Combinatorics

Instructor: Prof. Jie Ma

Combinatorics 2022, Tsinghua

- This class notes will be updating throughout this course.
- The course website can be found at https://ymsc.tsinghua.edu.cn/info/1050/2595.htm

Contents

1	Enu	meration	2
	1.1	Binomial Coefficients	2
	1.2	Counting Mappings	4
	1.3	The Binomial Theorem	5
	1.4	Inclusion and Exclusion Principle (IEP)	7
	1.5	Möbius Inversion Formula	9
	1.6	Generating Functions	10
	1.7	Random Walks	13
	1.8	Exponential Generating Functions	15

1 Enumeration

First we give some standard notation that will be used throughout this course.

- Let n be a positive integer. We will use [n] to denote the set $\{1, 2, ..., n\}$.
- Given a set X, let |X| denote the size of X, that is the number of elements contained in X.
- We use "#" to express the word "number".
- The *factorial* of n is the product

$$n! = n \cdot (n-1) \cdots 2 \cdot 1,$$

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial Coefficients

Let X be a set of size n. Define $2^X = \{A : A \subseteq X\}$ to be the family of all subsets of X. Since the size of 2^X is equal to the number of binary vectors of length |X| or the number of functions from X to $\{0, 1\}$, we have $|2^X| = 2^{|X|} = 2^n$.

Let $\binom{X}{k} = \{A : A \subseteq X, |A| = k\}$, we will use $\binom{n}{k}$ to denote $|\binom{X}{k}|$. For n < k, we know that $\binom{n}{k} = 0$ by definition.

Fact 1.1. For integers n > 0 and $0 \le k \le n$, we have $|\binom{X}{k}| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Proof. If k = 0, then it is clear that $|\binom{X}{0}| = |\{\emptyset\}| = 1 = \binom{n}{0}$. Now we consider k > 0. Let

$$(n)_k := n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

First we will show that number of ordered k-tuples (x_1, x_2, \ldots, x_k) with distinct $x_i \in X$ is $(n)_k$. There are n choices for the first element x_1 . When x_1, \ldots, x_i is chosen, there are exactly n - i choices for the element x_{i+1} . So the number of ordered k-tuples (x_1, x_2, \ldots, x_k) with distinct $x_i \in X$ is $(n)_k$. Since any subset $A \in \binom{X}{k}$ corresponds to k! ordered k-tuples, it follows that $|\binom{X}{k}| = \frac{(n)_k}{k!} = \frac{n!}{k!(n-k)!}$. This finishes the proof.

Next we discuss more properties of binomial coefficients.

Fact 1.2. (1).
$$\binom{n}{k} = \binom{n}{n-k}$$
 for $0 \le k \le n$.
(2). $2^n = \sum_{\substack{0 \le k \le n \\ k-1}} \binom{n}{k}$.
(3). $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. (Pascal's identity)

Proof. (1) is trivial. Since $2^{[n]} = \bigcup_{0 \le k \le n} {\binom{[n]}{k}}$, we see $2^n = \sum_{0 \le k \le n} {\binom{n}{k}}$, proving (2). Finally, we consider (3). Note that the first term on the right hand side ${\binom{n-1}{k-1}}$ is the number of k-sets containing a fixed element, while the second term ${\binom{n-1}{k}}$ is the number of k-sets avoiding this element. So their summation gives the total number of k-sets in [n], which is ${\binom{n}{k}}$. This finishes the proof.

Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. By Fact 1.2 (3), in the following graph we have that the k-th element in the n row is $\binom{n}{k-1}$.

1 2 1 21 3 1 3 3 1 4 1 4 6 4 1 $5 \cdots 1$ $10 \ 10$ 551 $6 \cdots \cdots 1$ $6 \quad 15 \quad 20 \quad 15$ 6 1 $7 \cdots \cdots 1 \quad 7 \quad 21 \quad 35 \quad 35 \quad 21$ 7 1 8 • • • • • • • • • • 1 8 28 56 70 56 28 8 1 $9 \cdots 1 9 36 84 126 126 84 36$ 9 1 $10 \cdots \cdots 1 \quad 10 \quad 45 \quad 120 \ 210 \ 252 \ 210 \ 120 \ 45 \quad 10$ 1

Fact 1.3. The number of integer solutions (x_1, \ldots, x_n) to the equation $x_1 + \cdots + x_n = k$ with each $x_i \in \{0, 1\}$ is $\binom{n}{k}$.

Fact 1.4. The number of integer solutions (x_1, \ldots, x_n) to the equation $x_1 + \cdots + x_n = k$ with each $x_i > 0$ is $\binom{k-1}{n-1}$.

Proof. This question is equivalent to ask: How many ways are there of distributing k sweets to n children such that each child has at least one sweet.

Lay out the sweets in a single row of length k, and cut it into n pieces. Then give the sweets of the i_{th} piece to child i, which means that we need n-1 cuts from k-1 possibles.

Fact 1.5. The number of integer solutions (x_1, \ldots, x_n) to the equation $x_1 + \cdots + x_n = k$ with each $x_i \ge 0$ is $\binom{n+k-1}{n-1}$.

