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1 Enumeration

First we give some standard notation that will be used throughout this course.

• Let n be a positive integer. We will use [n] to denote the set {1, 2, ..., n}.

• Given a set X, let |X| denote the size of X, that is the number of elements contained in X.

• We use “#” to express the word “number”.

• The factorial of n is the product

n! = n · (n− 1) · · · 2 · 1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial Coefficients

Let X be a set of size n. Define 2X = {A : A ⊆ X} to be the family of all subsets of X. Since
the size of 2X is equal to the number of binary vectors of length |X| or the number of functions
from X to {0, 1}, we have |2X | = 2|X| = 2n.

Let
(
X
k

)
= {A : A ⊆ X, |A| = k}, we will use

(
n
k

)
to denote |

(
X
k

)
|. For n < k, we know that(

n
k

)
= 0 by definition.

Fact 1.1. For integers n > 0 and 0 ≤ k ≤ n, we have |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)! .

Proof. If k = 0, then it is clear that |
(
X
0

)
| = |{∅}| = 1 =

(
n
0

)
. Now we consider k > 0. Let

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

First we will show that number of ordered k-tuples (x1, x2, . . . , xk) with distinct xi ∈ X is (n)k.
There are n choices for the first element x1. When x1, . . . , xi is chosen, there are exactly n − i
choices for the element xi+1. So the number of ordered k-tuples (x1, x2, . . . , xk) with distinct
xi ∈ X is (n)k. Since any subset A ∈

(
X
k

)
corresponds to k! ordered k-tuples, it follows that

|
(
X
k

)
| = (n)k

k! = n!
k!(n−k)! . This finishes the proof.

Next we discuss more properties of binomial coefficients.

Fact 1.2. (1).
(
n
k

)
=
(

n
n−k

)
for 0 ≤ k ≤ n.

(2). 2n =
∑

0≤k≤n

(
n
k

)
.

(3).
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.(Pascal’s identity)

Proof. (1) is trivial. Since 2[n] = ∪0≤k≤n

([n]
k

)
, we see 2n =

∑
0≤k≤n

(
n
k

)
, proving (2). Finally,

we consider (3). Note that the first term on the right hand side
(
n−1
k−1

)
is the number of k-sets

containing a fixed element, while the second term
(
n−1
k

)
is the number of k-sets avoiding this

element. So their summation gives the total number of k-sets in [n], which is
(
n
k

)
. This finishes

the proof.
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Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the k-th element in the n+ 1 row
is
(

n
k−1

)
.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Fact 1.3. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ∈ {0, 1} is

(
n
k

)
.

Fact 1.4. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi > 0 is

(
k−1
n−1

)
.

Proof. This question is equivalent to ask: How many ways are there of distributing k sweets to
n children such that each child has at least one sweet.

Lay out the sweets in a single row of length k, and cut it into n pieces. Then give the sweets
of the ith piece to child i, which means that we need n− 1 cuts from k − 1 possibles.

Fact 1.5. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ≥ 0 is

(
n+k−1
n−1

)
.

Proof 1. Let A = {integer solutions (x1, . . . , xn) to x1 + · · ·+ xn = k, xi ≥ 0} and A = {integer
solutions (y1, . . . , yn) to y1 + · · ·+ yn = n+ k, yi > 0}. Then |B| =

(
n+k−1
n−1

)
by Fact 1.4.

Define f : A → B, by f((x1, . . . , xn)) = (x1 + 1, . . . , xn + 1). It suffices to check that f is a
bijection, which we omit here.

Proof 2. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let xi denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. This is
equal to select n− 1 elements from n+ r − 1 elements to be the child, others be the sweets (the
first child always starts at the beginning). So the answer is

(
n+k−1
n−1

)
.
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Exercise 1.6. Let X = [n] , A = {(a1, a2, . . . , ar)|ai ∈ X , 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ n, ai+1−ai ≥
k + 1, i ∈ [r − 1]}. Prove that |A| =

(
n−k(r−1)

r

)
.

Exercise 1.7. Give a Combinatorial proof of

n∑
k=0

(
n

k

)(
k

m

)
=

(
n

m

)
2n−m.

Exercise 1.8. Give a Combinatorial proof of

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

1.2 Counting Mappings

Define XY to be the set of all functions f : Y → X.

Fact 1.9. |XY | = |X||Y |.

Proof. Let |Y | = r. We can view XY as the set of all strings x1x2 · · ·xr with elements xi ∈ X,
indexed by the r elements of Y . So |XY | = |X||Y |.

Fact 1.10. The number of injective functions f : [r] → [n] is (n)r.

Proof. We can view the injective function f as an ordered k-tuple (x1, x2, . . . , xr) with distinct
xi ∈ X, so the number of injective functions f : [r] → [n] is (n)r.

Definition 1.11 (The Stirling number of the second kind). Let S(r, n) be the number of
partitions of [r] into n unordered non-empty parts.

Exercise 1.12. Prove that

S(r, 2) =
2r − 2

2
=

1

2

r−1∑
i=1

(
r

i

)
.

Fact 1.13. The number of surjective functions f : [r] → [n] is n!S(r, n).

Proof. Since f is a surjective function if and only if for any i ∈ [n], f−1(i) ̸= ∅ if and only if
∪i∈[n]f

−1(i) = [r], and S(r, n) is the number of partition of [r] into n unordered non-empty parts,
we have the number of surjective functions f : [r] → [n] is n!S(r, n).

We say that any injective f : X → X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.14 (The Stirling number of the first kind). Let s(r, n) be the number of
permutations of [r] with exactly n cycles multiplied by (−1)(r−n).
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The following fact is a direct consequence of Fact 1.10.

Fact 1.15. The number of permutations of [n] is n!.

Exercise 1.16. (1) Let S(r, n) =

{
r
n

}
,give a Combinatorial proof of

{
n
k

}
=

{
n− 1
k − 1

}
+k

{
n− 1
k

}
.

(2) Let s(n, k) = (−1)n−k

[
n
k

]
, give a Combinatorial proof of

[
n
k

]
=

[
n− 1
k − 1

]
+(n−1)

[
n− 1
k

]
.

1.3 The Binomial Theorem

Define [xk]f to be the coefficient of the term xk in the polynomial f(x).

Fact 1.17. For j = 1, 2, . . . , n, let fj(x) =
∑

k∈Ij x
k where Ij is a set of non-negative integers,

and let f(x) =
∏n

j=1 fj(x). Then, [xk]f equals the number of solutions (i1, i2, . . . , in) to i1 + i2 +
· · ·+ in = k, where ij ∈ Ij.

Fact 1.18. Let f1, . . . , fn be polynomials and f = f1f2 · · · fn. Then,

[xk]f =
∑

i1+···+in=k,ij≥0

 n∏
j=1

[xij ]fj

 .

Theorem 1.19 (The Binomial Theorem). For any real x and any positive integer n, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi.

Proof 1. Let f = (1+x)n. By Fact 1.17 we have [xk]f equals the number of solutions (i1, i2, ..., in)
to i1 + i2 + · · ·+ in = k where ij ∈ {0, 1}, so [xk]f =

(
n
k

)
.

Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n − 1, then
(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)

∑n−1
i=0

(
n−1
i

)
xi =

∑n−1
i=1 (

(
n−1
i

)
+
(
n−1
i−1

)
)xi + 1 + xn. Since(

n−1
i

)
+
(
n−1
i−1

)
=
(
n
i

)
and

(
n
0

)
=
(
n
n

)
= 1, we have (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Fact 1.20.
(
2n
n

)
=
∑n

i=0

(
n
i

)2
=
∑n

i=0

(
n
i

)(
n

n−i

)
.

Proof 1. Since (1 + x)2n = (1 + x)n(1 + x)n, by Fact 1.18, we have
(
2n
n

)
= [xn](1 + x)2n =∑n

i=0([x
i](1 + x)n)([xn−i](1 + x)n) =

∑n
i=0

(
n
i

)(
n

n−i

)
=
∑n

i=0

(
n
i

)2
.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.21 (Vandermonde’s Convolution Formula).(
n+m

k

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
=
∑

i+j=k

(
n

i

)(
m

j

)
.
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Exercise 1.22. (
n+m

r +m

)
=
∑

i−j=r

(
n

i

)(
m

j

)
.

Exercise 1.23. Prove that
m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

by Binomial Theorem.

Fact 1.24. (1). ∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2).
n∑

k=0

k

(
n

k

)
= n2n−1.

Proof. (1). We see that (1 + x)n =
∑n

i=0

(
n
i

)
xi. Taking x = 1 and x = −1, we have∑

all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2). Let f(x) = (1+ x)n =
∑n

k=0

(
n
k

)
xk. Then f ′(x) = n(1 + x)n−1 =

∑n
k=0 k

(
n
k

)
xk−1. Let x = 1,

then we have
∑n

k=0 k
(
n
k

)
= n2n−1.

Definition 1.25. Let kj ≥ 0 be integers satisfying that k1 + k2 + · · ·+ km = n. We define(
n

k1, k2, · · · , km

)
:=

n!

k1!k2! · · · km!
.

• When m = 2,
(

n
k1,k2

)
=
(
n
k1

)
is the number of binary vectors of length n with k1 zero and

k2 ones, which is also the number of ordered partitions of [n] into 2 parts such that the ith
part has size ki.

• When m ≥ 3,
(

n
k1,k2,··· ,km

)
is the number of m−ary vectors of length n over [m] such that i

occurs ki times, which is also the number of ordered partitions of [n] into m parts such that
the ith part has size ki.

The following theorem is a generalization of the binomial theorem.

Exercise 1.26 (Multinomial Theorem). For any reals x1, . . . , xm and any positive integer
n ≥ 1, we have

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n, kj≥0

(
n

k1, k2, · · · , km

)
xk11 xk22 · · ·xkmm .

Exercise 1.27. Suppose
∑m

i=1 ki = n with ki ≥ 1 for all i ∈ [m]. Then(
n

k1, k2, · · · , km

)
=

(
n− 1

k1 − 1, k2, · · · , km

)
+ · · ·+

(
n− 1

k1, k2, · · · , km − 1

)
.
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1.4 Inclusion and Exclusion Principle (IEP)

This lecture is devoted to Inclusion-Exclusion formula and its applications.

Let Ω be a ground set and let A1, A2, ..., An be subsets of Ω. Write Ac
i = Ω\Ai. Throughout

this lecture, we use the following notation.

Definition 1.28. Let A∅ = Ω. For any nonempty subset I ⊆ [n], let

AI =
⋂
i∈I

Ai.

For any integer k ≥ 0, let

Sk =
∑

I∈([n]
k )

|AI |.

Now we introduce Inclusion-Exclusion formula (in three equivalent forms) and give two proofs
as follows.

Theorem 1.29 (Inclusion-Exclusion Formula). We have

|A1 ∪A2 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1Sk,

which is equivalent to ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

n∑
k=0

(−1)kSk,

and ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

∑
I⊆[n]

(−1)|I||AI |.

Proof (1). For any subset X ⊆ Ω, we define its characterization function 1X : Ω → {0, 1} by
assigning

1X(x) =

{
1, x ∈ X

0, x /∈ X.

Then we notice that
∑

x∈Ω 1X(x) = |X|. Let A = A1∪A2∪ · · ·∪An. Our key observation is that

(1A − 1A1)(1A − 1A2) · · · (1A − 1An)(x) ≡ 0,

which holds for any x ∈ Ω. Next we expand this product into a summation of 2n terms as follows:

1A +
∑

∅≠I⊆[n]

(−1)|I|(
∏
i∈I

1Ai) ≡ 0

holds for any x ∈ Ω. Summing over all x ∈ Ω, this gives that

|A|+
∑

∅≠I⊆[n]

(−1)|I||AI | = 0,
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which implies that

|A1 ∪A2 ∪ · · · ∪An| = |A| =
∑

∅≠I⊆[n]

(−1)|I|+1|AI | =
n∑

k=1

(−1)k+1Sk,

finishing the proof.

Proof (2). It suffices to prove that

1A1∪A2∪···∪An(x) =
n∑

k=1

(−1)k+1
∑

I∈([n]
k )

1AI
(x)

holds for all x ∈ Ω. Denote by LHS (resp. RHS) the left-hand side (resp. right-hand side) of the
above equation.

Assume that x is contained in exactly ℓ subsets, say A1, A2, . . . , Aℓ. If ℓ = 0, then clearly
LHS = 0 = RHS, so we are done. So we may assume that ℓ ≥ 1. In this case, we have LHS = 1
and

RHS = ℓ−
(
ℓ

2

)
+

(
ℓ

3

)
+ · · ·+ (−1)ℓ+1

(
ℓ

ℓ

)
= 1.

Note that the above equation holds since
∑ℓ

i=0(−1)i
(
ℓ
i

)
= (1− 1)ℓ = 0. This finishes the proof.

Next, we will demonstrate the power of Inclusion-Exclusion formula by using it to solve several
problems.

Definition 1.30. Let φ(n) be the number of integers m ∈ [n] which are relatively prime1 to n.

Theorem 1.31. If we express n = pa11 pa22 · · · patt , where p1, . . . , pt are distinct primes, then

φ(n) = n

t∏
i=1

(1− 1

pi
).

Proof. Let the ground set
Ω = [n]

and
Ai = {m ∈ [n] : pi|m}

for i ∈ {1, 2, . . . , t}. It implies

φ(n) =
∣∣{m ∈ [n] : m /∈ Ai for all i ∈ [t]}

∣∣ = ∣∣[n]\(A1 ∪A2 ∪ · · · ∪At)
∣∣.

By Inclusion-Exclusion formula,

φ(n) =
∑
I⊆[t]

(−1)|I||AI |,

1Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.

9



where AI = ∩i∈IAi = {m ∈ [n] : (
∏

i∈I pi)|m} and thus |AI | = n∏
i∈I pi

. We can derive that

φ(n) =
∑
I⊆[t]

(−1)|I|
n∏
i∈I pi

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
),

as desired.

Exercise 1.32. For any positive integer n,∑
d|n

φ(d) = n.

1.5 Möbius Inversion Formula

Definition 1.33. The Möbius Function µ for a positive integer d is

µ(d) =


1, d is a product of even number of distinct primes (d = 1 included)

−1, d is a product of odd number of distinct primes

0, otherwise

Theorem 1.34. For any positive integer n,

∑
d|n

µ(d) =

{
1, n = 1

0, otherwise

Proof. If n = 1, it is trivial. For n = pa11 . . . parr ≥ 2,

∑
d|n

µ(d) =
∑

i1≤a1,...,ir≤ar

µ(pi11 . . . pirr ) =
r∑

i=0

(
r

i

)
(−1)i = 0.

Theorem 1.35 (Möbius Inversion Formula). Let f(n) and g(n) be two functions defined for
every positive integer n satisfying

f(n) =
∑
d|n

g(d).

Then we have
g(n) =

∑
d|n

µ(d)f(
n

d
).
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Proof. ∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(
n

d
)f(d)

=
∑
d|n

µ(
n

d
)(
∑
d′|d

g(d′))

=
∑
d′|n

g(d′)
∑
n
d
| n
d′

µ(
n

d
)

=
∑
d′|n

g(d′)
∑
m| n

d′

µ(m)

=
∑

d′|n,d′ ̸=n

g(d′)× 0 + g(n)× 1

= g(n)

as desired.

1.6 Generating Functions

Definition 1.36. The (ordinary) generating function (GF) for an infinite sequence {a0, a1, . . . }
is a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view this power series.

(i). When the power series
∑

n≥0 anx
n converges (i.e. there exists a radius R > 0 of con-

vergence), we view GF as a function of x and we can apply operations of calculus on it
(including derivation and integration). For example, we know that

an =
f (n)(0)

n!
.

Recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn for
some K > 0, then

∑
n≥0 anx

n converges in the interval (− 1
K , 1

K ).

(ii). When we are not sure of the convergence, we view the generating function as a formal series
and take additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)x
n.

Multiplication. Let cn =
∑n

i=0 aibn−i. Then

a(x) · b(x) =
∑
n≥0

cnx
n.

