample ( TX ∗

1 ; TX
∗
2 ; : : : ; TX

∗
d) and of ( TX 1; TX 2; : : : ; TX d) will be examined. � is the distribution

of a standard normal; V and W will denote respectively V∞
i=1 and W∞

i=1.
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Fig. 1. n= m= 20; B = 50.
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Fig. 2. n= m= 20; B = 50; d= 1.
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TX i follows a normal distribution with mean �i; TX ∗
i conditionally on TX i = Txi follows a normal

distribution with mean Txi, both have variance n−1, and ai = Txi −�i is a realisation of Ai; i=1; : : : ; d.
For the distributions N = V�[d{n0:5(yi − �i)}] and N ∗ = V�[d{n0:5(yi − Txi)}] of the in$nite
vectors H 2(N; N ∗) = 2(1 − exp{− n

8

∑
a2i }). For any c(¿ 0), the probability P(| TX i − �i|¿cn−0:5)

= pn ¿ 0, therefore
∑

P(| TX i − �i|¿cn−0:5) = ∞. The independence of the coordinates of TX
=( TX 1; TX 2; : : : ; TX d; : : :) and Borel–Cantelli Lemma imply that | TX i − �i|¿cn−0:5 in$nitely often; thus,∑

A2
i =∞ and a.s. H 2(N; N ∗)=2. The same holds asymptotically for the distributions of ( TX 1; : : : ; TX d)

and ( TX ∗
1 ; TX

∗
2 ; : : : ; TX

∗
d), since their components are i.i.d..

N and N ∗ are asymptotically singular, when the size of the bootstrap sample remains the same
in each coordinate of the observation-vector. Thus, for a large but $xed d, their supports are quite
di0erent, explaining partially the problems of the bootstrap when the target depends on location
parameters, as in Example 1 with �2.

4. The geometries

4.1. A geometry for the Bootstrap and the original samples

We examine heuristically what the bootstrap samples can “tell” about the model. Let X1; : : : ; Xn be
a sample from a distribution F� with density f(x; �); �∈X ⊆ Rk; k¿ 1; P={F�; �∈X} is metrised
with the Hellinger distance H . �̂n is an estimate of � and �̂

∗
n is the corresponding estimate using a

bootstrap sample, which includes information about �. In Fig. 3, to examine the relative positions
of F�, F�̂

∗
n
and F�̂n

in P, neighbourhoods are drawn as circles for bivariate normal densities, with
common variance, means close to each other, and zero correlation. One sees here F�, the (“smooth
empirical”) distribution F�̂n

, and the bootstrap samples represented by the F�̂
∗
n
’s as stars in a circle

with centre F�̂n
and radius O(n−1=2) in probability; this circle represents the Bootstrap World (BW).

The small circle with center F� and radius its distance from F�̂n
represents, for estimation purposes,

the most informative part of the bootstrap world. For a large class of models, the probability of
observing samples from this circle is less than or equal to 0.5; the samples being in one of the
two halves determined by the line (or hyperplane in higher dimensions) AB. This probability is
maximised when F� is in the circumference of the circle with center F�̂n

. As expected, bootstrap
samples are better than Xd when the latter is far from F�, but we will not know about it. For the
uniform in (0; �); �∈R, the small circle is almost surely empty when �̂n =max{X1; : : : ; Xn} is used
to obtain the bootstrap samples and the same holds for �∈Rk . In a version of Fig. 3 for higher
dimensional parameters, the ratio of the volumes of the small sphere with (unknown) centre F� and
the sphere with centre F�̂n

tends to zero as the dimension increases, thus providing the intuition for
Proposition 1. Therefore, the best one can expect for F�̂

∗
n
is to stay near F�̂n

.

4.2. A geometry for �̂n; �̂
∗
n;B and �

The geometry presented for the bootstrap samples is also valid for the estimates �̂n; �̂
∗
n;B and �.

With abuse of notation regarding F , let F�; F�̂n
and F�̂

∗
n; B

denote respectively the distributions of �̂n,

of �̂
∗
n;B conditionally on �̂n, and of an estimate of F� based on B bootstrap samples. The estimate
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Fig. 3. F�: true distribution, F�̂n
: smooth empirical distribution *: smooth boostrap empirical distributions. BW : the

Bootstrap World, P: the World of Measures.

�̂n = E(�̂
∗
n;B|Xd) is the parameter to be estimated by �̂

∗
n;B. The heuristics in Section 4.1 indicate that,

as the dimension of the estimand � increases, the probability F�̂
∗
n; B

will stay in the Hellinger ball with
centre F� and radius H (F�; F�̂n

) decreases. In Proposition 1, it is seen that the same holds for a
larger radius. The probability is maximised when F� is on the surface of the larger ball representing
the Bootstrap World. That is, the bootstrap estimate of F� (or of �) has higher chance to beat the
classical estimate when the latter deteriorates; as with the bootstrap samples, we will not know about
it. In Example 1, the comparison of the di0erences Dk; k = 1; 2, was motivated by these heuristics.