Proof 1. Let $A = \{ \text{integer solutions } (x_1, \dots, x_n) \text{ to } x_1 + \dots + x_n = k, x_i \ge 0 \}$ and $A = \{ \text{integer solutions } (y_1, \dots, y_n) \text{ to } y_1 + \dots + y_n = n + k, y_i > 0 \}$. Then $|B| = \binom{n+k-1}{n-1}$ by Fact 1.4.

Define $f : A \to B$, by $f((x_1, \ldots, x_n)) = (x_1 + 1, \ldots, x_n + 1)$. It suffices to check that f is a bijection, which we omit here.

Proof 2. Suppose we have k sweets (of the same sort), which we want to distribute to n children. In how many ways can we do this? Let x_i denote the number of sweets we give to the *i*-th child, this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc. The distribution is determined by the specifying the place of where to start a new child. This is equal to select n - 1 elements from n + r - 1 elements to be the child, others be the sweets (the first child always starts at the beginning). So the answer is $\binom{n+k-1}{n-1}$.

Exercise 1.6. Let X = [n], $A = \{(a_1, a_2, \dots, a_r) | a_i \in X, 1 \le a_1 \le a_2 \le \dots \le a_r \le n, a_{i+1} - a_i \ge k + 1, i \in [r-1]\}$. Prove that $|A| = \binom{n-k(r-1)}{r}$.

Exercise 1.7. Give a Combinatorial proof of

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{m} = \binom{n}{m} 2^{n-m}$$

Exercise 1.8. Give a Combinatorial proof of

$$\sum_{k=0}^{m} \binom{m}{k} \binom{n+k}{m} = \sum_{k=0}^{m} \binom{n}{k} \binom{m}{k} 2^{k}.$$

1.2 Counting Mappings

Define X^Y to be the set of all functions $f: Y \to X$.

Fact 1.9. $|X^Y| = |X|^{|Y|}$.

Proof. Let |Y| = r. We can view X^Y as the set of all strings $x_1 x_2 \cdots x_r$ with elements $x_i \in X$, indexed by the r elements of Y. So $|X^Y| = |X|^{|Y|}$.

Fact 1.10. The number of injective functions $f : [r] \to [n]$ is $(n)_r$.

Proof. We can view the injective function f as an ordered k-tuple (x_1, x_2, \ldots, x_r) with distinct $x_i \in X$, so the number of injective functions $f: [r] \to [n]$ is $(n)_r$.

Definition 1.11 (The Stirling number of the second kind). Let S(r,n) be the number of partitions of [r] into n unordered non-empty parts.

Exercise 1.12. Prove that

$$S(r,2) = \frac{2^r - 2}{2} = \frac{1}{2} \sum_{i=1}^{r-1} \binom{r}{i}.$$

Fact 1.13. The number of surjective functions $f : [r] \rightarrow [n]$ is n!S(r,n).

Proof. Since f is a surjective function if and only if for any $i \in [n], f^{-1}(i) \neq \emptyset$ if and only if $\bigcup_{i \in [n]} f^{-1}(i) = [r]$, and S(r, n) is the number of partition of [r] into n unordered non-empty parts, we have the number of surjective functions $f : [r] \to [n]$ is n!S(r, n).

We say that any injective $f : X \to X$ is a **permutation** of X (also a bijection). We may view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this is referred to as "decomposition into disjoint cycles".

Definition 1.14 (The Stirling number of the first kind). Let s(r,n) be the number of permutations of [r] with exactly n cycles multiplied by $(-1)^{(r-n)}$.

The following fact is a direct consequence of Fact 1.10.

Fact 1.15. The number of permutations of [n] is n!.

Exercise 1.16. (1) Let
$$S(r, n) = {r \\ n}$$
, give a Combinatorial proof of ${n \\ k} = {n-1 \\ k-1} + k {n-1 \\ k}$.
(2) Let $s(n,k) = (-1)^{n-k} {n \\ k}$, give a Combinatorial proof of ${n \\ k} = {n-1 \\ k-1} + (n-1) {n-1 \\ k}$.

1.3 The Binomial Theorem

Define $[x^k]f$ to be the coefficient of the term x^k in the polynomial f(x).

Fact 1.17. For j = 1, 2, ..., n, let $f_j(x) = \sum_{k \in I_j} x^k$ where I_j is a set of non-negative integers, and let $f(x) = \prod_{j=1}^n f_j(x)$. Then, $[x^k]f$ equals the number of solutions $(i_1, i_2, ..., i_n)$ to $i_1 + i_2 + ... + i_n = k$, where $i_j \in I_j$.

Fact 1.18. Let f_1, \ldots, f_n be polynomials and $f = f_1 f_2 \cdots f_n$. Then,

$$[x^k]f = \sum_{i_1 + \dots + i_n = k, i_j \ge 0} \left(\prod_{j=1}^n [x^{i_j}]f_j \right).$$

Theorem 1.19 (The Binomial Theorem). For any real x and any positive integer n, we have

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i.$$

Proof 1. Let $f = (1+x)^n$. By Fact 1.17 we have $[x^k]f$ equals the number of solutions $(i_1, i_2, ..., i_n)$ to $i_1 + i_2 + \cdots + i_n = k$ where $i_j \in \{0, 1\}$, so $[x^k]f = \binom{n}{k}$.