Example 1.37. Consider the GF of {1, 1, 1, . . . }. We note 1
1−x =

∑∞
n=0 x

n holds for all −1 <
x < 1. From the point view of (i), its first derivative gives

1

(1− x)2
=

∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn.

11



So we could view 1
(1−x)2

as the GF of {1, 2, 3, . . . } for all −1 < x < 1.

Problem 1.38. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

Solution. Consider the generating function,

f(x) =
∞∑
n=0

anx
n = 1 +

∞∑
n=1

anx
n = 1 + 2x

∞∑
n=1

an−1x
n−1 = 1 + 2xf(x).

So f(x) = 1
1−2x , which implies that f(x) =

∑+∞
n=0 2

nxn and an = 2n.

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of an, we work on its generating function f(x); once we find the formula
of f(x), then we can expand f(x) into a power series and get an by choosing the coefficient of
the right term.

Problem 1.39. Let An be the set of strings of length n with entries from the set {a, b, c} and
with no “aa” occuring (in the consecutive positions). Find |An| for n ≥ 1.

Solution. Let an = |An|. We first observe that a1 = 3, a2 = 8. For n ≥ 3, we will find an by
recursion as follows. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n− 2 strings have an−2 choices. If the first string is ‘b’ or ‘c’, the last n− 1 strings have
an−1 choices. They are all different. Totally, for n ≥ 3, we have

an = 2an−1 + 2an−2.

Set a0 = 1, then an = 2an−1 + 2an−2 holds for n ≥ 2. The generating function of {an} is

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

(2an−1 + 2an−2)x
n = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−

√
3

2
√
3

1√
3 + 1 + 2x

+
1 +

√
3

2
√
3

1√
3− 1− 2x

,

which implies that

an =
1−

√
3

2
√
3

1√
3 + 1

(
−2√
3 + 1

)n

+
1 +

√
3

2
√
3

1√
3− 1

(
2√
3− 1

)n

.

Remark 1.40. Note that an must be an integer but its expression is a combination of irrational

terms! Observe that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(

−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large,

this integer an is about the value of the second term 1+
√
3

2
√
3

1√
3−1

(
2√
3−1

)n
. Equivalently an will be

the nearest integer to that.
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Exercise 1.41. Define Fibonacci number Fn as follows: F1 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for
all n ≥ 0. Find Fn.

Definition 1.42. For any real r and an integer k ≥ 0, let(
r

k

)
=

r(r − 1) · · · (r − k + 1)

k!
.

Exercise 1.43. Prove that
( 1

2
k

)
= (−1)k−1·2

4k
(2k−2)!
k!(k−1)! .

Theorem 1.44 (Newton’s Binomial Theorem). For any real number r and x ∈ (−1, 1),

(1 + x)r =

∞∑
k=0

(
r

k

)
xk.

Proof. By Taylor series, it is obvious.

Corollary 1.45. Let r = −n for some integer n ≥ 0. Then(
−n

k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk,

which is equivalent to

(1− x)−n =

∞∑
k=0

(
n+ k − 1

k

)
xk.

Noting that(
n+ k − 1

k

)
= # integer solutions to x1 + x2 + · · ·+ xn = k where xi ≥ 0, 1 ≤ i ≤ n,

we can explain Equation (3.21) from another point of view as follows.
Recall the following facts.

Fact 1.46. For j ∈ [n], let fj(x) :=
∑

i∈Ij x
i, where Ij ⊂ N. Let bk be the number of solutions to

i1 + i2 + · · ·+ in = k for ij ∈ Ij. Then

n∏
j=1

fj(x) =
∞∑
k=0

bkx
k.

Fact 1.47. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+···+ik=n

k∏
j=1

(
[xij ]fj

)
,

where [xn]f is the coefficient of xn in f .
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Let fj = (1−x)−1 =
∑

i≥0 x
i, ∀j ∈ [n]. By Fact 1.46, we can get Equation 3.21 by considering

as (1− x)−n =
∏n

j=1 fj easily.

Exercise 1.48. Show (1− x)−n =
∑∞

k=0

(
n+k−1

k

)
xk by taking the nth derivative of (1− x)−1.

Problem 1.49. Let an be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {an}?

Solution. Observe that an is the number of integer solutions (i1, i2, i3) to i1 + i2 + i3 = n, where
i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}. Let fj(x) :=

∑
m∈Ij x

m

for j = 1, 2, 3. By Fact 1.46, we have

+∞∑
n=0

anx
n = f1(x)f2(x)f3(x) =

1

1− x
· 1

1− x2
· 1

1− x5
.

1.7 Random Walks

Consider a real axis with integer points (0,±1,±2,±3, . . .) marked. A frog leaps among the
integer points according to the following rules:

(1). At beginning, it sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+ 2), or by
distance 1 to the left (from i to i − 1), each of which is randomly chosen with probability
1
2 independently of each other.

Problem 1.50. What is the probability that the frog can reach “ 0”?

Solution. In each step, we use “+” or “−” to indicate the choice of the frog that is either to leap
right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where
each entry is in {+,−}.

Let A be the event that the frog reaches “0”. Let Ai be the event that the frog reaches “0”
at the ith step for the first time. So A = ∪+∞

i=1Ai is a disjoint union. So P (A) =
∑+∞

i=1 P (Ai).
To compute P (Ai), we can define ai to be the number of trajectories (or vectors) of the first

i steps such that the frog starts at “1” and reaches “0” at the ith step for the first time. So

P (Ai) =
ai
2i
.

Then,

P (A) =
+∞∑
i=1

ai
2i
.

Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}i≥0, where a0 := 0. Thus,

P (A) =

+∞∑
i=1

ai
2i

= f

(
1

2

)
.
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We then turn to find the expression of f(x).
Let bi be the number of trajectories of the first i steps such that the frog starts at “2” and

reaches “0” at the ith step for the first time.
Let ci be the number of trajectories of the first i steps such that the frog starts at “3” and

reaches “0” at the ith step for the first time.
First we express bi in terms of {aj}j≥1. Since the frog only can leap to left by distance 1,

if the frog can successfully jump from “i” to “0” in i steps, then this frog must reach “1” first.
Let j be the number of steps by which the frog reaches “1” for the first time. So there are aj
trajectories from “2” to “1” at the jth step for the first time. In the remaining i − j steps the
frog must jump from “1” to “0” and reach “0” at the coming (i− j)th step for the first time, so
there are ai−j trajectories that the frog can finish in exactly i− j steps. In total,

bi =
i−1∑
j=1

ajai−j .

As a0 = 0,

bi =

i∑
j=0

ajai−j .

We can get ∑
i≥0

bix
i = (

∑
i≥0

aix
i)2 = f2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can obtain that

ci =
i∑

j=0

ajbi−j ,

which implies that ∑
i≥0

cix
i =

∑
i≥0

bix
i

∑
i≥0

aix
i

 = f3(x).

Let us consider ai from another point of view. After the first step, either the frog reaches “0”
directly (if it leaps to left, so a1 = 1), or it leaps to “3”. In the latter case, the frog needs to jump
from “3” to “0” using i− 1 steps. Thus for i ≥ 2, ai = ci−1.

Combining the above facts, we have

f(x) =
+∞∑
i=0

aix
i = x+

∑
i≥2

aix
i = x+

∑
i≥2

ci−1x
i = x+ x

+∞∑
j=0

cjx
j

 = x+ x · f3(x).

Let a := P (A) = f(1/2). Then we have a = 1
2 + a3

2 , i.e., (a− 1)(a2 + a− 1) = 0, implying that

a = 1,

√
5− 1

2
or

−
√
5− 1

1
.

Since P (A) ∈ [0, 1], we see P (A) = 1 or
√
5−1
2 .
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Note that f(x) = x + xf3(x). Consider the inverse function of f(x), that is, g(x) := x
1+x3 .

Consider the figure of g(x). We find that g(x) is increasing around
√
5−1
2 but decreasing around

1. Since f(x) =
∑

aix
i is increasing, g(x) also increases. Thus it doesn’t make sense for g(x)

being around x = 1. This explains that P (A) =
√
5−1
2 , which is the golden section!

1.8 Exponential Generating Functions

Let N,Ne and No be the sets of non-negative integers, non-negative even integers and non-negative
odd integers, respectively.

Given n sets Ij of non-negative integers for j ∈ [n], let fj(x) =
∑

i∈Ij x
i. Let ak be the number

of integer solutions to i1 + i2 + · · · + in = k, where ij ∈ Ij . Then
∏n

j=1 fj(x) is the ordinary
generating function of {ak}k≥0.

Problem 1.51. Let Sn be the number of selections of n letters chosen from an unlimited supply
of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even.

Solution. We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N
1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2
∑

j∈N
xj

 =

(
1

1− x2

)2

· 1

1− x
.

Problem 1.52. Let Tn be the number of arrangements (or words) of n letters chosen from an
unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even. What
is the value of Tn?

Solution. To solve this, we define a new kind of generating functions.

Definition 1.53. The exponential generating function for the sequence {an}n≥0 is the power
series

f(x) =

∞∑
n=0

an · x
n

n!
.

Then we have the following fact.

Fact 1.54. If we have n letters including x a’s, y b’s and z c’s (i.e. x+ y+ z = n), then we can
form n!

x!y!z! distinct words using them.

Therefore, a selection (say x a’s, y b’s and z c’s) can contribute n!
x!y!z! arrangements to Tn.

This implies that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.
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Similar to defining the above f(x) for Sn, we define the following for Tn. Let

g(x) :=

(∑
i∈Ne

xi

i!

)2
∑

j∈N

xj

j!

 .

Claim. We have

[xn]g =
Tn

n!
.

Proof. To see this, we expand g(x). Then the term xn in g(x) becomes

∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

xe1

e1!
· x

e2

e2!
· x

e3

e3!
=

 ∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

n!

e1!e2!e3!

 xn

n!
= Tn · x

n

n!
.

So [xn]g = Tn
n! , i.e., g(x) is the exponential generating function of {Tn}. This finishes the proof

of Claim.

Using Taylor series: ex =
∑

j≥0
xj

j! and e−x =
∑

j≥0(−1)j x
j

j! , we have

ex + e−x

2
=
∑
j∈Ne

xj

j!
and

ex − e−x

2
=
∑
j∈No

xj

j!
.

By the previous fact, we get

g(x) =

(
ex + e−x

2

)2

· ex =
e3x + 2ex + e−x

4
=
∑
n≥0

(
3n + 2 + (−1)n

4

)
· x

n

n!
.

Therefore, we get that

Tn =
3n + 2 + (−1)n

4
.

Recall that the exponential generating function for the sequence {an}n≥0 is the power series

f(x) =
+∞∑
n=0

an · x
n

n!
.

As we shall see, ordinary generation functions can be used to find the number of selections;
while exponential generation functions can be used to find the number of arrangements or some
combinatorial objects involving ordering. We summarize this as the following facts.

Fact 1.55. Given Ij ⊆ N for j ∈ [n], let fj(x) =
∑
i∈Ij

xi. And let ak =
∑

i1+···+in=k,
ij∈Ij

1. Then

n∏
j=1

fj(x) =

+∞∑
k=0

akx
k.
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Fact 1.56. Given Ij ⊆ N for j ∈ [n], let gj(x) =
∑
i∈Ij

xi

i! . And let bk =
∑

i1+···+in=k,
ij∈Ij

k!
i1!i2!···in! . Then

n∏
j=1

gj(x) =

+∞∑
k=0

bk
k!
xk.

Fact 1.57. Let f(x) =
n∏

j=1
fj(x). Then

[xk]f =
∑

i1+···+in=k,
ij≥0

n∏
j=1

[xij ]fj .

Fact 1.58. Let f(x) =
n∏

j=1
fj(x) and let fj(x) =

+∞∑
k=0

a
(j)
k
k! x

k. Then

f(x) =
+∞∑
k=0

Ak

k!
xk,

if and only if

Ak =
∑

i1+...+in=k,
ij≥0

k!

i1!i2! · · · in!

( n∏
j=1

a
(j)
ij

)
.

Exercise 1.59. Find the number an of ways to send n students to four different classes (say R1,
R2, R3, R4) such that each class has at least one student.

Solution.

an =
∑

i1+i2+i3+i4=n,
ij≥1

n!

i1!i2!i3!i4!
.

Let Ij ⊆ N for j ∈ [4] and gj(x) =
∑
i≥1

xi

i! = ex − 1. By Fact 1.56, we have that

+∞∑
n=0

an
n!

xn = g1g2g3g4 = (
∑
i≥1

xi

i!
)4 = (ex − 1)4 = e4x−4e3x+6e2x−4ex+1 =

+∞∑
n=0

(4n−4·3n+6·2n−4)
xnn
n!

+1.

Thus an = 4n − 4 · 3n + 6 · 2n − 4 for n ≥ 4.

Exercise 1.60. Let an be the number of arrangements of type A for a group of n people, and let
bn be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

• Divide the n people into 2 groups (say 1st and 2nd).

• Then arrange the 1st group by an arrangement of type A, and arrange the 2nd group by an
arrangement of type B.
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Let cn be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the
exponential generation function for {an}, {bn}, {cn} respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

cn =
∑

i+j=n,
i,j≥0

n!

i!j!
aibj .

Then by Fact 1.58, C(x) = A(x)B(x).

Exercise 1.61. Recall that S(n, k) · k! is equal to the number of surjections from [n] to [k].
For fixed k, compute the exponential generating function of S(n, k) · k!. Then find the value of
S(n, k) · k!.

Theorem 1.62 (Lagrange Inversion Formula). Let f(x) be analytic (convergent power series) in
a neighborhood of z = 0 and f(0) ̸= 0. If w = z

f(z) , then z can be expressed as a power series

z =
∞∑
k=1

ckw
k

with a positive radius of convergence, where

ck =
1

k!

{(
d

dz

)k−1

(f(z))k
}

z=0

.
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2 Basics of Graphs

In this second part of our course, we will introduce some basic definitions about graphs.

Definition 2.1. A graph G = (V,E) consists of a vertex set V and an edge set E, where the
elements of V are called vertices and the elements of E ⊆

(
V
2

)
= {{x, y} : x, y ∈ V } are called

edges.

This provides the definition of a simple undirected graph. The word “undirected” means that
the edge set E contains unordered pairs. Otherwise, G is called a directed graph. A graph is
simple if it has no loops or multiple edges. A loop is an edge whose endpoints are equal. Multiple
edges are edges having the same pair of endpoints.

• We say vertices x and y are adjacent if {x, y} ∈ E, write x ∼G y or x ∼ y or xy ∈ E.

• We say the edge xy is incident to the endpoints x and y.

• Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|.

• The degree of a vertex v in G, denoted by dG(v), is the number of edges in G incident to v.

• The neighborhood of a vertex v is the set of vertices that are adjacent to v, i.e., NG(v) =
{u ∈ V (G) : u ∼ v}. Thus we have dG(v) = |NG(v)|.

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩
(
V ′

2

)
, i.e., G′ ⊆ G.

• A subgraph G′ = (V ′, E′) of G = (V,E) is induced, if E′ = E ∩
(
V ′

2

)
, write G′ = G[V ′].

Definition 2.2. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a
bijection f : V → V ′ such that i ∼G j if and only if f(i) ∼G′ f(j).

• A graph on n vertices is a complete graph (or a clique), denoted by Kn, if all pairs of vertices
are adjacent. So we have e(Kn) =

(
n
2

)
.

• A graph on n vertices is called an independent set, denoted by In, if it contains no edge at
all.

• Given a graph G = (V,E), its complement is a graph G = (V,Ec) with Ec =
(
V
2

)
\E.

• The degree sequence of a graph G = (V,E) is a sequence of degrees of all vertices listed in
a non-decreasing order.

• The path Pk of length k − 1 is a graph v1v2...vk where vi ∼ vi+1 for i ∈ [k − 1] and vj ̸= vl
for any j ̸= l ∈ [k]. Note that the length of a path P (denoted by |P |) is the number of edges in
P.