5. Con"rming the heuristics and the examples

Proposition 1. Let �̂
∗
n;B; i be a bootstrap estimate of �i(∈R); and let �̂n; i = E[�̂

∗
n;B; i|Xd];=1; : : : ; d;

�; �̂n; �̂
∗
n;B are the corresponding d-vectors. Then;

(a) the estimate �̂
∗
n;B is inadmissible:

E‖�̂∗n;B − �‖2 = E‖�̂n − �‖2 +
d∑

i=1

EVar(�̂
∗
n;B; i|Xd):
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(b) If the estimates �̂
∗
n;B; i are independent, have uniformly bounded fourth moments and 0¡�2 ¡

Var(�̂
∗
n;B; i|Xd) for i = 1; : : : ; d, then, for any 0¡
¡ 1,

P

[
‖�̂∗n;B − �‖26 ‖�̂n − �‖2 + 


d∑
i=1

Var(�̂
∗
n;B; i|Xd)

]
6

max{E(�̂∗n;B; i − �i)4; i = 1; : : : ; d}
d(1− 
)2�4 :

The probability that �̂
∗
n;B is better than �̂n in estimating � decreases to 0 as d and the cushion-error



∑d

i=1 Var(�̂
∗
n;B; i|Xd) increase. In the context of Example 1

lim
d→∞

P

[
‖�̂n − �‖2 − ‖�̂∗n;B − �‖2¿− 


d∑
i=1

Var(�̂
∗
n;B; i|Xd)

]
= 0:

Both �̂n and �̂
∗
n;B are a:ected by the curse of dimensionality but for the latter there is in excess

the cushion error.

Proof. (a) Since �̂n; i = E(�̂
∗
n;B; i|Xd);

E[(�̂
∗
n;B; i − �i)2|Xd] = Var(�̂

∗
n;B; i|Xd) + (�̂n; i − �i)2; i = 1; : : : ; d:

Taking expectations and adding for all i; the result is obtained.
(b) To obtain the probability bound, a conditional argument is used at $rst:

P

[
‖�̂∗n;B − �‖2 − E(‖�̂∗n;B − �‖2|Xd)

6 ‖�̂n − �‖2 − E(‖�̂∗n;B − �‖2|Xd) + 

d∑

i=1

Var(�̂
∗
n;B; i|Xd)|Xd

]

6P[| ‖�̂∗n;B − �‖2 − E(‖�̂∗n;B − �‖2|Xd)|¿ (1− 
)d�2|Xd]

6
Var[‖�̂∗n;B − �‖2|Xd]

(1− 
)2d2�4 :

The result follows by taking expectations in both sides of the last relation and using the independence
of the bootstrap estimates and the fact that

EVar[‖�̂∗n;B − �‖2|Xd]6Var[‖�̂∗n;B − �‖2]:

Remark 1. The term 

∑d

i=1 Var(�̂
∗
n;B; i|Xd) in Proposition 1 may be replaced by its expectation.

Assuming that 0¡�2 ¡EVar(�̂
∗
n;B; i|Xd); i = 1; : : : ; d; it holds

P

[
‖�̂∗n;B − �‖26 ‖�̂n − �‖2 + 


d∑
i=1

EVar(�̂
∗
n;B; i|Xd)

]

6
Var[‖�̂∗n;B − �‖2] + Var[

∑d
i=1 Var(�̂

∗
n;B; i|Xd)]

(1− 
)2d2�4 :
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If Var(�̂
∗
n;B; i|Xd); i=1; : : : ; d, are independent and have variances uniformly bounded from above:

the probability bound decreases to 0 as d increases; the condition 0¡�2 is justi$ed; and


∑d

i=1 EVar(�̂
∗
n;B; i|Xd) increases to in$nity with d.

Remark 2. Proposition 1 holds with �; E(�̂
∗
n;B|Xd); �̂

∗
n;B instead of �; �̂n; �̂

∗
n;B; �̂

∗
n;B reCects the quality

of the bootstrap sample; which deteriorates as d increases. In many applications of the bootstrap; one
is more interested in comparing �̂

∗
n;B− �̂n with �̂n−�. By writing �̂

∗
n;B− �̂n=(�̂

∗
n;B−�)− (�̂n−�); one

expects it could take large values in view of (1) and Proposition 1; at least when �̂n = E(�∗n;B|Xd).

De"nition 1. For densities f; g; with respect to a �-$nite measure ( on the space X; their Hellinger
distance H (f; g) is de$ned as

H 2(f; g) =
∫
X

(f1=2(x)− g1=2(x))2((dx):

The aRnity of f; g is

)(f; g) =
∫
X

f1=2(x)g1=2(x)((dx):

H 2(f; g)=2(1−)(f; g));H 2(f; g)=2 if and only if )(f; g)=0 or if f and g are singular (f(x)g(x)=0;
(-a:s:). For normal densities with vector-means �1 and �0 and variance-covariance matrix �2I ; their
square Hellinger distance is 2(1 − exp{−‖�1 − �0‖2=8�2}) ∼ ‖�1 − �0‖2 when the latter is small;
thus justifying Fig. 3.

