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1 Enumeration

First we give some standard notation that will be used throughout this course.

• Let n be a positive integer. We will use [n] to denote the set {1, 2, ..., n}.

• Given a set X, let |X| denote the size of X, that is the number of elements contained in X.

• We use “#” to express the word “number”.

• The factorial of n is the product

n! = n · (n− 1) · · · 2 · 1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial Coefficients

Let X be a set of size n. Define 2X = {A : A ⊆ X} to be the family of all subsets of X. Since
the size of 2X is equal to the number of binary vectors of length |X| or the number of functions
from X to {0, 1}, we have |2X | = 2|X| = 2n.

Let
(
X
k

)
= {A : A ⊆ X, |A| = k}, we will use

(
n
k

)
to denote |

(
X
k

)
|. For n < k, we know that(

n
k

)
= 0 by definition.

Fact 1.1. For integers n > 0 and 0 ≤ k ≤ n, we have |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)! .

Proof. If k = 0, then it is clear that |
(
X
0

)
| = |{∅}| = 1 =

(
n
0

)
. Now we consider k > 0. Let

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

First we will show that number of ordered k-tuples (x1, x2, . . . , xk) with distinct xi ∈ X is (n)k.
There are n choices for the first element x1. When x1, . . . , xi is chosen, there are exactly n − i
choices for the element xi+1. So the number of ordered k-tuples (x1, x2, . . . , xk) with distinct
xi ∈ X is (n)k. Since any subset A ∈

(
X
k

)
corresponds to k! ordered k-tuples, it follows that

|
(
X
k

)
| = (n)k

k! = n!
k!(n−k)! . This finishes the proof.

Next we discuss more properties of binomial coefficients.

Fact 1.2. (1).
(
n
k

)
=
(

n
n−k
)

for 0 ≤ k ≤ n.

(2). 2n =
∑

0≤k≤n
(
n
k

)
.

(3).
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.(Pascal’s identity)

Proof. (1) is trivial. Since 2[n] = ∪0≤k≤n
([n]
k

)
, we see 2n =

∑
0≤k≤n

(
n
k

)
, proving (2). Finally,

we consider (3). Note that the first term on the right hand side
(
n−1
k−1

)
is the number of k-sets

containing a fixed element, while the second term
(
n−1
k

)
is the number of k-sets avoiding this

element. So their summation gives the total number of k-sets in [n], which is
(
n
k

)
. This finishes

the proof.
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Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the k-th element in the n row is(

n
k−1

)
.

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Fact 1.3. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ∈ {0, 1} is

(
n
k

)
.

Fact 1.4. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi > 0 is

(
k−1
n−1

)
.

Proof. This question is equivalent to ask: How many ways are there of distributing k sweets to
n children such that each child has at least one sweet.

Lay out the sweets in a single row of length k, and cut it into n pieces. Then give the sweets
of the ith piece to child i, which means that we need n− 1 cuts from k − 1 possibles.

Fact 1.5. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ≥ 0 is

(
n+k−1
n−1

)
.

Proof 1. Let A = {integer solutions (x1, . . . , xn) to x1 + · · ·+ xn = k, xi ≥ 0} and A = {integer
solutions (y1, . . . , yn) to y1 + · · ·+ yn = n+ k, yi > 0}. Then |B| =

(
n+k−1
n−1

)
by Fact 1.4.

Define f : A → B, by f((x1, . . . , xn)) = (x1 + 1, . . . , xn + 1). It suffices to check that f is a
bijection, which we omit here.

Proof 2. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let xi denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. This is
equal to select n− 1 elements from n+ r − 1 elements to be the child, others be the sweets (the
first child always starts at the beginning). So the answer is

(
n+k−1
n−1

)
.

Exercise 1.6. Let X = [n] , A = {(a1, a2, . . . , ar)|ai ∈ X , 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ n, ai+1−ai ≥
k + 1, i ∈ [r − 1]}. Prove that |A| =

(
n−k(r−1)

r

)
.
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Exercise 1.7. Give a Combinatorial proof of
n∑

k=0

(
n

k

)(
k

m

)
=

(
n

m

)
2n−m.

Exercise 1.8. Give a Combinatorial proof of
m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

1.2 Counting Mappings

Define XY to be the set of all functions f : Y → X.