Proof 2. By induction on *n*. When n = 1, it is trivial. If the result holds for n - 1, then $(1+x)^n = (1+x)(1+x)^{n-1} = (1+x)\sum_{i=0}^{n-1} \binom{n-1}{i}x^i = \sum_{i=1}^{n-1} \binom{n-1}{i} + \binom{n-1}{i-1}x^i + 1 + x^n$. Since $\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$ and $\binom{n}{0} = \binom{n}{n} = 1$, we have $(1+x)^n = \sum_{i=0}^n \binom{n}{i}x^i$.

Fact 1.20. $\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^2 = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$.

Proof 1. Since $(1+x)^{2n} = (1+x)^n (1+x)^n$, by Fact 1.18, we have $\binom{2n}{n} = [x^n](1+x)^{2n} = \sum_{i=0}^n ([x^i](1+x)^n)([x^{n-i}](1+x)^n) = \sum_{i=0}^n \binom{n}{i}\binom{n}{n-i} = \sum_{i=0}^n \binom{n}{i}^2$.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.21 (Vandermonde's Convolution Formula).

$$\binom{n+m}{k} = \sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j} = \sum_{i+j=k} \binom{n}{i} \binom{m}{j}$$

Exercise 1.22.

$$\binom{n+m}{r+m} = \sum_{i-j=r} \binom{n}{i} \binom{m}{j}.$$

Exercise 1.23. Prove that

$$\sum_{k=0}^{m} \binom{m}{k} \binom{n+k}{m} = \sum_{k=0}^{m} \binom{n}{k} \binom{m}{k} 2^{k}.$$

by Binomial Theorem.

Fact 1.24. (1).

$$\sum_{all \ even \ k} \binom{n}{k} = \sum_{all \ odd \ k} \binom{n}{k} = 2^{n-1}.$$

(2).

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}.$$

Proof. (1). We see that $(1+x)^n = \sum_{i=0}^n {n \choose i} x^i$. Taking x = 1 and x = -1, we have

$$\sum_{\text{all even } k} \binom{n}{k} = \sum_{\text{all odd } k} \binom{n}{k} = 2^{n-1}.$$

(2). Let $f(x) = (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$. Then $f'(x) = n(1+x)^{n-1} = \sum_{k=0}^n k\binom{n}{k} x^{k-1}$. Let x = 1, then we have $\sum_{k=0}^n k\binom{n}{k} = n2^{n-1}$.

Definition 1.25. Let $k_j \ge 0$ be integers satisfying that $k_1 + k_2 + \cdots + k_m = n$. We define

$$\binom{n}{k_1, k_2, \cdots, k_m} := \frac{n!}{k_1! k_2! \cdots k_m!}.$$

- When $m = 2, \binom{n}{k_1, k_2} = \binom{n}{k_1}$ is the number of binary vectors of length n with k_1 zero and k_2 ones, which is also the number of ordered partitions of [n] into 2 parts such that the i_{th} part has size k_i .
- When $m \ge 3$, $\binom{n}{k_1, k_2, \dots, k_m}$ is the number of m-ary vectors of length n over [m] such that i occurs k_i times, which is also the number of ordered partitions of [n] into m parts such that the i_{th} part has size k_i .

The following theorem is a generalization of the binomial theorem.

Exercise 1.26 (Multinomial Theorem). For any reals x_1, \ldots, x_m and any positive integer $n \ge 1$, we have

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{k_1 + k_2 + \dots + k_m = n, \ k_j \ge 0} \binom{n}{k_1, k_2, \dots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}.$$

Exercise 1.27. Suppose $\sum_{i=1}^{m} k_i = n$ with $k_i \ge 1$ for all $i \in [m]$. Then

$$\binom{n}{k_1, k_2, \cdots, k_m} = \binom{n-1}{k_1 - 1, k_2, \cdots, k_m} + \cdots + \binom{n-1}{k_1, k_2, \cdots, k_m - 1}.$$

1.4 Inclusion and Exclusion Principle (IEP)

This lecture is devoted to Inclusion-Exclusion formula and its applications.

Let Ω be a ground set and let $A_1, A_2, ..., A_n$ be subsets of Ω . Write $A_i^c = \Omega \setminus A_i$. Throughout this lecture, we use the following notation.

Definition 1.28. Let $A_{\emptyset} = \Omega$. For any nonempty subset $I \subseteq [n]$, let

$$A_I = \bigcap_{i \in I} A_i.$$

For any integer $k \ge 0$, let

$$S_k = \sum_{I \in \binom{[n]}{k}} |A_I|.$$

Now we introduce Inclusion-Exclusion formula (in three equivalent forms) and give two proofs as follows.

Theorem 1.29 (Inclusion-Exclusion Formula). We have

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} S_k,$$

which is equivalent to

$$\Omega \setminus \bigcup_{i=1}^{n} A_i \bigg| = |A_1^c \cap A_2^c \cap \dots \cap A_n^c| = \sum_{k=0}^{n} (-1)^k S_k$$

and

$$\left|\Omega \setminus \bigcup_{i=1}^{n} A_i\right| = |A_1^c \cap A_2^c \cap \dots \cap A_n^c| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|.$$