• A cycle Ck of length k is a graph v1v2...vkv1 where vi ∼ vi+1 for i ∈ [k] , vk+1 = v1, and
vj ̸= vl for any j ̸= l ∈ [k].

• Let G be a simple graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G) =
{e1, . . . , em}. The adjacency matrix of G, denoted by A(G), is the n-by-n matrix in which
entry ai,j is the number of edges in G with endpoints {vi, vj}. The incidence matrix M(G) is the
n-by-m matrix in which entry mi,j is 1 if vj is an endpoint of ej and 0 otherwise.

• A graph G is planar, if we can draw G on the plane such that its edges intersect only at
their endpoints.
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Theorem 2.3 (Euler’s Formula). Let G = (V,E) be a connected planar graph with v vertices and
e edges, and let r be the number of regions in which some given embedding of G divides the plane.
Then v − e+ r = 2.

Exercise 2.4. Show that K4 is planar but K5 is not.

Exercise 2.5. Show that K3,3 is not planar.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 2.6 (Handshaking Lemma). In any graph G = (V,E),∑
v∈V

dG(v) = 2e(G).

Proof. Let F = {(e, v) : e ∈ E(G), v ∈ V (G) such that v is incident to e}. Then∑
e∈E(G)

2 = |F | =
∑
v∈V

dG(v).

Corollary 2.7. In any graph G, the number of vertices with odd degree is even.

Proof. Let O = {v ∈ V (G) : d(v) is odd} and E = {v ∈ V (G) : d(v) is even}. Then by Lemma
2.6,

2e(G) =
∑
v∈O

dG(v) +
∑
v∈E

dG(v).

Thus we have
∑

v∈O dG(v) is even, moreover we have |O| is even.

Corollary 2.8. In any graph G, if there exists a vertex with odd degree, then there are at least
two vertices with odd degree.
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3 Double-counting

3.1 Basics

The basic setting of the double counting technique is as follows. Suppose that we are given two
finite sets A and B, and a subset S ⊆ A×B. If (a, b) ∈ S, then we say that a and b are incident.
Let Na be the number of elements b ∈ B such that (a, b) ∈ S, and Nb be the number of elements
a ∈ A such that (a, b) ∈ S. Then we have∑

a∈A
Na = |S| =

∑
b∈B

Nb.

Theorem 3.1. Let T (j) be the number of divisions of a positive integer j. Let T (n) = 1
n

∑n
j=1 T (j).

Then we have |T (n)−H(n)| < 1, where H(n) =
∑n

i=1
1
i is the nth Harmonic number.

Proof. Define a table X = (xij) where

xij =

{
1, if i|j
0, otherwise.

Then
n∑

j=1

T (j) =
∑

1≤i≤j≤n

xij =
n∑

i=1

⌊n
i
⌋,

which implies that

T (n) =
1

n

n∑
i=1

⌊n
i
⌋.

Then we have
|T (n)−H(n)| < 1.

Exercise 3.2. Prove that ∣∣∣∣∣ 1n
n∑

i=1

⌊n
i
⌋ −

n∑
i=1

1

i

∣∣∣∣∣ < 1.

3.2 Sperner’s Theorem

Definition 3.3. Let F ⊆ 2[n] be a family of subsets of [n]. We say F is independent (or F
is an independent system), if for any two A,B ∈ F , we have A ̸⊂ B and B ̸⊂ A. In other
words, F is independent if and only if there is no “containment” relationship between any two
subsets of F .

Fact 3.4. For a fixed k ∈ [n],
([n]
k

)
is an independent system.

Theorem 3.5 (Sperner’s Theorem). For any independent system F of [n], we have

|F| ≤
(

n

⌊n2 ⌋

)
.
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First we define a chain.

Definition 3.6. A chain of subsets of [n] is a sequence of distinct subsets such that

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ Ak.

First proof of Sperner’s Theorem (Double-Counting). A maximal chain is a chain with the prop-
erty that no other subsets of [n] can be inserted into it to find a longer chain. We have the
following observations.

(1). Any maximal chain looks like:

ϕ ⊆ {x1} ⊆ {x1, x2} ⊆ · · · ⊆ {x1, ..., xk} ⊆ · · · ⊆ {x1, ..., xn}.

(2). There are exactly n! maximal chains.

This is because any such a maximal chain, say C : ϕ ⊆ {x1} ⊆ {x1, x2} ⊆ · · · ⊆ {x1, x2, ..., xn},
defines a unique permutation:

π : [n] → [n], π(i) = xi, ∀i ∈ [n].

Now we count the number of pairs (C, A) satisfying that:

• C is a maximal chain of [n].

• A ∈ C ∩ F .

Recall the rule of double counting given at the beginning that∑
C

NC = the number of pairs (C, A) =
∑
A

NA,

where NC is the number of subsets A ∈ C ∩ F and NA is the number of maximal chains C
containing A. It is key to observe that

• NC ≤ 1,

• NA = |A|!(n− |A|)!

So we have

n! =
∑
C

1 ≥
∑
C

NC =
∑
A∈F

NA =
∑
A∈F

|A|!(n− |A|)!

=
∑
A∈F

n!(
n
|A|
) ≥

∑
A∈F

n!(
n

⌊n
2
⌋
) =

n!(
n

⌊n
2
⌋
) |F|,

which implies that

|F| ≤
(

n

⌊n2 ⌋

)
.

This finishes the proof.
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Now we give another proof of Sperner’s Theorem.

Definition 3.7. A chain is symmetric if it consists of subsets of sizes k, k + 1, ..., ⌊n2 ⌋, ..., n −
k − 1, n− k for some k ≥ 0.

For example, when n = 3, {{2}, {2, 3}, {1, 2, 3}} is not symmetric. And when n = 4,
{ϕ, {1, 2, 3}} is not symmetric.

Theorem 3.8. The family 2[n] can be partitioned into a disjoint union of symmetric chains.

First proof of Theorem 3.8. We prove by induction on n.
The base case is n = 1. The family 2[n] = 2[1] = {∅, {1}}, which itself is a symmetric chain.

Thus this theorem is true for n = 1.
Now we may assume that 2[n] can be partitioned into a disjoint union of symmetric chains

e1, e2, . . . , et. Consider 2
[n+1], For any

ei = {Pk ⊆ Pk+1 ⊆ · · · ⊆ Pn−k},

define two new symmetric chains for 2[n+1]:

e′i = {Pk+1 ⊆ Pk+2 ⊆ · · · ⊆ Pn−k},

and
e′′i = {Pk ⊆ (Pk ∪ {n+ 1}) ⊆ (Pk+1 ∪ {n+ 1}) ⊆ · · · ⊆ (Pn−k ∪ {n+ 1})}.

We assert that ∪i{e′i, e′′i } is a disjoint union of symmetric chain for 2[n+1].

Exercise 3.9. Prove that ∪i{e′i, e′′i } is a disjoint union of symmetric chain for 2[n+1].

Second proof of Theorem 3.8. For each A ∈ 2[n], we define a sequence “a1a2...an” consisting of
left and right parentheses by defining

ai =

{
“(”, if i ∈ A
“)”, otherwise.

We then define the “partial pairing of parentheses” as follows:

(1). First, we pair up all pairs “()” of adjoint parentheses.

(2). Then, we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.

Note that when this process stops, the remaining unpaired parentheses must look like this:

))))(((((

We say two subsets A,B ∈ 2[n] have the same partial pairing, if the paired parentheses are the
same (even in the same positions).

We can define an equivalence “∼” on 2[n] by letting A ∼ B if and only if A,B have the same
partial pairing.
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Exercise 3.10. Each equivalence class indeed forms a symmetric chain.

Using this fact, now we see that 2[n] can be partitioned into disjoint equivalence classes, which
are disjoint symmetric chains. This finishes the proof.

Theorem 3.8 can rapidly imply Sperner’s Theorem.

Second proof of Sperner’s Theorem. Note that by definition, any symmetric chain contains ex-
actly one subset of size ⌊n2 ⌋. Since there are

(
n

⌊n
2
⌋
)
many subsets of size ⌊n2 ⌋, by Theorem 3.8,

we see that any partition of 2[n] into symmetric chains has to consist of exactly
(

n
⌊n
2
⌋
)
symmet-

ric chains. Each symmetric chain can contain at most one subset from |F| and thus we see
|F| ≤

(
n

⌊n
2
⌋
)
.

3.3 Littlewood-Offord Problem

Theorem 3.11. Fix a vector a⃗ = (a1, a2, ..., an) with each |ai| ≥ 1. Let S = {ϵ⃗ = (ϵ1, ϵ2, ..., ϵn) :
ϵi ∈ {1,−1} and ϵ⃗ · a⃗ ∈ (−1, 1)}, then |S| ≤

(
n

⌊n
2
⌋
)
.

Remark: Note that this is tight for many vectors a⃗.

Proof. For any ϵ⃗ ∈ S, define Aϵ⃗ = {i ∈ [n] : aiϵi > 0}. Let F = {Aϵ⃗ : ϵ⃗ ∈ S}. Then we have

|S| = |F|.

Now we claim that F is an independent system. Suppose for a contradiction that there exist
Aϵ⃗1 , Aϵ⃗2 ∈ F with Aϵ⃗1 ⊆ Aϵ⃗2 . That also says,{

ϵ⃗1 · a⃗ ∈ (−1, 1),
ϵ⃗2 · a⃗ ∈ (−1, 1),

which imply that
|ϵ1 · a⃗− ϵ2 · a⃗| < 2.

By definition, we have

ϵ⃗1 · a⃗ =
∑
i∈Aϵ⃗1

|ai| −
∑
i/∈Aϵ⃗1

|ai| = 2
∑
i∈Aϵ⃗1

|ai| −
n∑

i=1

|ai|.

Since Aϵ⃗1 ⊆ Aϵ⃗2 , we also have that

ϵ⃗2 · a⃗− ϵ⃗1 · a⃗ = 2(
∑
i∈Aϵ⃗2

|ai| −
∑
j∈Aϵ⃗1

|aj |) ≥ 2|ak| ≥ 2, for some k ∈ Aϵ⃗2 \Aϵ⃗1 .

This is a contradiction. By Sperner’s Theorem, we have |S| = |F| ≤
(

n
⌊n
2
⌋
)
. This finishes the

proof.
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3.4 Turán Type Problems

Definition 3.12. A graph G is bipartite if its vertex set can be partitioned into two parts (say
A and B) such that each edge joints one vertex in A and another in B.

This is equivalent to say that V (G) can be partitioned into two independent subsets. And
we say (A,B) is a bipartition of G. For example, all even cycles C2k are bipartite, while all odd
cycles C2k+1 are not.

Definition 3.13. Let Ka,b be the complete bipartite graph with two parts of sizes a and b.
This is a bipartite graph with edge set {{i, j} : i ∈ A, j ∈ B} where |A| = a and |B| = b.

Definition 3.14. Given a graph H, we say a graph G is H-free if G dose not contain a copy
of H as its subgraph.

For example, Ka,b is K3-free.

Definition 3.15. For fixed graph H, let the Turán number of H, denoted by ex(n,H), be the
maximum number of edges in an n-vertex H-free graph G.

Theorem 3.16. ex(n,C4) ⩽
n

4
(1 +

√
4n− 3).

Proof. Let G be a C4-free graph with n vertices. We need to show that e(G) ⩽
n

4
(1 +

√
4n− 3).

Consider S = {({u1, u2}, w) : u1wu2 is a path of length 2 in G}. Since G is C4-free, for fixed
{u1, u2}, there is at most one vertex w such that ({u1, u2}, w) ∈ S. So we have

|S| =
∑

{u1,u2}

the number of ({u1, u2}, w) ∈ S ⩽
∑

{u1,u2}

1 =

(
n

2

)
.

On the other hand, fixed a vertex w, the number of {u1, u2} such that ({u1, u2}, w) ∈ S exactly
equals

(
d(w)
2

)
, which implies that

|S| =
∑

w∈V (G)

(
d(w)

2

)
=

1

2

∑
w∈V (G)

d2(w)− e(G).

Putting the above together, we have(
n

2

)
≥ |S| = 1

2

∑
w∈V (G)

d2(w)− e(G).

Using Cauchy-Schwarz inequality, we have

n2 − n

2
≥ n

2

∑
w∈V (G)

d2(w)

n
− e(G) ≥ n

2

∑
w∈V (G)

(
d(w)

n

)2

− e(G),

which implies that
2e2(G)

n
− e(G) ≤ n2 − n

2
.

Solving it, we can derive easily that e(G) ≤ n
4 (1 +

√
4n− 3).
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Exercise 3.17. Prove that for all positive integer n ≥ 4, ex(n,C4) <
n
4 (1 +

√
4n− 3).

Hint: Look up the Friendship Theorem.

Corollary 3.18. We have ex(n,C4) ⩽ (12 + o(n))n
3
2 , where o(n) → 0 as n → ∞.

The upper bound in Corollary 3.18 is asymptotically tight because there is a construction as
follows.

Let p be a prime. Let
V = (Zp \ {0})× Zp

and
E = {{(a, b), (c, d)} : a, c ∈ Zp \ {0}, b, d ∈ Zp and ac = b+ d}.

We have |V | = (p−1)p and d((a, b)) = p−1, for any (a, b) ∈ V . Thus we have |E| = (p−1)2p
2 ∼ |V |

3
2

2 .
Finally we explain that G = (V,E) is C4-free. For any (a1, b1), (a2, b2) ∈ V , if there exist a vertex
(say (c, d)) which is their common neighbour, (c, d) satisfies the following condition:{

a1c = b1 + d

a2c = b2 + d.

There is no mutiple solution of this equation.

Theorem 3.19 (Kövári-Sós-Turán Theorem).

ex(n,Ks,t) ≤
1

2
(t− 1)

1
sn2− 1

s +
1

2
(s− 1)n

for all t, s ≥ 2.

Proof. Let G be an n-vertices Ks,t free graph with e(G) ≥ 1
2sn (otherwise we are done). We aim

to show e(G) ≤ 1
2(t − 1)

1
sn2− 1

s + 1
2(s − 1)n. We count the number T of s-stars K1,s as follows.

On one hand, T =
∑

w∈V (G)

(
d(w)
s

)
. On the other hand, T ≤ (t− 1)

(
n
s

)
.

We define

f(x) =


0 , if x < s,(
x

s

)
, if x ≥ s.

When x ≥ 0, f(x) is a convex function. Let d = 2e(G)
n , by Jensen’s inequality,

(t− 1)
(
n
s

)
n

≥ T

n
=

1

n

∑
w

f(d(w)) ≥ f(

∑
w d(w)

n
) = f(

2e(G)

n
) ≥ (d− s+ 1)s

s!
.

Thus

d ≤ ((t− 1)(n− 1)(n− 2) . . . (n− s+ 1))
1
s + (s− 1) ≤ (t− 1)

1
sn1− 1

s + (s− 1).

Then we have

e(G) =
nd

2
≤ 1

2
(t− 1)

1
sn2− 1

s +
1

2
(s− 1)n,

finishing the proof.
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3.5 Sperner’s Lemma

Let us consider the following application of Corollary 2.8. First we draw a triangle in the plane,
with 3 vertices A1A2A3. Then we divide this triangle △ = A1A2A3 into small triangles such that
no triangle can have a vertex inside an edge of any other small triangle. Then we assign 3 colors
(say 1,2,3) to all vertices of these triangles, under the following rules.

(1) The vertex Ai is assigned by color i for i ∈ [3].

(2) All vertices lying on the edge AiAj of the large triangle are assigned by the color i or j.

(3) All interior vertices are assigned by any color 1,2,3.

Lemma 3.20 (Sperner’s Lemma (a planar version)). For any assignment of colors described as
above, there always exists a small triangle whose three vertices are assigned by three colors 1, 2, 3.

Proof. Define an auxiliary graph G as follows.

• Its vertices are the faces of small triangles and the outer face. Let z be the vertex repre-
senting the outer face.

• Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the
two endpoints of their common edge are colored by 1 and 2.

We consider the degree of any vertex v ∈ V (G)\{z}.