Fact 1.9. |XY | = |X||Y |.
Proof. Let |Y | = r. We can view XY as the set of all strings x1x2 · · ·xr with elements xi ∈ X,
indexed by the r elements of Y . So |XY | = |X||Y |.

Fact 1.10. The number of injective functions f : [r]→ [n] is (n)r.

Proof. We can view the injective function f as an ordered k-tuple (x1, x2, . . . , xr) with distinct
xi ∈ X, so the number of injective functions f : [r]→ [n] is (n)r.

Definition 1.11 (The Stirling number of the second kind). Let S(r, n) be the number of
partitions of [r] into n unordered non-empty parts.

Exercise 1.12. Prove that

S(r, 2) =
2r − 2

2
=

1

2

r−1∑
i=1

(
r

i

)
.

Fact 1.13. The number of surjective functions f : [r]→ [n] is n!S(r, n).

Proof. Since f is a surjective function if and only if for any i ∈ [n], f−1(i) 6= ∅ if and only if
∪i∈[n]f

−1(i) = [r], and S(r, n) is the number of partition of [r] into n unordered non-empty parts,
we have the number of surjective functions f : [r]→ [n] is n!S(r, n).

We say that any injective f : X → X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.14 (The Stirling number of the first kind). Let s(r, n) be the number of
permutations of [r] with exactly n cycles multiplied by (−1)(r−n).

The following fact is a direct consequence of Fact 1.10.

Fact 1.15. The number of permutations of [n] is n!.

Exercise 1.16. (1) Let S(r, n) =

{
r
n

}
,give a Combinatorial proof of

{
n
k

}
=

{
n− 1
k − 1

}
+k

{
n− 1
k

}
.

(2) Let s(n, k) = (−1)n−k
[
n
k

]
, give a Combinatorial proof of

[
n
k

]
=

[
n− 1
k − 1

]
+(n−1)

[
n− 1
k

]
.
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1.3 The Binomial Theorem

Define [xk]f to be the coefficient of the term xk in the polynomial f(x).

Fact 1.17. For j = 1, 2, . . . , n, let fj(x) =
∑

k∈Ij x
k where Ij is a set of non-negative integers,

and let f(x) =
∏n

j=1 fj(x). Then, [xk]f equals the number of solutions (i1, i2, . . . , in) to i1 + i2 +
· · ·+ in = k, where ij ∈ Ij.

Fact 1.18. Let f1, . . . , fn be polynomials and f = f1f2 · · · fn. Then,

[xk]f =
∑

i1+···+in=k,ij≥0

 n∏
j=1

[xij ]fj

 .

Theorem 1.19 (The Binomial Theorem). For any real x and any positive integer n, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi.

Proof 1. Let f = (1+x)n. By Fact 1.17 we have [xk]f equals the number of solutions (i1, i2, ..., in)
to i1 + i2 + · · ·+ in = k where ij ∈ {0, 1}, so [xk]f =

(
n
k

)
.

Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n − 1, then
(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)

∑n−1
i=0

(
n−1
i

)
xi =

∑n−1
i=1 (

(
n−1
i

)
+
(
n−1
i−1

)
)xi + 1 + xn. Since(

n−1
i

)
+
(
n−1
i−1

)
=
(
n
i

)
and

(
n
0

)
=
(
n
n

)
= 1, we have (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Fact 1.20.
(

2n
n

)
=
∑n

i=0

(
n
i

)2
=
∑n

i=0

(
n
i

)(
n

n−i
)
.

Proof 1. Since (1 + x)2n = (1 + x)n(1 + x)n, by Fact 1.18, we have
(

2n
n

)
= [xn](1 + x)2n =∑n

i=0([xi](1 + x)n)([xn−i](1 + x)n) =
∑n

i=0

(
n
i

)(
n

n−i
)

=
∑n

i=0

(
n
i

)2
.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.21 (Vandermonde’s Convolution Formula).(
n+m

k

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
=
∑

i+j=k

(
n

i

)(
m

j

)
.

Exercise 1.22. (
n+m

r +m

)
=
∑

i−j=r

(
n

i

)(
m

j

)
.

Exercise 1.23. Prove that

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

by Binomial Theorem.
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Fact 1.24. (1). ∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2).
n∑

k=0

k

(
n

k

)
= n2n−1.