Proof (1). For any subset $X \subseteq \Omega$, we define its characterization function $\mathbb{1}_X : \Omega \to \{0,1\}$ by assigning

$$\mathbb{1}_X(x) = \begin{cases} 1, & x \in X \\ 0, & x \notin X. \end{cases}$$

Then we notice that $\sum_{x \in \Omega} \mathbb{1}_X(x) = |X|$. Let $A = A_1 \cup A_2 \cup \cdots \cup A_n$. Our key observation is that

$$(\mathbb{1}_A - \mathbb{1}_{A_1})(\mathbb{1}_A - \mathbb{1}_{A_2})\cdots(\mathbb{1}_A - \mathbb{1}_{A_n})(x) \equiv 0,$$

which holds for any $x \in \Omega$. Next we expand this product into a summation of 2^n terms as follows:

$$\mathbb{1}_A + \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|} (\prod_{i \in I} \mathbb{1}_{A_i}) \equiv 0$$

holds for any $x \in \Omega$. Summing over all $x \in \Omega$, this gives that

$$|A| + \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|} |A_I| = 0.$$

which implies that

$$|A_1 \cup A_2 \cup \dots \cup A_n| = |A| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} |A_I| = \sum_{k=1}^n (-1)^{k+1} S_k,$$

finishing the proof.

Proof (2). It suffices to prove that

$$\mathbb{1}_{A_1 \cup A_2 \cup \dots \cup A_n}(x) = \sum_{k=1}^n (-1)^{k+1} \sum_{I \in \binom{[n]}{k}} \mathbb{1}_{A_I}(x)$$

holds for all $x \in \Omega$. Denote by LHS (resp. RHS) the left-hand side (resp. right-hand side) of the above equation.

Assume that x is contained in exactly ℓ subsets, say A_1, A_2, \ldots, A_ℓ . If $\ell = 0$, then clearly LHS = 0 = RHS, so we are done. So we may assume that $\ell \ge 1$. In this case, we have LHS = 1 and

$$RHS = \ell - \binom{\ell}{2} + \binom{\ell}{3} + \dots + (-1)^{\ell+1} \binom{\ell}{\ell} = 1.$$

Note that the above equation holds since $\sum_{i=0}^{\ell} (-1)^i {\ell \choose i} = (1-1)^{\ell} = 0$. This finishes the proof.

Next, we will demonstrate the power of Inclusion-Exclusion formula by using it to solve several problems.

Definition 1.30. Let $\varphi(n)$ be the number of integers $m \in [n]$ which are relatively prime¹ to n. **Theorem 1.31.** If we express $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$, where p_1, \ldots, p_t are distinct primes, then

$$\varphi(n) = n \prod_{i=1}^{t} (1 - \frac{1}{p_i})$$

Proof. Let the ground set

 $\Omega = [n]$

and

$$A_i = \{m \in [n] : p_i | m\}$$

for $i \in \{1, 2, \ldots, t\}$. It implies

$$\varphi(n) = \left| \{ m \in [n] : m \notin A_i \text{ for all } i \in [t] \} \right| = \left| [n] \setminus (A_1 \cup A_2 \cup \dots \cup A_t) \right|$$

By Inclusion-Exclusion formula,

$$\varphi(n) = \sum_{I \subseteq [t]} (-1)^{|I|} |A_I|,$$

¹Here, "*m* is relatively prime to n" means that the greatest common divisor of m and n is 1.

where $A_I = \bigcap_{i \in I} A_i = \{m \in [n] : (\prod_{i \in I} p_i) | m\}$ and thus $|A_I| = \frac{n}{\prod_{i \in I} p_i}$. We can derive that

$$\varphi(n) = \sum_{I \subseteq [t]} (-1)^{|I|} \frac{n}{\prod_{i \in I} p_i} = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_t}),$$

as desired.

Exercise 1.32. For any positive integer n,

$$\sum_{d|n} \varphi(d) = n$$

1.5 Möbius Inversion Formula

Definition 1.33. The Möbius Function μ for a positive integer d is

$$\mu(d) = \begin{cases} 1, & d \text{ is a product of even number of distinct primes } (d = 1 \text{ included}) \\ -1, & d \text{ is a product of odd number of distinct primes} \\ 0, & otherwise \end{cases}$$

Theorem 1.34. For any positive integer n,

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & n = 1\\ 0, & otherwise \end{cases}$$

Proof. If n = 1, it is trivial. For $n = p_1^{a_1} \dots p_r^{a_r} \ge 2$,

$$\sum_{d|n} \mu(d) = \sum_{i_1 \le a_1, \dots, i_r \le a_r} \mu(p_1^{i_1} \dots p_r^{i_r}) = \sum_{i=0}^r \binom{r}{i} (-1)^i = 0.$$

Theorem 1.35 (Möbius Inversion Formula). Let f(n) and g(n) be two functions defined for every positive integer n satisfying

$$f(n) = \sum_{d|n} g(d).$$

Then we have

$$g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}).$$

Proof.

$$\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$$
$$= \sum_{d|n} \mu(\frac{n}{d}) (\sum_{d'|d} g(d'))$$
$$= \sum_{d'|n} g(d') \sum_{\substack{n \mid \frac{n}{d'} \\ d' \mid n}} \mu(\frac{n}{d})$$
$$= \sum_{d'|n, d' \neq n} g(d') \sum_{m \mid \frac{n}{d'}} \mu(m)$$
$$= \sum_{d'|n, d' \neq n} g(d') \times 0 + g(n) \times 1$$
$$= g(n)$$

as desired.

1.6 Generating Functions

Definition 1.36. The (ordinary) generating function (GF) for an infinite sequence $\{a_0, a_1, ...\}$ is a power series

$$f(x) = \sum_{n \ge 0} a_n x^n.$$

We have two ways to view this power series.