It is shown below for location models that, as in Example 2, the bootstrap world and the statisti-
cian’s original world become more distinct as d increases, and the bootstrap sample size remains the
same in each coordinate of the observation-vector; the same holds for the distribution of �̂n and the
conditional distribution of �̂

∗
n;B, given �̂n. It is also con$rmed that, as argued in Section 4.1 and as

been seen in Fig. 1, the percentage of better bootstrap samples for estimation purposes is no more
than 50%. A remarkable result in Shepp (1965) for location families is used in the proof.

Theorem 1 (Shepp, 1965, p. 1108). Let W=(W1; W2; : : :) be a vector of i.i.d. random variables with
probability distribution F = F{dw} on R (the real numbers); and a = {a1; a2; : : :} be a numerical
sequence. Let Q = VF{dyn} and Qa = VF{d(yn − an)} be the distributions of W and W + a;
respectively.

(i) If
∑

a2n =∞ then Q and Qa are singular.
(ii) Assume that the Fisher information I(F)¡∞: then Q and Qa are singular if

∑
a2n =∞ and

Q and Qa are equivalent if
∑

a2n ¡∞.
(iii) If Q and Qa are equivalent for all a with

∑
a2n ¡∞ then I(F)¡∞.

Proposition 2. Let X=(X1; X2; : : : ; Xd; : : :) be a vector with independent components; Xi has distribu-
tion F(xi − �i) and �i is real for all i. Consider n independent copies of X; and let
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�̂n; i be an estimate of �i; draw a bootstrap sample of size n from VF(xi − �̂n; i) and let �̂
∗
n; i be the

corresponding estimate. Denote by �; �̂n and �̂
∗
n the in>nite vectors. Then;

(i) If the conditional distribution of �̂
∗
n is symmetric around �̂n then for all �

P[‖�̂∗n − �‖6 ‖�̂n − �‖]6 0:5;

in several models; this probability is equal to P[H (Fn;�; Fn; �̂
∗)6H (Fn;�; Fn; �̂n

)].
Assume that, for any positive constant c, as i increases, the sequence of probabilities

{P(n	|�̂n; i − �i|¿c)} does not converge to zero, 	¿ 0. Let Q = VF{dyi} be the distri-
bution when all �i’s are equal to zero, Q� =VF{d(yi − �i)} be the distribution of X, and Q�̂n

be the conditional distribution of X∗ given X. Then,
(ii) When �1 = �2 = · · ·= �d = · · ·= �0, the distributions Q�̂n and Q� are singular.
(iii) If H 2(Q�; Q) is a function of

∑
�2i , then Q�̂n and Q� are singular for any �.

Proof. Part (i) follows from symmetry by looking at the probability conditionally $rst and then
unconditionally.

For part (ii) one can follow the steps of the proof in Example 2. Note that Q� =VF{d(yi − �0)},
Q�̂n =VF{d(yi − �̂n; i)} and let Ai = �̂n; i − �0; i= 1; 2; : : : . From the assumption on the sequence of
probabilities

∑
P(n	|�̂n; i − �0|¿c) =∞. From Borel–Cantelli

∑
A2

i =∞ a.s., part (i) of Shepp’s
theorem applies and H 2(Q�̂n ; Q�) = 2.

For part (iii) note that H 2(Q-; Q�−-)=H 2(Q�; Q) which implies that H 2(Q�; Q�̂n)=H 2(Q�̂n−�; Q).
The result follows from (ii) applied to the case �0 = 0.

Remark 3. If the distributions of �̂n and �̂
∗
n;B are respectively Vf(yi − �i);Vf(yi − �̂n; i); the latter

is symmetric around �̂n; and the sequence {P(n	|�̂n; i − �i|¿c)} does not converge to zero; then
Proposition 2 holds for Q�; Q�̂n and ‖�̂∗n;B − �‖; ‖�̂n − �‖.

6. Discussion

The most serious of the observed problems is due to $nite resampling, which is inherent in the
bootstrap methodology. The results suggest to keep the bootstrap sample and �̂

∗
n;B as near as possible,

respectively, to the original sample Xd and E(�̂
∗
n;B|Xd).

The explicit calculation of E[Var(�̂
∗
n;B|Xd)] and its estimation will help to determine a B-value

that will bring �̂
∗
n;B closer to E(�̂

∗
n;B|Xd) and reduce the loss in accuracy. When E[Var(�̂

∗
n;B|Xd)] is

unbounded, the suggested B-value may be extremely large.
Selecting better bootstrap samples by comparison with Xd is suggested; any additional information

on Fn;� (resp. Fn) should be used as in Hall and Presnell (1997). Shepp’s (1965) theorem and
Proposition 2 suggest to increase the size m of the bootstrap samples with the model dimension in
order to reduce the separation of the statistician’s original and bootstrap worlds. This sampling is
against the (traditional) bootstrap philosophy, and may not always provide a pertinent estimate.
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Rather than using $nite resampling, one may use all samples of size n obtained from Xd with
c.d.f. within a given distance from Fn; �̂n

(resp. F̂n). Then, there is no additional randomisation, these
samples are near Xd but are not bootstrap samples.
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