(1) If the face of v has NO two endpoints with color 1 and 2, then dG(v) = 0.

(2) If the face of v has 2 endpoints with color 1 and 2, then let k be the color of the third
endpoint of this face. If k ∈ {1, 2}, then dG(v) = 2. Otherwise k = 3, then dG(v) = 1 and
the vertices of this triangle are assigned by three different colors 1,2,3.

Thus we have that dG(v) is odd if and only if dG(v) = 1, and then the face of v has colors
1,2,3. Now we consider dG(z) and claim that it must be odd. Indeed, the edge of G incident to z
obviously have to go across A1A2. Consider the sequence of the colors of the endpoints on A1A2,
from A1 to A2. Then dG(z) equals the number of alternations between 1 and 2 in this sequence.
It is easy to check that dG(z) must be odd. By Corollary 2.8, since the graph G has a vertex z
with odd degree, there must be another vertex v ∈ V (G)\{z} with odd degree. Then d(v) = 1
and the face of v has colors 1,2,3.

Before we introduce an interesting application of Sperner’s lemma, we introduce the following
theorem first.

Theorem 3.21 (One-dimensional fixed point theorem). For any continuous function f : [0, 1] →
[0, 1], there exists a point x ∈ [0, 1] such that f(x) = x.

Such an x is called a fixed point of the function f . The theorem can be proved by considering
the function g(x) = f(x)−x. This is a continuous function with g(0) ≥ 0 and g(1) ≤ 0. Intuitively
it is quite clear that the graph of such a continuous function can not jump across the x-axis and
therefore it has to intersect it, and hence g is 0 at some point of [0, 1]. Prove the existence of
such a point rigorously requires quite some work. In analysis, this result appears under heading
“Darboux theorem”.
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If we replace the 1-dimensional interval from the Theorem 3.21 by a triangle in the plane, or
by a tetrahedron in the 3-dimensional space, or by their analogs in higher dimensions, we will
have Brouwer’s fixed point theorem. Here we prove only the 2-dimensional version by Spener’s
lemma.

Let △ denote a triangle in the plane. For simplicity, let us take the triangle with vertices
A1 = (1, 0), A2 = (0, 1), and A3 = (0, 0):

A1 = (1, 0).

A2 = (0, 1)

A3 = (0, 0)

Theorem 3.22 (Brouwer’s Fixed Point theorem in 2-dimension). Every continuous function
f : △ → △ has a fixed point x, that is, f(x) = x.

Proof. Define three auxiliary functions βi : △ → R for i ∈ {1, 2, 3} as follows:
For any a = (x, y) ∈ △, 

β1(a) = x,
β2(a) = y,
β3(a) = 1− x− y.

For any continuous f : △ → △, define Mi = {a ∈ △ : βi(a) ⩾ βi(f(a))} for i ∈ {1, 2, 3}. Then
we have the following facts.

(1) Any point a ∈ △ belongs to at least one Mi.

(2) If a ∈ M1 ∩M2 ∩M3, then a is a fixed point.

Consider a sequence of refinements {△1,△2, ...} of △ such that the maximum diameter of small
triangles in △n is going to 0 as n → +∞. For example, we can consider the refining triangulations
of the triangle △ as follows:

· · ·

△ △1 △2

We want to define a coloring ϕ : △ → {1, 2, 3} such that

(a) Any a ∈ △ with ϕ(a) = i belongs to Mi.

(b) The coloring ϕ satisfies the conditions of Sperner’s Lemma for any subdivision △n of △.
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Next we show such ϕ exists. This is because

• For the point Ai (say i = 1), we have that A1 = (1, 0) ∈ M1, so we can let ϕ(Ai) = i;

• Consider a vertex a = (x, y) ∈ A1A2, i.e., x+y = 1. Since β1(f(a))+β2(f(a)) ≤ 1 = x+y =
β1(a)+β2(a), so we must have at least one of β1(f(a)) ≤ β1(a) and β2(f(a)) ≤ β2(a) holds,
which means that a ∈ M1 ∪M2.

Applying Sperner’s Lemma to each △n and the coloring ϕ, we get that there exists a small

triangle A
(n)
1 A

(n)
2 A

(n)
3 in △n which has three different colors 1,2,3.

Consider the sequence {A(n)
1 }n≥1. Since everything is bounded, there is a subsequence {A(nk)

1 }k≥1

such that lim
k→+∞

A
(nk)
1 = p ∈ △ exists. Since the diameter of A

(n)
1 A

(n)
2 A

(n)
3 is going to be 0 as

n → +∞, we see that lim
k→+∞

A
(nk)
2 = lim

k→+∞
A

(nk)
3 = p. Since βi(A

(nk)
i ) ⩾ βi(f(A

(nk)
i )) for i ∈ [3]

and f is continuous, we get βi(p) = lim
k→+∞

βi(A
(nk)
i ) ≥ lim

k→+∞
βi(f(A

(nk)
i )) = βi(f(p)) for i ∈ [3].

This implies that p ∈ M1 ∩M2 ∩M3, so p is a fixed point of f , that is, f(p) = p.
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4 The Pigeonhole Principle

4.1 Basics

Theorem 4.1 (The Pigeonhole Principle). Let X be a set with at least 1+
∑k

i=1(ni−1) elements
and let X1, X2, ..., Xk be disjoint sets forming a partition of X. Then, there exists some i, such
that |Xi| ≥ ni.

Now we introduce some applications of the Pigeonhole Principle.

4.1.1 Two equal degrees

Theorem 4.2. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same
degree. So the only exceptional case will be that there is exactly one vertex of degree i for all
i ∈ {0, 1, ..., n−1}. But this is impossible to have a vertex with degree 0 and a vertex with degree
n− 1 at the same time.

Exercise 4.3. For any n, find an n-vertex graph G, which has exactly two vertices with the same
degree.

4.1.2 Chromatic number

Definition 4.4. A vertex-coloring of a graph G = (V,E) is a mapping f : V → C, where C
is the set of colors. A coloring is proper if no two adjacent vertices have the same color. The
chromatic number χ(G) is the minimum size of the proper colorings.

Theorem 4.5. For any graph G on n vertices, we have α(G)χ(G) ≥ n, where α(G) is the
maximum size of an independent set in G.

Proof. Given a proper coloring of G with χ(G) colors. Then we can partition V into χ(G) parts
such that the vertices in each part have the same color. Since each part is an independent
set, there exists an independent set with size equal to or larger than n

χ(G) , which implies that

α(G) ≥ n
χ(G) . Thus we have α(G)χ(G) ≥ n.

4.1.3 Subsets without divisors

Question 4.6. How large can a subset S ⊂ [2n] be such that for any i, j ∈ S, we have i ∤ j and
j ∤ i ?

Obviously, we can take S = {n+ 1, n+ 2, ..., 2n} with |S| = n.

Theorem 4.7. For any S ⊂ [2n] with |S| ≥ n+ 1, there exist i, j ∈ S such that i|j.

Proof. For any odd integer 2k−1, k ∈ [n], let’s define S2k−1 = {2i · (2k−1) ∈ S : i ≥ 0}. Clearly,
S =

⋃n
k=1 S2k−1. Since |S| ≥ n+1, there exists some |S2k−1| ≥ 2. We say x, y ∈ S2k−1. It is easy

to see that we have x|y or y|x.

31



4.1.4 Rational approximation

Theorem 4.8. Given n ∈ Z+, for any x ∈ R+, there is a rational number p
q such that 1 ≤ q ≤ n

and |x− p
q | <

1
nq .

Proof. For any x ∈ R+, let {x} = x− ⌊x⌋ be the fractional part of x. Consider {ix} ∈ [0, 1), for
any i = 1, 2, ..., n+ 1. Partition [0, 1) into n subintervals [0, 1

n), [
1
n ,

2
n), ..., [

n−1
n , 1). By Pigeonhole

Principle, there exists a subinterval [ kn ,
k+1
n ) containing two reals say {ix} and {jx} for 1 ≤ i <

j ≤ n+1. It’s easy to check that |{jx}−{ix}| < 1
n , so |(j− i)x− (⌊jx⌋−⌊ix⌋)| < 1

n . Let q = j− i
1 ≤ q ≤ n and p = ⌊jx⌋ − ⌊ix⌋ ≥ 0. We know that q, p are integers. Thus we have |qx− p| < 1

n ,
which implies |x− p

q | <
1
nq .

4.2 Erdős-Szekeres Theorem

Theorem 4.9 (Erdős-Szekeres Theorem). For any sequence of mn+1 real numbers {a0, a1, ..., amn},
there is an increasing subsequence of length m+ 1 or a decreasing subsequence of length n+ 1.

Proof. Consider any sequence {a0, a1, ..., amn}. For any i ∈ {0, 1, ...,mn}, let fi be the maximum
size of an increasing subsequence starting at ai. We may assume fi ∈ {1, 2, ...,m} for any
i ∈ {0, 1, ...,mn}. By Pigeonhole Principle, there exists an s ∈ {1, 2, ...,m} such that there are at
least n+1 elements i ∈ {0, 1, ....,m} satisfying fi = s. Let these elements be i1 < i2 < ... < in+1.

We claim that ai1 ≥ ai2 ≥ · · · ≥ ain+1 . Indeed, If aij < aij+1 for some j ∈ [n], then we would
extend the longest increasing subsequence of length s starting at aij+1 by adding aij to obtain an
increasing subsequence starting at aij of length s+1, which is a contradiction to fij = s.

Remark: We may require the increasing or decreasing subsequence to be strictly increasing or
strictly decreasing given that all ai are distinct.

4.3 Ramsey’s Theorem

Fact 4.10 (A party of six). Suppose a party has six participants. Participants may know each
other or not. Then there must be three participants who know each other or do not know each
other, i.e. any 6-vertex graph G has a K3 or an I3.

Proof. We consider a graph G on six vertices, say V (G) = [6]. Each vertex i represents one
participant: i and j are adjacent if and only if they know each other. Then we need to show that
there are three vertices in G which form a triangle K3 or an independent set I3.

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not
adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say
2, 3, 4. If one of pairs {2, 3}, {2, 4}, {3, 4} is adjacent, then we have a K3. Otherwise, {2, 3, 4}
forms an independent set of size three. This finishes the proof.

Definition 4.11. An r-edge-coloring of Kn is a mapping f : E(Kn) −→ {1, 2, . . . , r} which
assigns one of the colors 1, 2, . . . , r to each edge of Kn.

32



Definition 4.12. Given an r-edge-coloring of Kn, a clique in Kn is called monochromatic, if
all its edges are colored by the same color.

Then the example of a party of six says that any 2-edge-coloring of K6 has a monochromatic
K3.

Definition 4.13. For k, ℓ ≥ 2, the Ramsey Number R(k, ℓ) denotes the smallest integer N
such that any 2-edge-coloring of KN has a blue Kk or a red Kℓ.

Let us try to understand this definition a bit more:

• R(k, ℓ) ≤ L if and only if any 2-edge-coloring of KL has a blue Kk or a red Kℓ.

• R(k, ℓ) > M if and only if there exists a 2-edge-coloring of KM which has no blue Kk nor
red Kℓ.

Fact 4.14. (1) R(k, ℓ) = R(ℓ, k).
(2) R(2, ℓ) = ℓ and R(k, 2) = k.
(3) R(3, 3) = 6.

Proof. It is easy to know that (1) and (2) is right. We have R(3, 3) ≤ 6 from the fact on a party
of six. On the other hand, we have R(3, 3) > 5 from the following graph (if u, v are adjacent, we
color edge uv blue, otherwise we color edge uv red).

Proof.

Theorem 4.15 (Ramsey’s Theorem). The Ramsey number is finite. In fact we have that
R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1). Thus in particular R(k, ℓ) ≤

(
k+ℓ−2
k−1

)
for ℓ, k ≥ 2.

Proof. first we prove that R(k, ℓ) ≤ R(k − 1, ℓ) + R(k, ℓ − 1). Let n = R(k − 1, ℓ) + R(k, ℓ − 1).
Consider any 2-edge-coloring of G = Kn. For any vertex x, define A = {y ∈ V (G) \ {x} : xy is
blue} and B = {y ∈ V (G) \ {x} : xy is red}. Then

|A|+ |B| = n− 1 = R(k − 1, ℓ) +R(k, ℓ− 1)− 1.

By The Pigeonhole Principle, we have either |A| ≥ R(k − 1, ℓ) or |B| ≥ R(k, ℓ− 1).
Case 1. |A| ≥ R(k − 1, ℓ).

The induced subgraph G[A] contains a blue Kk−1 or a red Kℓ. If G[A] contains a red Kℓ, G
contains a red Kℓ. In the former case, by adding the vertex x to that blue Kk−1, we can obtain
a blue Kk in the G.
Case 2. |B| ≥ R(k, ℓ− 1).

This case is similar.
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Next we will prove R(k, ℓ) ≤
(
k+ℓ−2
k−1

)
by induction on k + ℓ. Base case is trivial, since

R(2, ℓ) = R(ℓ, 2) = ℓ. Assume the claim holds for all R(s, t) with s+ t < k + ℓ. Then

R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1) ≤
(
k − 1 + ℓ− 2

k − 2

)
+

(
k + ℓ− 1− 2

k − 1

)
=

(
k + ℓ− 2

k − 1

)
.

Theorem 4.16. If for some (k, ℓ), the numbers R(k − 1, ℓ) and R(k, ℓ− 1) are both even, then

R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1)− 1.

Proof. Let n = R(k − 1, ℓ) + R(k, ℓ − 1) − 1. So n is odd. Consider any 2-edge-coloring of Kn.
For any vertex x, define the following as before Ax = {y : xy is blue} and Bx = {y : xy is red}.

The previous proof tells us that if |Ax| ≥ R(k− 1, ℓ) or |Bx| ≥ R(k, ℓ− 1), then we can find a
blue Kk or a red Kℓ. Thus, we may assume that |Ax| ≤ R(k− 1, ℓ)− 1 and |Bx| ≤ R(k, ℓ− 1)− 1
for any vertex v, which implies that

n ≤ Ax +Bx + 1 ≤ R(k − 1, ℓ) +R(k, ℓ− 1)− 1.

This shows that for each x, |Ax| = R(k−1, ℓ)−1 and |Bx| = R(k, ℓ−1)−1. Now we consider
the graph G consisting of all blue edges. Note that G has an odd number of vertices and any
vertex has odd degree. But this contradicts to the Handshaking Lemma.

Corollary 4.17. R(3, 4) = 9.

Proof. By the previous theorem, we have R(3, 4) ≤ R(2, 4) +R(3, 3)− 1 = 4+ 6− 1 = 9. On the
other hand, we have R(3, 4) > 8 from the following 8-vertex graph (if u, v are adjacent, we color
edge uv blue, otherwise we color edge uv red).

Definition 4.18. For any k ≥ 2 and any integers s1, s2, . . . , sk ≥ 2, the multi-color Ramsey
number Rk(s1, s2, . . . , sk) is the least integer N such that any k-edge-coloring of KN has a clique
Ksi in color i, for some i ∈ [k].

Exercise 4.19. Rk(s1, s2, . . . , sk) < +∞.

Theorem 4.20 (Schur’s Theorem). For k ≥ 2, there exists some integer N = N(k) such that for
any coloring φ : [N ] → [k], there exist three integers x, y, z ∈ [N ] satisfying that φ(x) = φ(y) =
φ(z) and x+ y = z.
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Proof. Let N = Rk(3, 3, ..., 3). Define a k-edge-coloring of KN from the coloring φ as follows: for
any i, j ∈ [N ], define the color of ij to be φ(|i − j|). By the definition of Rk(3, 3, ..., 3), we can
find a monochromatic triangle, say ijℓ. Suppose i < j < ℓ, we have φ(ℓ− j) = φ(ℓ− i) = φ(j− i).
Let x = ℓ− j, y = j− i, z = ℓ− i ∈ [N ]. We have φ(x) = φ(y) = φ(z) and x+y = z. This finishes
the proof.

Exercise 4.21. Prove that Schur’s Theorem is also true while x, y, z are required to be distinct.