Proof. (1). We see that (1 + x)n =
∑n

i=0

(
n
i

)
xi. Taking x = 1 and x = −1, we have

∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2). Let f(x) = (1 + x)n =
∑n

k=0

(
n
k

)
xk. Then f ′(x) = n(1 + x)n−1 =

∑n
k=0 k

(
n
k

)
xk−1. Let x = 1,

then we have
∑n

k=0 k
(
n
k

)
= n2n−1.

Definition 1.25. Let kj ≥ 0 be integers satisfying that k1 + k2 + · · ·+ km = n. We define(
n

k1, k2, · · · , km

)
:=

n!

k1!k2! · · · km!
.

• When m = 2,
(

n
k1,k2

)
=
(
n
k1

)
is the number of binary vectors of length n with k1 zero and

k2 ones, which is also the number of ordered partitions of [n] into 2 parts such that the ith
part has size ki.

• When m ≥ 3,
(

n
k1,k2,··· ,km

)
is the number of m−ary vectors of length n over [m] such that i

occurs ki times, which is also the number of ordered partitions of [n] into m parts such that
the ith part has size ki.

The following theorem is a generalization of the binomial theorem.

Exercise 1.26 (Multinomial Theorem). For any reals x1, . . . , xm and any positive integer
n ≥ 1, we have

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n, kj≥0

(
n

k1, k2, · · · , km

)
xk11 x

k2
2 · · ·x

km
m .

Exercise 1.27. Suppose
∑m

i=1 ki = n with ki ≥ 1 for all i ∈ [m]. Then(
n

k1, k2, · · · , km

)
=

(
n− 1

k1 − 1, k2, · · · , km

)
+ · · ·+

(
n− 1

k1, k2, · · · , km − 1

)
.
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1.4 Inclusion and Exclusion Principle (IEP)

This lecture is devoted to Inclusion-Exclusion formula and its applications.

Let Ω be a ground set and let A1, A2, ..., An be subsets of Ω. Write Ac
i = Ω\Ai. Throughout

this lecture, we use the following notation.

Definition 1.28. Let A∅ = Ω. For any nonempty subset I ⊆ [n], let

AI =
⋂
i∈I

Ai.

For any integer k ≥ 0, let

Sk =
∑

I∈([n]
k )

|AI |.

Now we introduce Inclusion-Exclusion formula (in three equivalent forms) and give two proofs
as follows.

Theorem 1.29 (Inclusion-Exclusion Formula). We have

|A1 ∪A2 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1Sk,

which is equivalent to ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

n∑
k=0

(−1)kSk,

and ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

∑
I⊆[n]

(−1)|I||AI |.

Proof (1). For any subset X ⊆ Ω, we define its characterization function 1X : Ω → {0, 1} by
assigning

1X(x) =

{
1, x ∈ X
0, x /∈ X.

Then we notice that
∑

x∈Ω 1X(x) = |X|. Let A = A1∪A2∪ · · ·∪An. Our key observation is that

(1A − 1A1)(1A − 1A2) · · · (1A − 1An)(x) ≡ 0,

which holds for any x ∈ Ω. Next we expand this product into a summation of 2n terms as follows:

1A +
∑
∅6=I⊆[n]

(−1)|I|(
∏
i∈I

1Ai) ≡ 0

holds for any x ∈ Ω. Summing over all x ∈ Ω, this gives that

|A|+
∑
∅6=I⊆[n]

(−1)|I||AI | = 0,
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which implies that

|A1 ∪A2 ∪ · · · ∪An| = |A| =
∑
∅6=I⊆[n]

(−1)|I|+1|AI | =
n∑

k=1

(−1)k+1Sk,

finishing the proof.

Proof (2). It suffices to prove that

1A1∪A2∪···∪An(x) =
n∑

k=1

(−1)k+1
∑

I∈([n]
k )

1AI
(x)

holds for all x ∈ Ω. Denote by LHS (resp. RHS) the left-hand side (resp. right-hand side) of the
above equation.

Assume that x is contained in exactly ` subsets, say A1, A2, . . . , A`. If ` = 0, then clearly
LHS = 0 = RHS, so we are done. So we may assume that ` ≥ 1. In this case, we have LHS = 1
and

RHS = `−
(
`

2

)
+

(
`

3

)
+ · · ·+ (−1)`+1

(
`

`

)
= 1.

Note that the above equation holds since
∑`

i=0(−1)i
(
`
i

)
= (1− 1)` = 0. This finishes the proof.