(i). When the power series $\sum_{n\geq 0} a_n x^n$ converges (i.e. there exists a radius R > 0 of convergence), we view GF as a function of x and we can apply operations of calculus on it (including derivation and integration). For example, we know that

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

Recall the following sufficient condition on the radius of convergence that if $|a_n| \leq K^n$ for some K > 0, then $\sum_{n \geq 0} a_n x^n$ converges in the interval $(-\frac{1}{K}, \frac{1}{K})$.

(ii). When we are not sure of the convergence, we view the generating function as a formal series and take additions and multiplications. Let $a(x) = \sum_{n \ge 0} a_n x^n$ and $b(x) = \sum_{n \ge 0} b_n x^n$.

Addition.

$$a(x) + b(x) = \sum_{n \ge 0} (a_n + b_n) x^n$$

Multiplication. Let $c_n = \sum_{i=0}^n a_i b_{n-i}$. Then

$$a(x) \cdot b(x) = \sum_{n \ge 0} c_n x^n$$

Example 1.37. Consider the GF of $\{1, 1, 1, ...\}$. We note $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ holds for all -1 < x < 1. From the point view of (i), its first derivative gives

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n.$$

So we could view $\frac{1}{(1-x)^2}$ as the GF of $\{1, 2, 3, ...\}$ for all -1 < x < 1.

Problem 1.38. Let $a_0 = 1$ and $a_n = 2a_{n-1}$ for $n \ge 1$. Find a_n .

Solution. Consider the generating function,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = 1 + \sum_{n=1}^{\infty} a_n x^n = 1 + 2x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = 1 + 2x f(x).$$

So $f(x) = \frac{1}{1-2x}$, which implies that $f(x) = \sum_{n=0}^{+\infty} 2^n x^n$ and $a_n = 2^n$.

From this problem, we see one of the basic ideas for using generating function: in order to find the general expression of a_n , we work on its generating function f(x); once we find the formula of f(x), then we can expand f(x) into a power series and get a_n by choosing the coefficient of the right term.

Problem 1.39. Let A_n be the set of strings of length n with entries from the set $\{a, b, c\}$ and with no "aa" occuring (in the consecutive positions). Find $|A_n|$ for $n \ge 1$.

Solution. Let $a_n = |A_n|$. We first observe that $a_1 = 3, a_2 = 8$. For $n \ge 3$, we will find a_n by recursion as follows. If the first string is 'a', the second string has two choices, 'b' or 'c'. Then the last n-2 strings have a_{n-2} choices. If the first string is 'b' or 'c', the last n-1 strings have a_{n-1} choices. They are all different. Totally, for $n \ge 3$, we have

$$a_n = 2a_{n-1} + 2a_{n-2}.$$

Set $a_0 = 1$, then $a_n = 2a_{n-1} + 2a_{n-2}$ holds for $n \ge 2$. The generating function of $\{a_n\}$ is

$$f(x) = \sum_{n \ge 0} a_n x^n = a_0 + a_1 x + \sum_{n \ge 2} (2a_{n-1} + 2a_{n-2})x^n = 1 + 3x + 2x(f(x) - 1) + 2x^2 f(x),$$

which implies that

$$f(x) = \frac{1+x}{1-2x-2x^2}$$

By Partial Fraction Decomposition, we calculate that

$$f(x) = \frac{1 - \sqrt{3}}{2\sqrt{3}} \frac{1}{\sqrt{3} + 1 + 2x} + \frac{1 + \sqrt{3}}{2\sqrt{3}} \frac{1}{\sqrt{3} - 1 - 2x},$$

which implies that

$$a_n = \frac{1 - \sqrt{3}}{2\sqrt{3}} \frac{1}{\sqrt{3} + 1} \left(\frac{-2}{\sqrt{3} + 1}\right)^n + \frac{1 + \sqrt{3}}{2\sqrt{3}} \frac{1}{\sqrt{3} - 1} \left(\frac{2}{\sqrt{3} - 1}\right)^n.$$

i		

Remark 1.40. Note that a_n must be an integer but its expression is a combination of irrational terms! Observe that $\left|\frac{-2}{\sqrt{3}+1}\right| < 1$, so $\left(\frac{-2}{\sqrt{3}+1}\right)^n \to 0$ as $n \to \infty$. Thus, when n is sufficiently large, this integer a_n is about the value of the second term $\frac{1+\sqrt{3}}{2\sqrt{3}}\frac{1}{\sqrt{3}-1}\left(\frac{2}{\sqrt{3}-1}\right)^n$. Equivalently a_n will be the nearest integer to that.

Exercise 1.41. Define Fibonacci number F_n as follows: $F_1 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$ for all $n \ge 0$. Find F_n .

Definition 1.42. For any real r and an integer $k \ge 0$, let

$$\binom{r}{k} = \frac{r(r-1)\cdots(r-k+1)}{k!}$$

Exercise 1.43. Prove that $\binom{1}{2}{k} = \frac{(-1)^{k-1} \cdot 2}{4^k} \frac{(2k-2)!}{k!(k-1)!}$

Theorem 1.44 (Newton's Binomial Theorem). For any real number r and $x \in (-1, 1)$,

$$(1+x)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^k.$$

Proof. By Taylor series, it is obvious.