Using this theorem, Schur proved the restricted version of Fermat’s last problem in Zp for
sufficiently large prime p.

Theorem 4.22 (Schur). For any integer m ≥ 1, there is an integer p(m) such that for any prime
p ≥ p(m), xm + ym = zm (mod p) has a nontrivial solution in Zp.

Proof. For prime p, consider the multiplicative group Z∗
p = {1, 2, ..., p− 1}. Let g be a generator

of Z∗
p. Then for x ∈ Z∗

p, there exists exactly one pair of integers (i, j) such that x = gim+j (mod p)
for some 0 ≤ j ≤ m−1 and 0 ≤ im+j ≤ p−2. Then we define a coloring φ : Z∗

p → {0, 1, ...,m−1}
by letting φ(x) = j.

By Schur’s Theorem, choose p(m) = N(m), and for any p ≥ p(m), the coloring φ gives
x, y, z ∈ Z∗

p satisfying φ(x) = φ(y) = φ(z) and x+y = z. Let x = gi1m+j , y = gi2m+j , z = gi3m+j

(mod p). Then x+ y = z implies that

gi1m+j + gi2m+j = gi3m+j (mod p), (4.1)

thus
gi1m + gi2m = gi3m (mod p).

Let α = gi1 , β = gi2 , γ = gi3 . We have

αm + βm = γm (mod p).

Remark: Schur’s theorem holds in Z, but we need to restrict the calculation in a multiplication
cyclic group when deducing equation (4.1).

Definition 4.23. Let r ≥ 3. An r-uniform hypergraph (or an r-graph) is a pair (V,E) such

that E ⊂
(
V
r

)
. Let K

(r)
n be the complete r-uniform hypergraph on n vertices (K

(r)
n = (V,

(
V
r

)
)

with |V | = n).

Definition 4.24. The hypergraph Ramsey number R(r)(s, t) is the least integer N such that

any 2-edge coloring of K
(r)
n has a blue K

(r)
s or a red K

(r)
t .

Exercise 4.25. Prove that for any integer s, t > r, R(r)(s, t) < +∞.

Theorem 4.26 (Erdős-Szekeres Theorem). For any integer n, there exists an integer N(n) such
that any collection of N ≥ N(n) points in the plane, no three on a line, has a subset of n points
forming a convex n-gon.
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Proof. We observe that n points forms a convex n-gon if and only if every quadrilateral formed
by taking 4 points in the n points is convex.

Let N(n) = R(3)(n, n). We will show that it is enough to have N(n) points in the plane.
Let S be a set of N(n) such points. Number the points by [N(n)] and color any triangle (every
3-subset) red if the path from the smallest number via the middle one to the largest number is
clockwise, color any triangle blue if the path is counter clockwise.

1

2

3

4 5

6

7

8

In this way, we get a 2-edge-coloring of K
(3)
N . By the definition of Ramsey number, we have a

monochromatic K
(3)
n . We may assume it is red. Now we claim that this red K

(3)
n gives a convex

n-gon. So it suffices to prove that there are no four points forming the following configuration.

b

a c

d

If such configuration exists, since ∆abc is a red triangle, we may assume a < b < c. Now a < c,
and ∆acd is a red triangle, therefore a < d < c.

If b < d then b < d < c, ∆bcd is a blue triangle.
If d < b then a < d < b, ∆abd is a blue triangle.
This contradiction completes the proof.
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5 Trees

5.1 Tree Characterization

Definition 5.1. A graph G is connected, if for any vertices u and v, G contains a path from
u to v. Otherwise, G is disconnected.

Definition 5.2. A component of a graph G is a maximal connected subgraph of G.

Definition 5.3. A graph T is called a tree if it is connected but contains no cycle. A vertex in
a tree T with degree one is called a leaf.

Recall Euler’s Formula on planar graphs that if a connected plane graph G has exactly n
vertices, e edges and f faces, then n− e+ f = 2. The following fact is the direct consequence of
this formula and we will give a separate proof of the fact.

Fact 5.4 (Euler’s Formula on trees). For any tree T = (V,E), we have |V | = |E|+ 1.

Proof. First, any tree has at least one leaf. As otherwise, all vertices have degree at least 2, then
this gives a cycle, which is a contradiction.

Next we apply induction on n. Consider the base case that n = 2, the tree is an edge, then
we are done. Now we assume the statement holds for any tree on n− 1 vertices. Consider a tree
T on n vertices (n ≥ 2). We know that T contains a leaf, call v. It is easy to see that T − {v} is
still a tree as it is connected and has no cycles which has n− 1 vertices. By induction, we know
that T − {v} has n− 2 edges. So T has n− 1 edges.

Fact 5.5. Any tree T with at least two vertices has at least two leaves.

Proof. Assume for a contradiction that an n-vertex tree T has exactly one leaf v, then d(u) ≥ 2
for any u ∈ V (T )\{v}. Thus

2(n− 1) = 2e(T ) =
∑

x∈V (T )

d(x) ≥ 2(n− 1) + 1 = 2n− 1,

which is a contradiction.

Theorem 5.6 (Tree characterization). Let T = (V,E) be a graph. Then the following statements
are equivalent:

(i). T is a tree. (i.e. connected and no cycle.)

(ii). T is a “minimal” connected graph. (i.e. deleting any edge will result in a disconnected
graph.)

(iii). T is a “maximal” graph without a cycle. (i.e. adding any new edge will result in a cycle.)

Proof. (i)⇒(ii): Suppose (ii) fails, then there exists e = xy ∈ E(T ) such that T − {e} is still
connected. Then T − {e} has a path P from x to y. So P ∪ {e} is a cycle in T , which is a
contradiction.

(ii)⇒(i): Suppose (i) fails, then T contains a cycle C. If we delete any edge e from C, T −{e}
remains connected, which is a contradiction.
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(i)⇒(iii): For any new edge e = xy. As T is connected, T has a path P from x to y. Thus,
P ∪ {e} gives a cycle.

(iii)⇒(i): Suppose (i) fails, so T is disconnected. Then T has two components (say D1 and
D2). Pick x ∈ D1 and y ∈ D2. If we add the new edge e = xy, then it is easy to see that T + {e}
still has no cycle, which is a contradiction.

Definition 5.7. Given a graph G, a subgraph H of G is a spanning subgraph if V (H) = V (G).

Fact 5.8. Any graph G is connected if and only if it contains a spanning tree.

Proof. For the sufficiency, if G has a spanning tree, then it is connected. Suppose G is connected.
Deleting edges of G until it satisfies the property (ii) in the Theorem 5.6, then we get a spanning
tree. So the necessity follows.

Definition 5.9. Given a connected graph G with n vertices, say v1, ..., vn. Let ST (G) be the
number of labeled spanning trees in G.

Theorem 5.10 (Cayley’s Formula). For an integer n ≥ 2,

ST (Kn) = nn−2.

We will give three proofs for this formula.

5.2 The First Proof of Cayley’s Formula

Let V (Kn) = {v1, v2, · · · , vn} and given a spanning tree T . Then

n∑
i=1

d(vi) = 2e(T ) = 2n− 2.

Now we introduce a lemma.

Lemma 5.11. Let d1, d2, ..., dn be positive integers with
∑n

i=1 di = 2n − 2. Then the number of
spanning trees in Kn on vertex set {v1, ..., vn} satisfying d(vi) = di is equal to

(n− 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
=

(
n− 2

d1 − 1, d2 − 1, · · · , dn − 1

)
.

Proof. We prove by induction on n. Base case is trivial. When n = 2, d1 = d2 = 1, there is only
one spanning tree.

Now we assume that this statement holds for any sequence of n − 1 positive integers. Then
consider d1, ..., dn with

∑
i∈[n] di = 2n−2. By average, (

∑
di)/n < 2, so there exists some di = 1,

say dn = 1. Let F be the family of all spanning trees with d(vi) = di for i ∈ [n]. And let
Fi = {T − {vn} : T ∈ F , the unique neighbor of vn in T is vi}. So |F| =

∑n−1
i=1 |Fi|. All trees in

Fi have n− 1 vertices {v1, v2, · · · , vn−1} such that{
d(vj) = dj , if j ̸= i

d(vi) = di − 1, otherwise.
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By induction, we have

|Fi| =
(n− 3)!

(d1 − 1)! · · · (di − 2)! · · · (dn−1 − 1)!
=

(n− 3)!(di − 1)∏n−1
j=1 (dj − 1)!

.

So

|F| =
n−1∑
i=1

|Fi| =
(n− 3)!∏n−1

j=1 (dj − 1)!

(
n−1∑
i=1

(di − 1)

)
=

(n− 2)!∏n
j=1(dj − 1)!

.

Recall the Multinomial Theorem:

(x1 + x2 + · · ·+ xk)
n =

∑
i1+···+ik=n

n!

i1! · · · ik!
xi11 · · ·xikk ,

which implies

kn =
∑

i1+···+ik=n

n!

i1! · · · ik!
.

Thus we have

ST (Kn) =
∑

∑n
i=1 di=2n−2

di≥1

(n− 2)!∏n
j=1(dj − 1)!

= nn−2.

5.3 The Second Proof of Cayley’s Formula

Definition 5.12. A multigraph is a loopless graph, where we allow multiple edges between vertices.

For a multigraph G on [n], we define the Laplace matrix Q = (qij)n×n of G as follows:

qij =

{
dG(i), if i = j

−m, if i ̸= j and there are m edges between i and j.

Note that Q is symmetric, and the sum of each row/column is 0.
For example

Figure 1: Multigraph G
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Q =


6 −3 −1 −2 0
−3 5 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 .

Note that for an n× n matrix Q, let Qij be the (n− 1)× (n− 1) matrix obtained from Q by
deleting the ith row and jth column. For multigraphs, if two vertices u and v are joined by several
edges, then we count each spanning tree in which u and v are adjacent to the corresponding
number of times. In other words, we distinguish between spanning trees that use different edges.
Then we have the following theorem.

Theorem 5.13. For any multigraph G, ST (G) = det(Q11), where Qij is the (n − 1) × (n − 1)
matrix obtained from the Laplace matrix Q of G by deleting the ith row and jth column.

Proof. We consider a multigraph G in the following two cases.
Case 1. Suppose that the multigraph G has an isolated vertex, say vertex number 1, then

we have ST (G) = 0. Since the first column of the Laplace matrix consists only of zeros, the
sum of the rows of Q11 is also zero, which implys zero is the eigenvalue of Q11. Thus, we have
det(Q11) = ST (G).

Case 2. Suppose that the multigraph G has no isolated vertices, we prove this by induction
on the number of edges in G. Base case, suppose that e(G) = 1. Then it holds trivially.

Now we assume this holds for any multigraph with less than e(G) edges. Take any edge e in
G. Define two multigraph as follows.

1. G− e is the multigraph obtained from G by deleting the edge e.

2. G/e is the multigraph obtained from G by contracting the two endpoints x, y of e into a
new vertex z and adding new edges in {zu : xu ∈ E(G)} ∪ {zv : yv ∈ E(G)}.

Let Q′ and Q′′ be the Laplace matrices of G−e and G/e respectively. Since G has no isolated
vertices, the vertex number 1 is incident to at least one edge. More precisely, assume that the
edge e has endpoints 1 and 2. Take the multigraph G in Figure 1 as an example, we have

Q′ =


5 −2 −1 −2 0
−2 4 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 , Q′′ =


5 −1 −3 −1
−1 6 −1 −4
−3 −1 5 −1
−1 −4 −1 6

 .

Let Q11,22 be the matrix obtained from Q by deleting the first two rows and the first two
columns. Then we have

det(Q11) = det((Q′)11) + det(Q11,22). (5.2)

We also see that

Q11,22 = (Q′′)11. (5.3)

By (5.2) and (5.3) we have

det(Q11) = det((Q′)11) + det((Q′′)11). (5.4)
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Claim. For any edge e in G, we have

ST (G) = ST (G− e) + ST (G/e). (5.5)

Proof. We divide the spanning trees of G into two classes:
-the 1st class contains those spanning trees of G NOT containing e, which are exactly ST (G−

e).
-the 2nd class contains those spanning trees of G containing e. We can easily see that the

trees in the 2nd class are one-to-one corresponding to the spanning trees of G/e.
This proves (5.5).

By induction, we have ST (G − e) = det(Q′
11), ST (G/e) = det((Q′′)11). By (5.4), we have

ST (G) = det(Q11).

For Kn, we have

Q =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


n×n

,

which implies that ST (G) = det(Q11) = nn−2.

5.4 The Third Proof of Cayley’s Formula

Definition 5.14. A digraph D = (V,A) consists of a vertex set V and an arc set A ⊆ {(i, j) :
i, j ∈ V }

Let D be the family of digraphs D = ([n], A) such that each vertex in D has exactly one arc
going out from this vertex (i.e. each vertex has out degree one).

Fact 5.15.
|D | = nn.

Proof. Consider the set F = {all mapping f : [n] → [n]}. It is easy to see there exists a bijection
between D and F . So |D | = |F | = nn.

Definition 5.16. Given a spanning tree of Kn, we choose 2 special vertices (one marked by a
circle and the other marked by a square; these two vertices can be the same vertex). We call such
a subject (the spanning tree with 2 special vertices) as a vertebrate.

Let V be a family of all vertebrates on [n]. Clearly, we have |V | = ST (Kn)n
2. So it suffices

to show |V | = nn to get the Cayley’s formula.

Lemma 5.17. There exists a bijection between V and D .

Proof. Consider a W ∈ V (see Figure 2). Let P be the unique path in W between the two special
vertices (marked by a circle and a square), and view P as a directed path from the circle to the
square.

We then define a digraph D1 on V (P ) by assign the following arcs (Figure 3): that is, we
place two rows, where the 1st row is from P and the 2nd row is the increasing sequence of V (P ),
then we orient the arcs of D1 from the vertices of the 2nd row to the one above it. Thus each
vertex in D1 has exactly one arc going out and one arc going in.
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Figure 2: A vertebrate Figure 3: D1

Exercise 5.18. D1 consists of vertex-disjoint directed cycle (possibly loops and 2-cycles).

Next, we extend D1 to a digraph D on [n], by the following:

(1) We remove all edges of P from W .

(2) Then W−E(P ) consists of subtrees, each having one vertex from V (P ). We direct the edges
of these subtrees such that they point to the unique vertex of the component contained in
V (P ).

(3) These arcs added in (2) together with the arcs of D1, define a new graph DW on [n]. This
should be easy to see that DW ∈ D .

So we just define a mapping φ : V → D , by assigning φ(W ) = DW , W ∈ V . Next, We show
φ is a bijection.

Step 1. We can define φ−1 : D → V such that φ−1 · φ = Id.

Remark: In any DW , V (D1) consists of all vertices in DW contained in a directed cycle.

Take any D ∈ D , there exists some vertex of D contained in a directed cycle. Let X be the
set of all such vertices of D. Since D[X] consists of vertex-disjoint directed cycles, there is
a nature way to define a path as follows (see Figure 4):

Figure 4: Define a path

First, list the vertices of X in the increasing order. Second, list the out-neighbor vertices of
X in another row, respectively. Then the second row defines a path P which is the special
path in the vertebrate. Then it is easy to define the rest part of the vertebrate say W . So

we have D ∈ D
φ−1

−−→ W ∈ V . We can check that φ−1 · φ = Id.
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Step 2. φ is a surjective.

We have proved in Step 1 that for any D ∈ D , there exists W ∈ V satisfying φ(W ) = D.

Therefore indeed φ is a bijection.

Combining Fact 5.15 with Lemma 5.17, we get ST (Kn) = nn−2.
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6 System of Distinct Representatives

6.1 Hall’s Theorem

Definition 6.1. A system of distinct representatives for a sequence of (not necessarily
distinct) sets S1, S2, . . . , Sm is a sequence of distinct elements x1, . . . , xm such that xi ∈ Si for
i = 1, 2, . . . ,m.