Next, we will demonstrate the power of Inclusion-Exclusion formula by using it to solve several
problems.

Definition 1.30. Let ϕ(n) be the number of integers m ∈ [n] which are relatively prime1 to n.

Theorem 1.31. If we express n = pa11 p
a2
2 · · · p

at
t , where p1, . . . , pt are distinct primes, then

ϕ(n) = n

t∏
i=1

(1− 1

pi
).

Proof. Let the ground set
Ω = [n]

and
Ai = {m ∈ [n] : pi|m}

for i ∈ {1, 2, . . . , t}. It implies

ϕ(n) =
∣∣{m ∈ [n] : m /∈ Ai for all i ∈ [t]}

∣∣ =
∣∣[n]\(A1 ∪A2 ∪ · · · ∪At)

∣∣.
By Inclusion-Exclusion formula,

ϕ(n) =
∑
I⊆[t]

(−1)|I||AI |,

1Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.
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where AI = ∩i∈IAi = {m ∈ [n] : (
∏

i∈I pi)|m} and thus |AI | = n∏
i∈I pi

. We can derive that

ϕ(n) =
∑
I⊆[t]

(−1)|I|
n∏
i∈I pi

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
),

as desired.

Exercise 1.32. For any positive integer n,∑
d|n

ϕ(d) = n

1.5 Möbius Inversion Formula

Definition 1.33. The Möbius Function µ for a positive integer d is

µ(d) =


1, d is a product of even number of distinct primes (d = 1 included)

−1, d is a product of odd number of distinct primes

0, otherwise

Theorem 1.34. For any positive integer n,

∑
d|n

µ(d) =

{
1, n = 1

0, otherwise

Proof. If n = 1, it is trivial. For n = pa11 . . . parr ≥ 2,

∑
d|n

µ(d) =
∑

i1≤a1,...,ir≤ar

µ(pi11 . . . p
ir
r ) =

r∑
i=0

(
r

i

)
(−1)i = 0.

Theorem 1.35 (Möbius Inversion Formula). Let f(n) and g(n) be two functions defined for
every positive integer n satisfying

f(n) =
∑
d|n

g(d).

Then we have
g(n) =

∑
d|n

µ(d)f(
n

d
).
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Proof. ∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(
n

d
)f(d)

=
∑
d|n

µ(
n

d
)(
∑
d′|d

g(d′))

=
∑
d′|n

g(d′)
∑
n
d
| n
d′

µ(
n

d
)

=
∑
d′|n

g(d′)
∑
m| n

d′

µ(m)

=
∑

d′|n,d′ 6=n

g(d′)× 0 + g(n)× 1

= g(n)

as desired.

1.6 Generating Functions

Definition 1.36. The (ordinary) generating function (GF) for an infinite sequence {a0, a1, . . . }
is a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view this power series.

(i). When the power series
∑

n≥0 anx
n converges (i.e. there exists a radius R > 0 of con-

vergence), we view GF as a function of x and we can apply operations of calculus on it
(including derivation and integration). For example, we know that

an =
f (n)(0)

n!
.

Recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn for
some K > 0, then

∑
n≥0 anx

n converges in the interval (− 1
K ,

1
K ).

(ii). When we are not sure of the convergence, we view the generating function as a formal series
and take additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)xn.

Multiplication. Let cn =
∑n

i=0 aibn−i. Then

a(x) · b(x) =
∑
n≥0

cnx
n.
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Example 1.37. Consider the GF of {1, 1, 1, . . . }. We note 1
1−x =

∑∞
n=0 x

n holds for all −1 <
x < 1. From the point view of (i), its first derivative gives

1

(1− x)2
=
∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn.

So we could view 1
(1−x)2

as the GF of {1, 2, 3, . . . } for all −1 < x < 1.

Problem 1.38. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

Solution. Consider the generating function,

f(x) =

∞∑
n=0

anx
n = 1 +

∞∑
n=1

anx
n = 1 + 2x

∞∑
n=1

an−1x
n−1 = 1 + 2xf(x).

So f(x) = 1
1−2x , which implies that f(x) =

∑+∞
n=0 2nxn and an = 2n.

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of an, we work on its generating function f(x); once we find the formula
of f(x), then we can expand f(x) into a power series and get an by choosing the coefficient of
the right term.