Corollary 1.45. Let r = -n for some integer $n \ge 0$. Then

$$\binom{-n}{k} = \frac{(-n)(-n-1)\cdots(-n-k+1)}{k!} = (-1)^k \binom{n+k-1}{k}.$$

Therefore

$$(1+x)^{-n} = \sum_{k=0}^{\infty} (-1)^k \binom{n+k-1}{k} x^k,$$

which is equivalent to

$$(1-x)^{-n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} x^k$$
(1)

Noting that

$$\binom{n+k-1}{k} = \#$$
 integer solutions to $x_1 + x_2 + \dots + x_n = k$ where $x_i \ge 0, 1 \le i \le n$,

we can explain Equation (1) from another point of view as follows.

Recall the following facts.

Fact 1.46. For $j \in [n]$, let $f_j(x) := \sum_{i \in I_j} x^i$, where $I_j \subset \mathbb{N}$. Let b_k be the number of solutions to $i_1 + i_2 + \cdots + i_n = k$ for $i_j \in I_j$. Then

$$\prod_{j=1}^{n} f_j(x) = \sum_{k=0}^{\infty} b_k x^k.$$

Fact 1.47. If $f(x) = \prod_{i=1}^{k} f_i(x)$ for polynomials $f_1, ..., f_k$, then

$$[x^{n}]f = \sum_{i_{1}+i_{2}+\dots+i_{k}=n} \prod_{j=1}^{k} \left([x^{i_{j}}]f_{j} \right),$$

where $[x^n]f$ is the coefficient of x^n in f.

Let $f_j = (1-x)^{-1} = \sum_{i\geq 0} x^i$, $\forall j \in [n]$. By Fact 1.46, we can get Equation 1 by considering as $(1-x)^{-n} = \prod_{j=1}^n f_j$ easily.

Exercise 1.48. Show $(1-x)^{-n} = \sum_{k=0}^{\infty} {\binom{n+k-1}{k}} x^k$ by taking the nth derivative of $(1-x)^{-1}$.

Problem 1.49. Let a_n be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills and 5-Yuan bills. What is the generating function of this sequence $\{a_n\}$?

Solution. Observe that a_n is the number of integer solutions (i_1, i_2, i_3) to $i_1 + i_2 + i_3 = n$, where $i_1 \in I_1 := \{0, 1, 2, ...\}, i_2 \in I_2 := \{0, 2, 4, ...\}$ and $i_3 \in I_3 := \{0, 5, 10, ...\}$. Let $f_j(x) := \sum_{m \in I_j} x^m$ for j = 1, 2, 3. By Fact 1.46, we have

$$\sum_{n=0}^{+\infty} a_n x^n = f_1(x) f_2(x) f_3(x) = \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^5}$$

1.7 Random Walks

Consider a real axis with integer points $(0, \pm 1, \pm 2, \pm 3, ...)$ marked. A frog leaps among the integer points according to the following rules:

- (1). At beginning, it sits at 1.
- (2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+2), or by distance 1 to the left (from i to i-1), each of which is randomly chosen with probability $\frac{1}{2}$ independently of each other.

Problem 1.50. What is the probability that the froq can reach "0"?

Solution. In each step, we use "+" or "-" to indicate the choice of the frog that is either to leap right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where each entry is in $\{+, -\}$.

Let A be the event that the frog reaches "0". Let A_i be the event that the frog reaches "0" at the i^{th} step for the first time. So $A = \bigcup_{i=1}^{+\infty} A_i$ is a disjoint union. So $P(A) = \sum_{i=1}^{+\infty} P(A_i)$.

To compute $P(A_i)$, we can define a_i to be the number of trajectories (or vectors) of the first *i* steps such that the frog starts at "1" and reaches "0" at the *i*th step for the first time. So

$$P(A_i) = \frac{a_i}{2^i}.$$

Then,

$$P(A) = \sum_{i=1}^{+\infty} \frac{a_i}{2^i}$$

Let $f(x) = \sum_{i=0}^{+\infty} a_i x^i$ be the generating function of $\{a_i\}_{i\geq 0}$, where $a_0 := 0$. Thus,

$$P(A) = \sum_{i=1}^{+\infty} \frac{a_i}{2^i} = f\left(\frac{1}{2}\right).$$

We then turn to find the expression of f(x).

Let b_i be the number of trajectories of the first *i* steps such that the frog starts at "2" and reaches "0" at the *i*th step for the first time.

Let c_i be the number of trajectories of the first *i* steps such that the frog starts at "3" and reaches "0" at the *i*th step for the first time.

First we express b_i in terms of $\{a_j\}_{j\geq 1}$. Since the frog only can leap to left by distance 1, if the frog can successfully jump from "i" to "0" in *i* steps, then this frog must reach "1" first. Let *j* be the number of steps by which the frog reaches "1" for the first time. So there are a_j trajectories from "2" to "1" at the *j*th step for the first time. In the remaining i - j steps the frog must jump from "1" to "0" and reach "0" at the coming $(i - j)^{th}$ step for the first time, so there are a_{i-j} trajectories that the frog can finish in exactly i - j steps. In total,

$$b_i = \sum_{j=1}^{i-1} a_j a_{i-j}$$

As $a_0 = 0$,

$$b_i = \sum_{j=0}^i a_j a_{i-j}$$

We can get

$$\sum_{i \ge 0} b_i x^i = (\sum_{i \ge 0} a_i x^i)^2 = f^2(x).$$

Similarly, if we count the number c_i of trajectories from 3 to 0, we can obtain that

$$c_i = \sum_{j=0}^i a_j b_{i-j},$$

which implies that

$$\sum_{i\geq 0} c_i x^i = \left(\sum_{i\geq 0} b_i x^i\right) \left(\sum_{i\geq 0} a_i x^i\right) = f^3(x)$$

Let us consider a_i from another point of view. After the first step, either the frog reaches "0" directly (if it leaps to left, so $a_1 = 1$), or it leaps to "3". In the latter case, the frog needs to jump from "3" to "0" using i - 1 steps. Thus for $i \ge 2$, $a_i = c_{i-1}$.