Fact 6.2. If S1, S2, . . . , Sm have a system of distinct representatives then the union of any k sets
has at least k elements. i.e., the following Hall’s condition is fulfilled:∣∣∣∣∣⋃

i∈I
Si

∣∣∣∣∣ ≥ |I| for all I ⊆ [m].

Example 6.3. {1, 2}, {1}, {2} have no systems of distinct representatives.

Theorem 6.4 (Hall’s Theorem). The sets S1, S2, . . . , Sm have a system of distinct represen-
tatives if and only if S1, S2, . . . , Sm satisfy Hall’s condition.

Proof. It is clear that the necessity of Hall’s condition holds. We prove the sufficiency of Hall’s
condition by induction on m. The case m = 1 is clear. Assume the claim holds for any collection
with less than m sets.

Case 1: Suppose that for any I ⊊ [m], we have | ∪i∈I Si| > |I|. Take any x1 ∈ S1, and let
S′
i = Si\{x1}, i = 2, . . . ,m. Then | ∪i∈I S

′
i| ≥ |I| for all I ⊆ [2,m], which satisfies Hall’s condi-

tion. By induction hypothesis, S′
2, . . . , S

′
m have a system of distinct representatives x2, . . . , xm.

Consequently, x1, . . . , xm is a system of distinct representatives of S1, . . . , Sm.
Case 2: Suppose that there exists some I ⊊ [m] satisfying that | ∪i∈I Si| = |I| = k < m.

By the induction hypothesis, these k sets have a system of distinct representatives. Without loss
of generality, let I = {1, 2, . . . , k}, and x1, . . . , xk be a system of distinct representatives of the
sets S1, S2, . . . , Sk. For each i, k + 1 ≤ i ≤ m, let S′

i = Si\{x1, . . . , xk}. We claim that the sets
S′
k+1, S

′
k+2, . . . , S

′
m satisfy Hall’s condition. Otherwise, there exists some J ⊆ [k+1,m] satisfying

that | ∪i∈J S′
i| < |J |. Then | ∪i∈I∪J Si| = |(∪i∈JSi′) ∪ {x1, x2, . . . , xk}| < |J |+ k = |I ∪ J |, which

is a contradiction. By induction, S′
k+1, S

′
k+2, . . . , S

′
m have a system of distinct represetatives

xk+1, xk+2 . . . , xm. Consequently, x1, x2, . . . , xm is a system of distinct representatives of the sets
S1, S2, . . . , Sm.

Definition 6.5. Let m0 ≤ m1 ≤ · · · ≤ mn−1. Define

Fn(m0,m1, . . . ,mn−1) =

n−1∏
i=0

(mi − i)∗

where α∗ = max(1, α).

Theorem 6.6. Let S0, S1, . . . , Sn−1 be a sequence of set satisfying the Hall’s condition. Let
mi = |Si| for i ∈ {0, 1, . . . , n − 1} such that m0 ≤ m1 ≤ · · · ≤ mn−1. Then the number of SDR
for S0, S1, . . . , Sn−1 is at least Fn(m0,m1, . . . ,mn−1).

Exercise 6.7. Prove Theorem 6.6.

44



6.2 Latin Rectangles

Definition 6.8. A Latin rectangle is an r × n matrix with entries in [n] such that each row
and each column has no repeated elements. A Latin square is an n× n Latin rectangle.

Example 6.9. Here is a 2× 3 Latin rectangle and a 3× 3 Latin square.

1 2 3

3 1 2

1 2 3

3 1 2

2 3 1

Exercise 6.10. Construct an n× n Latin square.

Theorem 6.11 (Evans’ conjecture(1960)). If fewer than n entries in an n × n matrix are
filled, then one can always complete it to obtain a Latin square.

Proof. The conjecture was proved by Smetaniuk (1981) using a quite subtle induction argument.
We omit it here.

Remark 6.12. Evans’ condition is best possible, i.e. it is possible to fill n entries so that the
resulting partial matrix cannot be completed. Here is an example when n = 4.

1 2 3 ?

4

Theorem 6.13. If r < n, then any given r× n Latin rectangle can be extended to an (r+1)× n
Latin rectangle.

Proof. Let R be an r × n Latin rectangle. For j ∈ [n], define Sj to be the set of integers in [n]
which do not appear in the j-th column. Then it suffices to prove that the sets S1, . . . , Sn have
a system of distinct representatives. Note that |Sj | = n− r, and each i, i ∈ [n], occurs in exactly
n− r sets Sj , so S1, . . . , Sn satisfy Hall’s condition. By Theorem 6.4, S1, . . . , Sn have a system of
distinct representatives.

6.3 Decomposition of Doubly Stochastic Matrices

Definition 6.14. An n × n matrix A = (aij)n×n with aij ≥ 0 is called doubly stochastic
matrix if the sum of each row and each column equals 1. If aij ∈ {0, 1}, then A is called a
permutation matrix.

Theorem 6.15 (Birkhoff-Von Neumann Theorem). Every doubly stochastic matrix A is a
convex combination of permutation matrices. That is, there exist permutation matrices P1, P2, . . . , Ps

and non-negative reals λ1, λ2, . . . , λs such that

A =
s∑

i=1

λiPi and
s∑

i=1

λi = 1.
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Proof. Let m be the number of nonzero entries in A then m ≥ n. To prove the theorem, we apply
induction on m. The case m = n is clear since A is a permutation matrix. The following exercise
is a hint to complete the proof.

Exercise 6.16. Define Si = {j : aij > 0}, i ∈ [n]. Show that the sets S1, S2, . . . , Sn have a
system of distinct representatives.

6.4 König’s Min-Max Theorem

Definition 6.17. Let A be a 0-1 matrix. Two 1’s are dependent if they are in the same row or
in the same column; otherwise, they are independent. The size of the largest set of independent
1’s is also known as the term rank of A.

Theorem 6.18 (König). Let A be an m×n 0-1 matrix. The maximum number r of independent
1’s is equal to the minimum number R of rows and columns required to cover all 1’s in A.

Proof. Clearly, r ≤ R, since we can find r independent 1’s such that each row or column covers
at most one of them.

Next we show that r ≥ R. Suppose that some a rows and b columns cover all 1’s and a+b = R.
Without loss of generality, we may assume that the first a rows and the first b columns cover all
the 1’s. Write A in the form

A =

(
Ba×b Ca×(n−b)

D(m−a)×b O(m−a)×(n−b)

)
.

We will show that there are a independent 1’s in C. Define Si = {j : cij = 1} ⊆ [n − b]. We
claim that S1, . . . , Sa have a system of distinct representatives and thus we can choose a 1’s from
C, no two in the same column. Otherwise, by Hall’s theorem, there are some k (1 ≤ k ≤ a) sets,

say Si1 , . . . , Sik , such that

∣∣∣∣ k
∪
j=1

Sij

∣∣∣∣ < k, i.e. the 1’s in these k rows in C can be covered by less

than k columns. Together with the first b columns and the other a− k rows from the first a rows
of A, we obtain a covering of all the 1’s in A with at most (k − 1) + b+ (a− k) = a+ b− 1 rows
and columns, a contrdiction.

Similarly, there are b independent 1’s in D. Since altogether these a+ b 1’s are independent,
this shows that r ≥ a+ b = R, as desired.

Remark 6.19. By König’s theorem, the maximum number of independent 1’s in A is r if and
only if the maximum value of c+ d is m+ n− r for any 0-submatrix of size c× d in A.

6.5 Matchings in Bipartite Graphs

Definition 6.20. In a graph G, two edges are disjoint if they have no vertex in common. A
matching is a set of pairwise disjoint edges. A perfect matching is a matching that covers all
vertices. For a bipartite graph G = (A ⊔ B,E), if a matching of G covers all vertices of A, then
we say it is a matching of A into B. Clearly, we have |B| ≥ |A|.

Fact 6.21. For a bipartite graph G = (A ⊔ B,E), define Sx = NG(x) ⊆ B as the set of all
neighbours of x for all x ∈ A. The following are equivalent:

(1) There exists a matching of A into B;
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(2) The sets Sx with x ∈ A have a system of distinct representatives;

(3) Any k vertices from A have at least k neighbours.

Definition 6.22. A vertex cover in G = (V,E) is a set of vertices S ⊆ V such that each edge
is incident to at least one vertex in S.

Theorem 6.23. For a bipartite graph, the maximum size of a matching is equal to the minimum
size of a vertex cover.

Proof. Let G = (A⊔B,E) be a bipartite graph. Consider a 0-1 matrix M = (ma,b) with |A| rows
labeled by vertices a ∈ A and with |B| columns labeled by vertices b ∈ B such that

ma,b =

{
1, if a ∼ b,

0, otherwise.

Then there is a natural one-to-one correspondence between a matching of G and a family of
independent 1’s in M . Also, there is a natural one-to-one correspondence between a vertex cover
in G and a family of rows and columns that covers all 1’s in M. By Theorem 6.18, the maximum
size of a matching is equal to the minimum size of a vertex cover.
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7 Extremal Combinatorics

7.1 Erdős-Ko-Rado Theorem

Definition 7.1. A family F ⊆ 2[n] is intersecting if for any A,B ∈ F , we have A ∩B ̸= ∅.

Example 7.2. Here are two intersecting families of size |F| = 2n−1.

(1) F = {A ⊆ [n] : 1 ∈ A};

(2) F = {A ⊆ [n] : |A| > n
2 } when n is odd.

Fact 7.3. For any intersecting family F ⊆ 2[n], we have |F| ≤ 2n−1.

Proof. Consider pairs {A,Ac} for all A ⊆ [n]. Note that there are exactly 2n−1 such pairs, and
F contains at most one subset from each pair. Therefore we have |F| ≤ 2n−1 and Example 7.2
implies that the upper bound is tight.

Example 7.4. Here are two intersecting families of uniform size.

(1) F = {A ∈
([n]
k

)
: 1 ∈ A} when k ≤ n

2 . We have |F| =
(
n−1
k−1

)
.

(2) F ⊆
([n]
k

)
when k > n

2 . We have |F| =
(
n
k

)
.

Let F be an intersecting family of k-element subsets of [n]. The basic question is: how large
can such a family be? To avoid trivialities, we assume n ≥ 2k since otherwise any two k-element
sets intersect, and there is nothing to prove. The following theorem answers the question.

Theorem 7.5 (Erdős-Ko-Rado, 1961). For n ≥ 2k, the largest intersecting family F ⊆
([n]
k

)
has size

(
n−1
k−1

)
. Moreover, if n > 2k, the intersecting family F ⊆

([n]
k

)
with |F| =

(
n−1
k−1

)
must be

a star. That is, F = {A ∈
([n]
k

)
: t ∈ A} for some fixed t ∈ [n].

Proof. (Due to Katona 1972) Take a cyclic permutation π = (a1 a2 . . . an) of the elements of [n].
We say a set A is contained in π if all elements of A appear consecutively in π. Let Fπ = {A ∈ F :
A is contained in π.}.
Claim. |Fπ| ≤ k for all cyclic permutation π.

Proof of claim. Pick A ∈ Fπ, then there exist 2k − 2 sets B contained in π such that B ∩A ̸= ∅
and B ̸= A. But these 2k − 2 sets can be partitioned into k − 1 pairs of disjoint subsets. Since
Fπ is intersecting, Fπ contains at most one subset from each pair. So |Fπ| ≤ k. This proves the
claim.

We now do a double counting of

N = |{(π,A) : π is a cyclic permutation of [n], and A ∈ Fπ}|.

By Claim, when we fix π,

N =
∑
π

|Fπ| ≤
∑
π

k = k(n− 1)!.

Then if we fix A, the number of cyclic permutations containing A is k!(n− k)!. So we have

k(n− 1)! ≥ N =
∑
A∈F

k!(n− k)! = |F|k!(n− k)!,
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which implies that

|F| ≤ k · (n− 1)!

k!(n− k)!
=

(
n− 1

k − 1

)
.

Next we show the extremal case: when n > 2k, the intersecting family F ⊆
([n]
k

)
with

|F| =
(
n−1
k−1

)
must be a star. That is, there exists some t ∈ [n] such that F = {A ∈

([n]
k

)
: t ∈ A}.

Proof of the extremal case. From the proof above, we see that if |F| =
(
n−1
k−1

)
, then |Fπ| = k for

any cyclic permutation π.
Claim 1. Fix any cyclic permutation π = (a1 a2 . . . an). If Fπ = {A1, A2, . . . , Ak}, then
Fπ = {{aj+r, aj+r+1, . . . , aj+r+k−1} : 1 ≤ j ≤ k} for some fixed r ∈ [n]. Without loss of generality,
we may say Aj = {aj , aj+1, . . . , aj+k−1} for 1 ≤ j ≤ k and A1 ∩A2 ∩ · · · ∩Ak = {ak} (where the
indices are taken under the additive group Zn). That is, if A1, Ak ∈ Fπ and A1 ∩ Ak = {ak},
then all B ⊆

(
A1∪Ak

k

)
whose elements appear consecutively in π are in Fπ.

Proof of Claim 1. Let B1, B2 be sets in Fπ. When |B1∩B2| is minimized, it can be easily checked
that |B1 ∩B2| = 1. Then for any k-subset B ⊆ B1 ∪B2 whose elements appear consecutively in
π, we have B ∈ Fπ. This proves Claim 1.

If for any A ∈ F we have ak ∈ A, then we are done. So we assume that there exists some
A0 ∈ F such that ak /∈ A0. We will show that F =

(
A1∪Ak

k

)
. Then |F| =

(
2k−1
k

)
=
(
2k−1
k−1

)
<
(
n−1
k−1

)
,

which is a contradiction.

Claim 2. For any B ∈
(A1∪Ak\{ak}

k−1

)
, we have B ∪ {ak} ∈ F .

Proof of Claim 2. Let B = B1∪B2 with B1 ⊆ A1, B2 ⊆ Ak. Consider another cyclic permutation
π′ whose elements appear in the following sequence: A1 \ (B1∪{ak}), B1, ak, B2, A2 \ (B2∪{ak}).
Then A1, Ak ∈ Fπ′ . By Claim 1, it is easy to check that B ∪ {ak} ∈

(
A1∪Ak

k

)
⊆ F . This proves

Claim 2.

Claim 3. The subset A0 ∈ F (with ak /∈ A0) satisfies A0 ⊆ A1 ∪Ak \ {ak}.

Proof of Claim 3. Otherwise, we have A0 ̸⊆ A1 ∪ Ak and |A0 ∩ (A1 ∪ Ak)| ≤ k − 1. Then there

exists some B ∈
((A1∩Ak)\A0

k

)
such that ak ∈ B. By Claim 2, we have B ∈ F . But A0 ∩ B = ∅,

which contradicts the fact that F is intersecting. This proves Claim 3.

Claim 4. We have
(
A1∪Ak

k

)
⊆ F .

Proof of Claim 4. Consider any i ∈ A0, let Bi = ((A1 ∪Ak) \A0) ∪ {i}. Since ak ∈ Bi, by Claim
2, we have Bi ∈ F . Repeating the proof of Claim 2, we can obtain that any k-subset of A1 ∪Ak

containing i belongs to F . In other words, any k-subset B of A1∪Ak must intersect A0, and thus
B belongs to F . Then we have

(
A1∪Ak

k

)
⊆ F . This proves Claim 4.

Claim 5. We have F ⊆
(
A1∪Ak

k

)
.

Proof of Claim 5. Suppose there exists some k-subset C ∈ F such that C ̸⊆ A1 ∪ Ak, then
|(A1∪Ak) \C| ≥ k. So there exists some B ∈

(
A1∪Ak

k

)
such that B ∩C = ∅. By Claim 4, we have

B ∈ F and thus B ∩ C ̸= ∅, which is a contradiction. This proves Claim 5.
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Under the assumption that there exists some A0 ∈ F such that ak /∈ A0, we have shown that
F =

(
A1∪Ak

k

)
and |F| =

(
2k−1
k

)
=
(
2k−1
k−1

)
<
(
n−1
k−1

)
, which is a contradiction. This completes the

proof of the extremal case.