Problem 1.39. Let An be the set of strings of length n with entries from the set {a, b, c} and
with no “aa” occuring (in the consecutive positions). Find |An| for n ≥ 1.

Solution. Let an = |An|. We first observe that a1 = 3, a2 = 8. For n ≥ 3, we will find an by
recursion as follows. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n− 2 strings have an−2 choices. If the first string is ‘b’ or ‘c’, the last n− 1 strings have
an−1 choices. They are all different. Totally, for n ≥ 3, we have

an = 2an−1 + 2an−2.

Set a0 = 1, then an = 2an−1 + 2an−2 holds for n ≥ 2. The generating function of {an} is

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

(2an−1 + 2an−2)xn = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−
√

3

2
√

3

1√
3 + 1 + 2x

+
1 +
√

3

2
√

3

1√
3− 1− 2x

,

which implies that

an =
1−
√

3

2
√

3

1√
3 + 1

(
−2√
3 + 1

)n

+
1 +
√

3

2
√

3

1√
3− 1

(
2√

3− 1

)n

.
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Remark 1.40. Note that an must be an integer but its expression is a combination of irrational

terms! Observe that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(
−2√
3+1

)n
→ 0 as n→∞. Thus, when n is sufficiently large,

this integer an is about the value of the second term 1+
√

3
2
√

3
1√
3−1

(
2√
3−1

)n
. Equivalently an will be

the nearest integer to that.

Exercise 1.41. Define Fibonacci number Fn as follows: F1 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for
all n ≥ 0. Find Fn.

Definition 1.42. For any real r and an integer k ≥ 0, let(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
.

Exercise 1.43. Prove that
( 1

2
k

)
= (−1)k−1·2

4k
(2k−2)!
k!(k−1)! .

Theorem 1.44 (Newton’s Binomial Theorem). For any real number r and x ∈ (−1, 1),

(1 + x)r =
∞∑
k=0

(
r

k

)
xk.

Proof. By Taylor series, it is obvious.

Corollary 1.45. Let r = −n for some integer n ≥ 0. Then(
−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk,

which is equivalent to

(1− x)−n =
∞∑
k=0

(
n+ k − 1

k

)
xk (1)

Noting that(
n+ k − 1

k

)
= # integer solutions to x1 + x2 + · · ·+ xn = k where xi ≥ 0, 1 ≤ i ≤ n,

we can explain Equation (1) from another point of view as follows.
Recall the following facts.

Fact 1.46. For j ∈ [n], let fj(x) :=
∑

i∈Ij x
i, where Ij ⊂ N. Let bk be the number of solutions to

i1 + i2 + · · ·+ in = k for ij ∈ Ij. Then

n∏
j=1

fj(x) =
∞∑
k=0

bkx
k.
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Fact 1.47. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+···+ik=n

k∏
j=1

(
[xij ]fj

)
,

where [xn]f is the coefficient of xn in f .

Let fj = (1 − x)−1 =
∑

i≥0 x
i, ∀j ∈ [n]. By Fact 1.46, we can get Equation 1 by considering

as (1− x)−n =
∏n

j=1 fj easily.

Exercise 1.48. Show (1− x)−n =
∑∞

k=0

(
n+k−1

k

)
xk by taking the nth derivative of (1− x)−1.

Problem 1.49. Let an be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {an}?

Solution. Observe that an is the number of integer solutions (i1, i2, i3) to i1 + i2 + i3 = n, where
i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}. Let fj(x) :=

∑
m∈Ij x

m

for j = 1, 2, 3. By Fact 1.46, we have

+∞∑
n=0

anx
n = f1(x)f2(x)f3(x) =

1

1− x
· 1

1− x2
· 1

1− x5
.

1.7 Random Walks

Consider a real axis with integer points (0,±1,±2,±3, . . .) marked. A frog leaps among the
integer points according to the following rules:

(1). At beginning, it sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+ 2), or by
distance 1 to the left (from i to i − 1), each of which is randomly chosen with probability
1
2 independently of each other.

Problem 1.50. What is the probability that the frog can reach “ 0”?

Solution. In each step, we use “+” or “−” to indicate the choice of the frog that is either to leap
right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where
each entry is in {+,−}.