Combining the above facts, we have

$$f(x) = \sum_{i=0}^{+\infty} a_i x^i = x + \sum_{i\geq 2} a_i x^i = x + \sum_{i\geq 2} c_{i-1} x^i = x + x \left(\sum_{j=0}^{+\infty} c_j x^j\right) = x + x \cdot f^3(x).$$

Let a := P(A) = f(1/2). Then we have $a = \frac{1}{2} + \frac{a^3}{2}$, i.e., $(a-1)(a^2 + a - 1) = 0$, implying that

$$a = 1, \ \frac{\sqrt{5} - 1}{2} \text{ or } \frac{-\sqrt{5} - 1}{1}$$

Since $P(A) \in [0, 1]$, we see P(A) = 1 or $\frac{\sqrt{5}-1}{2}$. Note that $f(x) = x + xf^3(x)$. Consider the inverse function of f(x), that is, $g(x) := \frac{x}{1+x^3}$. Consider the figure of g(x). We find that g(x) is increasing around $\frac{\sqrt{5}-1}{2}$ but decreasing around 1. Since $f(x) = \sum a_i x^i$ is increasing, g(x) also increases. Thus it doesn't make sense for g(x)being around x = 1. This explains that $P(A) = \frac{\sqrt{5}-1}{2}$, which is the golden section!

1.8**Exponential Generating Functions**

Let \mathbb{N}, \mathbb{N}_e and \mathbb{N}_o be the sets of non-negative integers, non-negative even integers and non-negative odd integers, respectively.

Given n sets I_j of non-negative integers for $j \in [n]$, let $f_j(x) = \sum_{i \in I_j} x^i$. Let a_k be the number of integer solutions to $i_1 + i_2 + \cdots + i_n = k$, where $i_j \in I_j$. Then $\prod_{j=1}^n f_j(x)$ is the ordinary generating function of $\{a_k\}_{k>0}$.

Problem 1.51. Let S_n be the number of selections of n letters chosen from an unlimited supply of a's, b's and c's such that both of the numbers of a's and b's are even.

Solution. We can write S_n as

$$S_n = \sum_{e_1 + e_2 + e_3 = n, \ e_1, e_2 \in \mathbb{N}_e, \ e_3 \in \mathbb{N}} 1$$

Using the previous fact, we see that $S_n = [x^n]f$, where

$$f(x) = \left(\sum_{i \in \mathbb{N}_e} x^i\right)^2 \left(\sum_{j \in \mathbb{N}} x^j\right) = \left(\frac{1}{1 - x^2}\right)^2 \cdot \frac{1}{1 - x}.$$

Problem 1.52. Let T_n be the number of arrangements (or words) of n letters chosen from an unlimited supply of a's, b's and c's such that both of the numbers of a's and b's are even. What is the value of T_n ?

Solution. To solve this, we define a new kind of generating functions.

Definition 1.53. The exponential generating function for the sequence $\{a_n\}_{n>0}$ is the power series

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot \frac{x^n}{n!}.$$

Then we have the following fact.

Fact 1.54. If we have n letters including x a's, y b's and z c's (i.e. x + y + z = n), then we can form $\frac{n!}{x!y!z!}$ distinct words using them.

Therefore, a selection (say x a's, y b's and z c's) can contribute $\frac{n!}{x!y!z!}$ arrangements to T_n . This implies that

$$T_n = \sum_{e_1 + e_2 + e_3 = n, \ e_1, e_2 \in \mathbb{N}_e, \ e_3 \in \mathbb{N}} \frac{n!}{e_1! e_2! e_3!}.$$

Similar to defining the above f(x) for S_n , we define the following for T_n . Let

$$g(x) := \left(\sum_{i \in \mathbb{N}_e} \frac{x^i}{i!}\right)^2 \left(\sum_{j \in \mathbb{N}} \frac{x^j}{j!}\right)$$

Claim. We have

$$[x^n]g = \frac{T_n}{n!}.$$

Proof. To see this, we expand g(x). Then the term x^n in g(x) becomes

$$\sum_{\substack{e_1+e_2+e_3=n,\\e_1,e_2\in\mathbb{N}_e,\ e_3\in\mathbb{N}}} \frac{x^{e_1}}{e_1!} \cdot \frac{x^{e_2}}{e_2!} \cdot \frac{x^{e_3}}{e_3!} = \left(\sum_{\substack{e_1+e_2+e_3=n,\\e_1,e_2\in\mathbb{N}_e,\ e_3\in\mathbb{N}}} \frac{n!}{e_1!e_2!e_3!}\right) \frac{x^n}{n!} = T_n \cdot \frac{x^n}{n!}$$

So $[x^n]g = \frac{T_n}{n!}$, i.e., g(x) is the exponential generating function of $\{T_n\}$. This finishes the proof of Claim.