Theorem 7.6 (A generalization of Erdős-Ko-Rado Theorem). Let k be a fixed integer. Let
A1, A2, . . . , Am be m subsets of [n] such that:

• For any i ∈ [m], |Ai| ≤ k ≤ n
2 .

• For any distinct i, j ∈ [m], Ai ̸⊆ Aj and Ai ∩Aj ̸= ∅.

Then m ≤
(
n−1
k−1

)
.

Proof. By Theorem 3.8, the family 2[n] can be partitioned into a disjoint union of symmetric
chains. We fixed this partition. Since for any distinct i, j ∈ [m], Ai ̸⊆ Aj , each Ai must be in
different chains. Notice that ∀i ∈ [m], |Ai| ≤ k ≤ n

2 , thus there exists Bi ⊆ [n] in the same chain
with Ai such that |Bi| = k and Ai ⊆ Bi. Since Bi is in different chains, Bi are distinct. Now Bi

is m distinct sets of size k, for any distinct i, j ∈ [m], Bi ∩ Bj ⊇ Ai ∩ Aj ̸= ∅. By Theorem 7.5
(Erdős-Ko-Rado Theorem), m ≤

(
n−1
k−1

)
.

7.2 Turán’s Theorem

Definition 7.7. A Turán graph Tr(n) is an n-vertex complete r-partite graph, where each part
has almost equal size (differs by at most 1). Let n = tr + s where 1 ≤ s ≤ r. Then in Tr(n), we
have s parts of size t+ 1 and r − s parts of size t. The number of edges of Turán graph Tr(n) is

e(Tr(n)) =
∑

1≤i<j≤r |Vi||Vj | = r−1
2r n2 − s(r−s)

2r .

Theorem 7.8 (Turán’s Theorem).

ex(n,Kr+1) = e(Tr(n)).

Moreover, the unique n-vertex Kr+1-free graph G with e(G) = e(Tr(n)) is G = Tr(n).

Theorem 7.9 (Turán’s Theorem approximate form). If G has n vertices and is Kr+1-free, then

e(G) ≤ r − 1

2r
n2.

Proof of Theorem 7.9. We are given an n-vertex Kr+1-free graph G, where V (G) = [n]. Consider
a function p : [n] → [0, 1] such that ∑

i∈[n]

pi = 1.

We want to find the maximum of f(p) =
∑

ij∈E(G) pipj over all such functions p : [n] → [0, 1].
Suppose p is the function obtaining the maximum f(p), and subject to this, the number of vertices
i with p(i) ̸= 0 is minimized.
Claim. {i : p(i) > 0} is a clique in G.
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proof of claim. Suppose NOT, say p(i), p(j) > 0 and ij /∈ E(G). Let Si =
∑

k∈NG(i) pk and
Sj =

∑
k∈NG(j) pk. Let Si ⩾ Sj . Then we can assign a new function p∗ : [n] → [0, 1] such that

p∗(i) = p(i) + p(j), p∗(j) = 0 and p∗(k) = p(k) for k ∈ [n] \ {i, j}.

Now we have

f(p∗) = f(p)− (piSi + pjSj) + (pi + pj)Si = f(p) + (Si − Sj)pj ⩾ f(p).

By the choice of p, we see f(p∗) = f(p), but p∗ has fewer vertices i with positive weight than p,
a contradiction. This proves the claim.

Let S = {1, 2, ..., s} ⊆ V (G) be the set of vertices with positive weight. Then by the claim,
we see G[S] = Ks, where s ≤ r as G is Kr+1-free. Then

max
p

f(p) =
1

2

( ∑
1≤i≤s

p(i))2 −
∑

1≤i≤s

p2(i)

 =
1

2
[1−

∑
1≤i≤s

p2(i)] ≤ 1

2

[
1− s

(∑
1≤i≤s p(i)

s

)2
]

=
1

2
(1− 1

s
) ≤ 1

2
(1− 1

r
).

On the other hand,

max
p

f(p) ≥ e(G)

n2
.

Combining, we have

e(G) ≤ r − 1

2r
· n2.

Proof of Turán’s theorem. We prove for a fixed r ≥ 2. Recall that n = tr+ s, 1 ≤ s ≤ r. We will
prove by induction on t that any Kr+1-free n-vertex graph G has e(G) ≤ e(Tr(n)).

The base case t = 0 is trivial. Now we may assume this statement holds for thoseG′ with t′ < t.
Let G be a maximal Kr+1-free n-vertex graph, where n = tr + s, 1 ≤ s ≤ r. Then G contains a
Kr, say H. Then ∀x ∈ G−V (H), x has at most r−1 neighbors in H. Consider G′ = G−V (H), it
is a Kr+1-free graph with n′ = (t−1)r+s vertices. By induction, e(G′) ≤ e(Tr(n−r)). Therefore
e(G) ≤

(
r
2

)
+ (n− r)(r − 1) + e(Tr(n− r)) = e(Tr(n)).

The following exercise completes the proof.

Exercise 7.10. Prove that the unique n-vertex Kr+1-free graph G with e(G) = e(Tr(n)) is G =
Tr(n).
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8 Partially Ordered Sets (Poset)

Definition 8.1. Let X be a finite set. R is a (binary) relation on X, if R ⊆ X×X = {(x1, x2) :
∀x1, x2 ∈ X}. If (x, y) ∈ R, then we often write xRy.

Definition 8.2. A partially ordered set (poset for short) is an ordered pair (X,R), where X
is a finite set and R is a relation on X such that the following holds:

(1) R is reflective: xRx for any x ∈ X,

(2) R is antisymmetric: if xRy and yRx, then x = y,

(3) R is transitive: if xRy and yRz, then xRz.

Example 8.3. Consider the poset (2[n],⊆), where “⊆” denotes the inclusion relationship.

Example 8.4. Consider the poset ([n], |), where “|” denotes the divisibility relationship.

We often use “≼” to replace “R”. So poset (X,R) = (X,≼) and xRy = x ≼ y. If x ≼ y but
x ̸= y, then x ≺ y, and we say x is a predecessor/child of y.

Definition 8.5. Let (X1,≼1) and (X2,≼2) be two posets. A mapping f : X1 → X2 is called an
embedding of (X1,≼1) in (X2,≼2) if

(1) f is injective,

(2) f(x) ≼2 f(y) if and only if x ≼1 y.

Theorem 8.6. For every poset (X,≼) there exists an embedding of (X,≼) in poset (2X ,⊆).

Proof. Consider the mapping f : X → 2X by letting f(x) = {y ∈ X : y ≼ x} for any x ∈ X. It
suffices to verify that f is an embedding of (X,≼) in (2X ,⊆).

First, it’s easy to check that f is injective. If f(x) = f(y) for x, y ∈ X, then x ∈ f(x) =
f(y) and x ≼ y. Similarly we have y ≼ x which implies that x = y.

Second, if x ≼ y, then clearly f(x) ⊆ f(y) by transitive property. Now we suppose that
f(x) ⊆ f(y). Since x ∈ f(x) and y ∈ f(y), we have x ≼ y. Thus we have that f indeed is an
embedding.

Definition 8.7. Let (X,≼) be a poset. We say an element x is an immediate predecessor of
y or y covers x, if

(1) x ≺ y,

(2) there is no element t ∈ X such that x ≺ t ≺ y.

In this case, we write x� y.

Fact 8.8. For x, y ∈ (X,≼), x ≺ y if and only if there exist z1, z2, ..., zk ∈ X such that x� z1 �
z2 � · · ·� zk � y. (Note that here k can be 0, i.e., x� y.)
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Proof. (⇐) This direction is trivial by transitive property.
(⇒) Let x ≺ y. Let Mxy = {t ∈ X : x ≺ t ≺ y}. We prove the statement by induction on

|Mxy|.
Base case is clear, since if |Mxy| = 0, then x� y. Now we may assume that Mxy ̸= ∅ and the

statement holds for any u ≺ v with |Muv| < n. Suppose x ≺ y with |Mxy| = n ⩾ 1. Pick any
t ∈ Mxy and consider Mxt and Mty. Clearly Mxt ⊊ Mxy and Mty ⊊ Mxy because of transitive
property. By inductional assumption, there exist x1, x2, ..., xm ∈ X and y1, y2, ..., yl ∈ X such
that x� x1 � x2 � · · ·� xm � t and t� y1 � y2 � · · ·� yl � y. Thus, we have x� x1 � x2 � · · ·�
xm � t� y1 � · · ·� yl � y and we are done.

Now we can express a poset in a diagram.

Definition 8.9. The Hasse diagram of a poset (X,≼) is a drawing in the plane such that

(1) each element of X is drawn as a nod in the plane,

(2) each pair x� y is connected by a line segment,

(3) if x� y, then the nod x must appear lower in the plane than the nod y.

Example 8.10. The Hasse diagram of poset (2[3],⊆) is as follows.

{1, 2, 3}

{1, 2} {2, 3} {1, 3}

{1} {2} {3}

∅

The fact that x ≺ y if and only if x� x1 � x2 � · · ·� xk � y now can be restated as follows:
x ≺ y if and only if we can find a path in the Hasse diagram from nod x to nod y, strictly from
bottom to top.

Definition 8.11. Let P = (X,≼) be a poset.

(1) For distinct x, y ∈ X, if x ≺ y or y ≺ x, then we say that x, y are comparable; otherwise,
x, y are incomparable.

(2) The set A ⊆ X is an antichain of P , if any two elements in A are incomparable. Let α(P )
be the maximum size of an antichain of P .
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(3) The set B ⊆ X is a chain of P , if any two elements of B are comparable. Let ω(P ) be the
maximum size of a chain of P .

Consider the Hasse diagram, ω(P ) means the maximum number of vertices in a path (from
bottom to top) in this diagram. So ω(P ) is also called the height of P and α(P ) is called the
width of P similarly.

Definition 8.12. An element x ∈ X is minimal in P = (X,≼), if x has no predecessor in P .

Fact 8.13. The set of all minimal elements of P = (X,≼) forms an antichain of P .

Theorem 8.14. For any poset P = (X,≼), α(P ) · ω(P ) ≥ |X|.

Proof. We inductively define a sequence of posets Pi = (Xi,≼) and a sequence of sets Mi ⊂ Pi

such that each Mi is the set of minimal elements of Pi, and Xi = X −
⋃i−1

j=0Mj .
First, set P1 = P = (X,≼), X1 = X and M0 = ∅. Assume posets Pi = (Xi,≼) and Mi−1 are

defined for all 1 ⩽ i ⩽ k, where k is big enough. Let Mi = { all minimal elements of Pi} and
let Xi+1 = X −M1

⋃
· · ·
⋃
Mi. Then let Pi+1 be the subposet of P restricted on Xi+1. We keep

doing this until Xℓ+1 = ∅. By Fact 8.13, each Mi is an antichain of Pi. Since Pi is the restricted
subposet of P on Xi, Mi is also an antichain of P. So we have

|Mi| ≤ α(P ).

It suffices to find a chain x1 ≺ x2 ≺ · · · ≺ xℓ in P, such that xi ∈ Pi = (Xi,≼) for i ∈ [ℓ].
Indeed, if this holds, then

X = M1

⋃
M2

⋃
· · ·
⋃

Mℓ and |X| =
ℓ∑

i=1

|Mi| ≤ α(P ) · ℓ ≤ α(P ) · ω(P ).

In fact, by the definition of Mi, we can claim something stronger holds: For any x ∈ Mi (2 ≤ i <
ℓ), there exists y ∈ Mi−1, such that y ≺ x. This completes the proof.

Corollary 8.15. Consider a poset (X,≺). If |X| = rs+ 1 where r, s are positive integers, there
exists a chain of szie s+ 1 or an antichain of size r + 1.

Definition 8.16. Consider a sequence X = (x1, x2, ..., xn) of n real numbers. A subsequence
(xi1 , xi2 , ..., xim) of X, where i1 < i2 < · · · < im, is monotone, if either xi1 ≤ xi2 ≤ · · · ≤ xim
or xi1 ≥ xi2 ≥ · · · ≥ xim.

For example, (10, 9, 7, 5, 1) is a monotone subsequence of (10, 9, 7, 4, 5, 1, 2, 3).

Theorem 8.17 (Erdős-Szekeres Theorem). For any sequence (x1, x2, ..., xn2+1) of length n2 +1,
there exists a monotone subsequence of length n+ 1.

Proof. Let X = [n2 + 1]. We define a poset P = (X,≼) as follows: i ≼ j if and only if i ≤ j and
xi ≤ xj .

It is easy to check that P = (X,≼) indeed defines a poset. By the previous result that
α(P ) · w(P ) ≥ |X| = n2 + 1, we have either w(P ) ≥ n+ 1 or α(P ) ≥ n+ 1.
Case 1. w(P ) ≥ n+ 1.

There exists a chain of size n+1, which we say {xi1 , xi2 , .., xin+1} such that i1 ≤ i2 ≤ · · · ≤ in+1.
By definition, we have xi1 ≤ xi2 ≤ · · · ≤ xin+1 which is an increasing subsequence of length n+1.
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Case 2. α(P ) ≥ n+ 1.
There exists an antichain of size n + 1, which we say {xi1 , xi2 , .., xin+1} such that i1 ≤ i2 ≤

· · · ≤ in+1. By definition, we have xi1 > xi2 > · · · > xin+1 which is a decreasing subsequence of
length n+ 1.

Remark 8.18. What we proved is a bit stronger: there is either an increasing subsequence of
length n+ 1 or a strictly decreasing subsequence of length n+ 1.

Exercise 8.19. Find examples to show that Erdős-Szekeres Theorem is optimal: there exists a
sequence of n2 reals such that there is no monotone subsequence of length n+ 1.

Theorem 8.20 (Dilworth’s Theorem). Let P = (X,≼) be a poset. Then the minimum number m
of disjoint chains which together contain all elements of X is equal to α(P ). (that is the minimal
m such that X = ∪m

i=1ci, ci are pairwise disjoint chains in P ).

Proof. In a disjoint chain decomposition X = ∪m
i=1ci and a max antichain A, we have |ci∩A| ≤ 1.

Thus m ≥ |A| = α(P ).
Let α = α(P ). We use induction on |X| to show that m ≤ α. The base case is |X| = 0, it is

obvious that m ≤ α.
Let C be a fixed maximum chain in (X,≼). If every antichain in (X − C,≼) contains at

most α′ ≤ α− 1 elements, then by induction there exists X −C = ∪α′
i=1ci where ci’s are pairwise

disjoint chains in (X − C,≼). Thus X = C ∪ [∪α′
i=1ci] has at most α′ + 1 ≤ α chains.

Hence, we may assume that {a1, a2, . . . , aα} is an antichain in (X − C,≼). Now we define
S− = {x ∈ X : if ∃ai such that x ≼ ai}, S+ = {y ∈ X : if ∃aj such that aj ≼ y}. We claim
that S− ∪ S+ = X. If it is not the case then there exists x ∈ X such that x ̸∈ S−, x ̸∈ S+ ,
{a1, a2, . . . , aα, x} is an antichain of size α+1, which leads to contradiction. Since {a1, a2, . . . , aα}
is an antichain, {a1, a2, . . . , aα} ⊆ S− ∩ S+. Therefore α(S−,≼) = α = α(S+,≼). Since C is a
maximal chain, the largest element of C is not in S−. Therefore |S−| < |X|.

Since α(S−,≼) = α, by induction, S− is the union of α = α(S−,≼) disjoint chains s−1 , s
−
2 , . . . , s

−
α ,

where ai ∈ s−i .

Claim: ai is the maximal element of the chain s−i .

Proof of Claim. Otherwise ∃x ∈ s−i with ai ≼ x. By definition of S−, ∃aj such that x ≼ aj , thus
ai ≼ x ≼ aj , a contradiction.

Now we can do the same for S+, S+ is the union of α = α(S−,≼) disjoint chains s+1 , s
+
2 , . . . , s

+
α ,

where ai ∈ s+i and ai is the minimal element in s+i .
We can combine s−i and s+i to get a chain s−i ∪s+i in (X,≼). As S−∪S+ = X, X is the union

of α disjoint chains s−i ∪ s+i (1 ≤ i ≤ α), thus m ≤ α = α(P ).