Let A be the event that the frog reaches “0”. Let Ai be the event that the frog reaches “0”
at the ith step for the first time. So A = ∪+∞

i=1Ai is a disjoint union. So P (A) =
∑+∞

i=1 P (Ai).
To compute P (Ai), we can define ai to be the number of trajectories (or vectors) of the first

i steps such that the frog starts at “1” and reaches “0” at the ith step for the first time. So

P (Ai) =
ai
2i
.

Then,

P (A) =

+∞∑
i=1

ai
2i
.
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Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}i≥0, where a0 := 0. Thus,

P (A) =
+∞∑
i=1

ai
2i

= f

(
1

2

)
.

We then turn to find the expression of f(x).
Let bi be the number of trajectories of the first i steps such that the frog starts at “2” and

reaches “0” at the ith step for the first time.
Let ci be the number of trajectories of the first i steps such that the frog starts at “3” and

reaches “0” at the ith step for the first time.
First we express bi in terms of {aj}j≥1. Since the frog only can leap to left by distance 1,

if the frog can successfully jump from “i” to “0” in i steps, then this frog must reach “1” first.
Let j be the number of steps by which the frog reaches “1” for the first time. So there are aj
trajectories from “2” to “1” at the jth step for the first time. In the remaining i − j steps the
frog must jump from “1” to “0” and reach “0” at the coming (i− j)th step for the first time, so
there are ai−j trajectories that the frog can finish in exactly i− j steps. In total,

bi =

i−1∑
j=1

ajai−j .

As a0 = 0,

bi =

i∑
j=0

ajai−j .

We can get ∑
i≥0

bix
i = (

∑
i≥0

aix
i)2 = f2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can obtain that

ci =
i∑

j=0

ajbi−j ,

which implies that ∑
i≥0

cix
i =

∑
i≥0

bix
i

∑
i≥0

aix
i

 = f3(x).

Let us consider ai from another point of view. After the first step, either the frog reaches “0”
directly (if it leaps to left, so a1 = 1), or it leaps to “3”. In the latter case, the frog needs to jump
from “3” to “0” using i− 1 steps. Thus for i ≥ 2, ai = ci−1.

Combining the above facts, we have

f(x) =

+∞∑
i=0

aix
i = x+

∑
i≥2

aix
i = x+

∑
i≥2

ci−1x
i = x+ x

+∞∑
j=0

cjx
j

 = x+ x · f3(x).
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Let a := P (A) = f(1/2). Then we have a = 1
2 + a3

2 , i.e., (a− 1)(a2 + a− 1) = 0, implying that

a = 1,

√
5− 1

2
or
−
√

5− 1

1
.

Since P (A) ∈ [0, 1], we see P (A) = 1 or
√

5−1
2 .

Note that f(x) = x + xf3(x). Consider the inverse function of f(x), that is, g(x) := x
1+x3 .

Consider the figure of g(x). We find that g(x) is increasing around
√

5−1
2 but decreasing around

1. Since f(x) =
∑
aix

i is increasing, g(x) also increases. Thus it doesn’t make sense for g(x)

being around x = 1. This explains that P (A) =
√

5−1
2 , which is the golden section!

1.8 Exponential Generating Functions

Let N,Ne and No be the sets of non-negative integers, non-negative even integers and non-negative
odd integers, respectively.

Given n sets Ij of non-negative integers for j ∈ [n], let fj(x) =
∑

i∈Ij x
i. Let ak be the number

of integer solutions to i1 + i2 + · · · + in = k, where ij ∈ Ij . Then
∏n

j=1 fj(x) is the ordinary
generating function of {ak}k≥0.

Problem 1.51. Let Sn be the number of selections of n letters chosen from an unlimited supply
of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even.

Solution. We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N
1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2
∑

j∈N
xj

 =

(
1

1− x2

)2

· 1

1− x
.

Problem 1.52. Let Tn be the number of arrangements (or words) of n letters chosen from an
unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even. What
is the value of Tn?

Solution. To solve this, we define a new kind of generating functions.

Definition 1.53. The exponential generating function for the sequence {an}n≥0 is the power
series

f(x) =

∞∑
n=0

an ·
xn

n!
.

Then we have the following fact.

Fact 1.54. If we have n letters including x a’s, y b’s and z c’s (i.e. x+ y+ z = n), then we can
form n!

x!y!z! distinct words using them.
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Therefore, a selection (say x a’s, y b’s and z c’s) can contribute n!
x!y!z! arrangements to Tn.