Using Taylor series: $e^x = \sum_{j \ge 0} \frac{x^j}{j!}$ and $e^{-x} = \sum_{j \ge 0} (-1)^j \frac{x^j}{j!}$, we have

$$\frac{e^{x} + e^{-x}}{2} = \sum_{j \in \mathbb{N}_{e}} \frac{x^{j}}{j!} \text{ and } \frac{e^{x} - e^{-x}}{2} = \sum_{j \in \mathbb{N}_{o}} \frac{x^{j}}{j!}$$

By the previous fact, we get

$$g(x) = \left(\frac{e^x + e^{-x}}{2}\right)^2 \cdot e^x = \frac{e^{3x} + 2e^x + e^{-x}}{4} = \sum_{n \ge 0} \left(\frac{3^n + 2 + (-1)^n}{4}\right) \cdot \frac{x^n}{n!}$$

Therefore, we get that

$$T_n = \frac{3^n + 2 + (-1)^n}{4}.$$

Recall that the exponential generating function for the sequence $\{a_n\}_{n\geq 0}$ is the power series

$$f(x) = \sum_{n=0}^{+\infty} a_n \cdot \frac{x^n}{n!}.$$

As we shall see, ordinary generation functions can be used to find the number of selections; while exponential generation functions can be used to find the number of arrangements or some combinatorial objects **involving ordering**. We summarize this as the following facts.

Fact 1.55. Given $I_j \subseteq \mathbb{N}$ for $j \in [n]$, let $f_j(x) = \sum_{i \in I_j} x^i$. And let $a_k = \sum_{\substack{i_1 + \dots + i_n = k, \\ i_j \in I_j}} 1$. Then

$$\prod_{j=1}^{n} f_j(x) = \sum_{k=0}^{+\infty} a_k x^k.$$

Fact 1.56. Given $I_j \subseteq \mathbb{N}$ for $j \in [n]$, let $g_j(x) = \sum_{i \in I_j} \frac{x^i}{i!}$. And let $b_k = \sum_{\substack{i_1 + \dots + i_n = k, \\ i_j \in I_j}} \frac{k!}{i_1!i_2!\cdots i_n!}$. Then

$$\prod_{j=1}^{n} g_j(x) = \sum_{k=0}^{+\infty} \frac{b_k}{k!} x^k.$$

Fact 1.57. Let $f(x) = \prod_{j=1}^{n} f_j(x)$. Then

$$[x^{k}]f = \sum_{\substack{i_{1}+\dots+i_{n}=k, \ j=1\\i_{j}\geq 0}} \prod_{j=1}^{n} [x^{i_{j}}]f_{j}.$$

Fact 1.58. Let $f(x) = \prod_{j=1}^{n} f_j(x)$ and let $f_j(x) = \sum_{k=0}^{+\infty} \frac{a_k^{(j)}}{k!} x^k$. Then

$$f(x) = \sum_{k=0}^{+\infty} \frac{A_k}{k!} x^k,$$

if and only if

$$A_{k} = \sum_{\substack{i_{1}+\ldots+i_{n}=k,\\i_{j}\geq 0}} \frac{k!}{i_{1}!i_{2}!\cdots i_{n}!} \Big(\prod_{j=1}^{n} a_{i_{j}}^{(j)}\Big).$$

Exercise 1.59. Find the number a_n of ways to send n students to four different classes (say R_1 , R_2 , R_3 , R_4) such that each class has at least one student.

Solution.

$$a_n = \sum_{\substack{i_1+i_2+i_3+i_4=n,\\i_j \ge 1}} \frac{n!}{i_1!i_2!i_3!i_4!}.$$

Let $I_j \subseteq \mathbb{N}$ for $j \in [4]$ and $g_j(x) = \sum_{i \ge 1} \frac{x^i}{i!} = e^x - 1$. By Fact 1.56, we have that

$$\sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n = g_1 g_2 g_3 g_4 = (\sum_{i \ge 1} \frac{x^i}{i!})^4 = (e^x - 1)^4 = e^{4x} - 4e^{3x} + 6e^{2x} - 4e^x + 1 = \sum_{n=0}^{+\infty} (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4) \frac{x_n^n}{n!} + 1$$

Thus $a_n = 4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4$ for $n \ge 4$.

Exercise 1.60. Let a_n be the number of arrangements of type A for a group of n people, and let b_n be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

- Divide the n people into 2 groups (say 1st and 2nd).
- Then arrange the 1^{st} group by an arrangement of type A, and arrange the 2^{nd} group by an arrangement of type B.

Let c_n be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the exponential generation function for $\{a_n\}, \{b_n\}, \{c_n\}$ respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

$$c_n = \sum_{\substack{i+j=n,\\i,j\ge 0}} \frac{n!}{i!j!} a_i b_j.$$

Then by Fact 1.58, C(x) = A(x)B(x).

Exercise 1.61. Recall that $S(n,k) \cdot k!$ is equal to the number of surjections from [n] to [k]. For fixed k, compute the exponential generating function of $S(n,k) \cdot k!$. Then find the value of $S(n,k) \cdot k!$.