This implies that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.

Similar to defining the above f(x) for Sn, we define the following for Tn. Let

g(x) :=

(∑
i∈Ne

xi

i!

)2
∑

j∈N

xj

j!

 .

Claim. We have

[xn]g =
Tn
n!
.

Proof. To see this, we expand g(x). Then the term xn in g(x) becomes

∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

xe1

e1!
· x

e2

e2!
· x

e3

e3!
=

 ∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

n!

e1!e2!e3!

 xn

n!
= Tn ·

xn

n!
.

So [xn]g = Tn
n! , i.e., g(x) is the exponential generating function of {Tn}. This finishes the proof

of Claim.

Using Taylor series: ex =
∑

j≥0
xj

j! and e−x =
∑

j≥0(−1)j x
j

j! , we have

ex + e−x

2
=
∑
j∈Ne

xj

j!
and

ex − e−x

2
=
∑
j∈No

xj

j!
.

By the previous fact, we get

g(x) =

(
ex + e−x

2

)2

· ex =
e3x + 2ex + e−x

4
=
∑
n≥0

(
3n + 2 + (−1)n

4

)
· x

n

n!
.

Therefore, we get that

Tn =
3n + 2 + (−1)n

4
.

Recall that the exponential generating function for the sequence {an}n≥0 is the power series

f(x) =

+∞∑
n=0

an ·
xn

n!
.

As we shall see, ordinary generation functions can be used to find the number of selections;
while exponential generation functions can be used to find the number of arrangements or some
combinatorial objects involving ordering. We summarize this as the following facts.
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Fact 1.55. Given Ij ⊆ N for j ∈ [n], let fj(x) =
∑
i∈Ij

xi. And let ak =
∑

i1+···+in=k,
ij∈Ij

1. Then

n∏
j=1

fj(x) =
+∞∑
k=0

akx
k.

Fact 1.56. Given Ij ⊆ N for j ∈ [n], let gj(x) =
∑
i∈Ij

xi

i! . And let bk =
∑

i1+···+in=k,
ij∈Ij

k!
i1!i2!···in! . Then

n∏
j=1

gj(x) =

+∞∑
k=0

bk
k!
xk.

Fact 1.57. Let f(x) =
n∏

j=1
fj(x). Then

[xk]f =
∑

i1+···+in=k,
ij≥0

n∏
j=1

[xij ]fj .

Fact 1.58. Let f(x) =
n∏

j=1
fj(x) and let fj(x) =

+∞∑
k=0

a
(j)
k
k! x

k. Then

f(x) =
+∞∑
k=0

Ak

k!
xk,

if and only if

Ak =
∑

i1+...+in=k,
ij≥0

k!

i1!i2! · · · in!

( n∏
j=1

a
(j)
ij

)
.

Exercise 1.59. Find the number an of ways to send n students to four different classes (say R1,
R2, R3, R4) such that each class has at least one student.

Solution.

an =
∑

i1+i2+i3+i4=n,
ij≥1

n!

i1!i2!i3!i4!
.

Let Ij ⊆ N for j ∈ [4] and gj(x) =
∑
i≥1

xi

i! = ex − 1. By Fact 1.56, we have that

+∞∑
n=0

an
n!
xn = g1g2g3g4 = (

∑
i≥1

xi

i!
)4 = (ex − 1)4 = e4x−4e3x+6e2x−4ex+1 =

+∞∑
n=0

(4n−4·3n+6·2n−4)
xnn
n!

+1.

Thus an = 4n − 4 · 3n + 6 · 2n − 4 for n ≥ 4.
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Exercise 1.60. Let an be the number of arrangements of type A for a group of n people, and let
bn be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

• Divide the n people into 2 groups (say 1st and 2nd).

• Then arrange the 1st group by an arrangement of type A, and arrange the 2nd group by an
arrangement of type B.

Let cn be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the
exponential generation function for {an}, {bn}, {cn} respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

cn =
∑

i+j=n,
i,j≥0

n!

i!j!
aibj .

Then by Fact 1.58, C(x) = A(x)B(x).

Exercise 1.61. Recall that S(n, k) · k! is equal to the number of surjections from [n] to [k].
For fixed k, compute the exponential generating function of S(n, k) · k!. Then find the value of
S(n, k) · k!.
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