Dilworth’s Theorem has a dual version:

Theorem 8.21 (Mirsky’s Theorem). Let P = (X,≼) be a poset. If P = (X,≼) contains no
chain of m+ 1 elements, then X is the union of m disjoint antichains.

Exercise 8.22. Prove Mirsky’s Theorem by a similar way as the proof in Theorem 8.14.
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9 The Probabilistic Method

9.1 Basics

Definition 9.1. A probability space is a pair (Ω, P ), where Ω is a finite set and P : 2Ω → [0, 1]
is a function assigning a number in the interval [0, 1] to every subset of Ω such that

(i) P (∅) = 0,

(ii) P (Ω) = 1, and

(iii) P (A ∪B) = P (A) + P (B) for disjoint sets A,B ⊂ Ω.

Definition 9.2. Any subset A of Ω is called an event, and P (A) =
∑

ω∈Ω P ({ω}).

Definition 9.3. A random variable is a function X : Ω → R.

Definition 9.4. The expectation of a random variable X is:

E[X] :=
∑
ω∈Ω

P ({ω}) ·X(ω).

Fact 9.5 (Union bound). P (A ∪B) ≤ P (A) + P (B) for any A,B ⊂ Ω.

Fact 9.6 (The linearity of expectations). for any two random variables X and Y on Ω, we have

E[X + Y ] = E[X] + E[Y ].

9.2 Union Bound

Now we discuss the following basic form of the probabilistic methods in Combinatorics:

(i) Imagine we need to find some combinatorial object satisfying certain property, call it a
“good” property. We consider a big family for candidates and randomly pick one from this
family and call it a random object. If the probability that the random object has “good”
property is positive, then there must exist “good” objects.

(ii) To compute the probability of being “good”, we often compute the probability of being
“bad” and aim to show that this probability of being “bad” is strictly less than 1.

Theorem 9.7. Let n, s satisfy
(
n
s

)
· 21−(

s
2) < 1. Then R(s, s) > n.

Proof. We need to find a 2-edge-coloring of Kn such that it has no monochromatic clique Ks.
Let Φ be the family of all 2-edge-colorings of Kn. Let c ∈ Φ be chosen uniformly at random.

Then c is a random 2-edge-coloring of Kn, where each edge of Kn is colored by red and blue, each
with probability 1

2 , independent of each other edge.
Let B be the event that this random 2-edge-coloring has no monochromatic Ks. We want

to prove P (B) > 0. Consider its complement event A = Φ\B and its probability P (A), where
A is the event that c has a monochromatic Ks. Next, we compute P (A) for any S ∈

(
[n]
s

)
. Let

AS be the event that S forms a monochromatic Ks for c. Then we have A = ∪
S∈([n]

s )
AS , and

P (AS) = 21−(
s
2).
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So by the union bound,

P (A) = P
(
∪
S∈([n]

s )
AS

)
≤

∑
S∈([n]

s )

P (AS) =

(
n

s

)
21−(

s
2) < 1.

This shows that P (B) > 0.

Corollary 9.8. R(s, s) ≥ 1
e
√
2
s2

s
2 .

Proof. Let n = 1
e
√
2
s2

s
2

(
e
2

)1/s
. Recall that

(
n
s

)
< ns

s! and s! ≥ e
(
s
e

)s
, thus we have that(

n

s

)
21−(

s
2) <

ns

e
(
s
e

)s 21−(s2) = 1.

So by the above theorem, we get

R(s, s) > n =
1

e
√
2
s2

s
2

(e
2

)1/s
≥ 1

e
√
2
s2

s
2 .

Definition 9.9. The random graph G(n,p) for some real p ∈ (0, 1) is a graph with vertex
set {1, 2, ..., n}, where each of potential

(
n
2

)
edges appears with probability p, independent of other

edges.

In the proof of the previous theorem, in fact we consider G(n, 1/2).
Let A be the property we are interested in. Let

P (A) = P (G(n,
1

2
) satisfies the property A)

=
the number of graphs with vertex set [n] satisfying the property A

2(
n
2)

.

Then P (A) is a function of n, taking value in [0, 1].

Definition 9.10. We say the random graph G(n, 12) almost surely satisfies property A, if

lim
n→+∞

P (A) = 1.

If limn→+∞ P (A) = 0, then G(n, 12) almost surely does not satisfy the property A.

Theorem 9.11. Random graph G(n, 12) almost surely is not bipartite.

Proof. Let A be the event that G(n, 12) is bipartite. For any U ⊆ [n], let AU be the event that
all edges of G are between U and [n]\U . Then we know A =

⋃
U⊆[n]AU . We have

P (AU ) =
the number of graphs satisfying AU

2(
n
2)

=
2|U |(n−|U |)

2(
n
2)

≤ 2
n2

4

2
n(n−1)

2

= 2−
n2

4
+n

2 .

So by the union bound,

0 ≤ P (A) = P (
⋃

U⊆[n]

AU ) ≤
∑
U⊆[n]

P (AU ) ≤ 2n · 2−
n2

4
+n

2 = 2−
n2

4
+ 3n

2 .

Thus we have limn→+∞ P (A) = 0.
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Definition 9.12. Given a probability space (Ω, P ), we say events A1, A2, ..., Ak are independent
if for any I ⊂ [n], we have P (

⋂
i∈I Ai) =

∏
i∈I P (Ai).

Definition 9.13. An arc is an edge in a directed graph.

Definition 9.14. A tournament on n vertices is a directed graph obtained from the clique Kn

by assigning a direction to each edge of Kn. For any arc i → j, we say i is the head and j is the
tail of the arc.

Definition 9.15. A tournament T satisfies the property Sk if for any subset A of size k, there
exists a vertex u ∈ V (T ) \A such that u → x for any x ∈ A.

Question 9.16. For any k ∈ Z+, can we find a tournament satisfying the property Sk?

Theorem 9.17. For any k ∈ Z+, if
(
n
k

)
(1 − 1

2k
)n−k < 1, then there exists a tournament on n

vertices satisfying the property Sk.

Proof. We prove this by considering a random tournament T on [n], that is, for any pair {i, j},
the arc i → j occurs with probability 1

2 , independent of other choices. Let B be the event that

T does not satisfy the property Sk. For A ∈
([n]
k

)
, let BA be the event that for every vertex

x ∈ [n] \A there exists some u ∈ A with u → x. So

B =
⋃

A∈([n]
k )

BA.

For x ∈ [n]\A, let BA,x be the event that there exists some u ∈ A with u → x. So

BA =
⋂

x∈[n]\A

BA,x.

It is easy to see that for any x ∈ [n] \A

P (BA,x) = 1−
(
1

2

)k

.

Note that only the arcs between x and A will effect the event BA,x, and these arcs for distinct
vertices x’s are disjoint. This explains that all events BA,x for all x ∈ [n] \A are independent. So

P (BA) = P (
⋂
x/∈A

BA,x) =
∏
x/∈A

P (BA,x) =

(
1−

(
1

2

)k
)n−k

.

Therefore,

P (B) ≤
∑

A∈([n]
k )

P (BA) ≤
(
n

k

)(
1−

(
1

2

)k
)n−k

< 1.

Thus, P (Bc) > 0, i.e., there exists a tournament on [n] satisfying property Sk.

Corollary 9.18. For any k ∈ Z+, there exists a minimal f(k) such that there exists a tournament
on f(k) vertices satisfying the property Sk.

Example 9.19. We have f(3) ≤ 91, as
(
91
3

)
(78)

88 < 1.
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9.3 The Linearity of Expectation

• For any two variables X,Y , we have E[X + Y ] = E[X] + E[Y ].

• P (X ≥ E[X]) > 0.

• P (X ≤ E[X]) > 0.

Definition 9.20. A set A is sum-free, if for any x, y ∈ A, x + y /∈ A, i.e., x + y = z has no
solutions in A.

Example: Both {⌊n2 ⌋ + 1, ⌊n2 ⌋ + 2, ..., n} and {all odd integers in [n]} are two sum-free sets in
[n] of size ⌈n2 ⌉.

Exercise 9.21. Show that the maximum size of a sum-free subset A in [n] is ⌈n2 ⌉.

Theorem 9.22. For any set A of non-zero integers, there exists a sum-free subset B ⊆ A with
|B| ≥ |A|

3 .

Proof. We choose a prime p large enough such that p > |a| for any a ∈ A. Consider Zp =
{0, 1, ..., p− 1} and Z∗

p = {1, 2, ..., p− 1}. We note that there is a large sum-free subset under Zp(
mod p):

S =
{
⌈p
3
⌉+ 1, ⌈p

3
⌉+ 2, ..., ⌈2p

3
⌉
}
.

Claim: For any x ∈ Z∗
p , Ax = {a ∈ A : ax (mod p) ∈ S} is sum-free.

Proof. Suppose that there are a, b, c ∈ Ax satisfying a+ b = c. But we also have ax (mod p) ∈ S,
bx (mod p) ∈ S, cx (mod p) ∈ S and ax (mod p) + bx (mod p) = cx (mod p) in Zp. This is a
contradiction to that S is sum-free in Zp.

Next, we want to find some x ∈ Z∗
p such that |Ax| ≥ |A|

3 . We choose x ∈ Z∗
p uniformly at

random, and we compute, E
[
|Ax|

]
, the expectation of |Ax|.

Note that |Ax| =
∑
a∈A

1{ax (mod p)∈S}. So

E
[
|Ax|

]
= E

[∑
a∈A

1{ax (mod p)∈S}

]
=
∑
a∈A

E
[
1{ax (mod p)∈S}

]
=
∑
a∈A

P
(
ax (mod p) ∈ S

)
.

We observe that for a fixed a ∈ A, {ax : x ∈ Z∗
p} = Z∗

p . So P
(
ax (mod p) ∈ S

)
= |S|

|Z∗
p |

≥ 1
3 .

And thus, E
[
|Ax|

]
≥
∑
a∈A

1
3 = |A|

3 . Then, we know that there exists a choice of x ∈ Z∗
p such that

|Ax| ≥ E
[
|Ax|

]
≥ |A|

3 .

Definition 9.23. Given a graph G, a dominating set A in G is a subset of V (G) such that
any u ∈ V (G)\A has a neighbor in A.

Theorem 9.24. Let G be a graph on n vertices and with minimum degree δ > 1. Then G contains

a dominating set of at most
1 + ln(1 + δ)

1 + δ
n vertices.
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Proof. Take p ∈ (0, 1), whose value will be determined later. We pick each vertex in V (G) with
probability p uniformly at random. Let A be the set of those chosen vertices. Let B be the set
of vertices b ∈ V (G) \A, which has no neighbors in A. Then we can see that

• A ∪B is a dominating set in G.

• b ∈ B if and only if
(
{b} ∪NG(b)

)
∩A = ∅.

That is, b ∈ B if and only if b and all neighbors of b are not picked. So

P (b ∈ B) = (1− p)1+dG(b) ≤ (1− p)1+δ ≤ e−p(1+δ),

where the last inequality holds since 1 + x ≤ ex. Then, we have

E
[
|B|
]
= E

[ ∑
b∈V (G)

1{b∈B}

]
=

∑
b∈V (G)

P (b ∈ B) ≤ n · e−p(1+δ).

We also have E
[
|A|
]
= np. Thus,

E
[
|A ∪B|

]
≤ E

[
|A|+ |B|

]
= E

[
|A|
]
+ E

[
|B|
]
≤ n

(
p+ e−p(1+δ)

)
.

By calculus, we see that when p =
ln(1 + δ)

1 + δ
, p+e−p(1+δ) is minimized with value

1 + ln(1 + δ)

1 + δ
.

So we pick p =
ln(1 + δ)

1 + δ
to get E

[
|A ∪ B|

]
≤ 1 + ln(1 + δ)

1 + δ
n. Therefore there exists a choice of

A∪B such that |A∪B| ≤ E
[
|A∪B|

]
≤ 1 + ln(1 + δ)

1 + δ
n, where A∪B is a dominating set of G.

Definition 9.25. Let α(G) be the maximum size of an independent set in G.

Theorem 9.26. For any graph G, α(G) ⩾
∑

v∈V (G)

1

d(v) + 1
where d(v) denotes the degree of v in

G.

Proof. Let V (G) = [n]. For i ∈ [n], let Ni be the neighborhood of i in G. Let Sn be the family
of all permutations π : [n] → [n].

Given a permutation π ∈ Sn, we say a vertex i ∈ [n] is π−good, if π(i) < π(j) for any j ∈ Ni.
Let Mπ be the set of all π-good vertices.
Claim: For any π ∈ Sn, Mπ is an independent set in G.

Proof. Suppose that there are two vertices i, j ∈ Mπ with ij ∈ E(G). Let π(i) < π(j). Then j is
not π-good, a contradiction.

We pick an π ∈ Sn uniformly at random, and compute E
[
|Mπ|

]
. Since |Mπ| =

∑
i∈[n]

1{i is π-good},

we have E
[
|Mπ|

]
=
∑
i∈[n]

P (i is π-good) =
∑
i∈[n]

1

d(i) + 1
. Thus there exists a permutation π ∈ Sn

such that |Mπ| ≥
∑
i∈[n]

1

d(i) + 1
. Then by the definition of α(G) and our claim, we can get that

α(G) ≥
∑

v∈V (G)

1

d(v) + 1
which completes the proof.
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Corollary 9.27. For any graph G with n vertices and m edges, we have α(G) ≥ n2

2m+n .

Proof. Exercise.

Corollary 9.28. For any graph G with n vertices and average degree d (i.e., d = 2m
n ), then

α(G) ≥ n
1+d .

Definition 9.29. Turán graph Tr(n) on r parts is an n-vertex graph G such that V (G) =
V1 ∪ V2 ∪ ...∪ Vr and |V1| ≤ |V2| ≤ ... ≤ |Vr| ≤ |V1|+1, where ab ∈ E(G) if and only if a ∈ Vi and
b ∈ Vj for some i ̸= j.

Tr(n) is a balanced complete r-partite graph.

Theorem 9.30 (Turán’s Theorem approximate form). If G is Kr+1-free, then e(G) ⩽
r − 1

2r
n2.

Second proof. Using Corollary 9.28 (Exercise).

9.4 The Deletion Method

Earlier, we often define an appropriate probability space and show the random event occurs with
positive probability.

Today, we extend this idea and consider situations where random events do not always have
the desired property, and may have very few “blemishes”. The point that we want to make here
is that after deleting all blemishes, we will obtain the desired property.

Theorem 9.31. Let G be a graph on n vertices and with average degree d ≥ 1. Then α(G) ≥ n
2d .

Proof. Let S ⊆ V (G) be a random subset, where for any v ∈ V (G), P(v ∈ S) = p. Here the value
of p will be determined later.

Let X denote the number of vertices in S, and let Y denote the number of edges of G, both
ends of which lie in S. Then E[X] = np , and E[Y ] = e(G)p2 = nd

2 p2. By taking p = 1
d , we have

E[X − Y ] = E[X]− E[Y ] =
n

d
− n

2d
=

n

2d
.

So there is a subset S ⊆ V (G) such that

|S| − e(G[S]) ≥ E[X − Y ] =
n

2d
.

Now we delete one vertex for each edge of G[S]. This leaves a subset S∗ ⊆ S of size at least
|S| − e(G[S]) ≥ n

2d . Since all edges of G[S] are destroyed, S∗ must be an independent set.

Recall: If
(
n
k

)
21−(

k
2) < 1, then the Ramsey number R(k, k) > n. So R(k, k) > 1

e
√
2
k2

k
2 .

Theorem 9.32. For all integer n, we have R(k, k) > n−
(
n
k

)
21−(

k
2).

Proof. Consider a random 2-edge-coloring of Kn, where each edge is colored by red or blue with
probability 1

2 , independent of other choices. For A ∈
([n]
k

)
, let XA be the indicator random

variable of the event that A induces a monochromatic Kk. Then E[XA] = 2 ·
(
1
2

)(k2) .
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Let X =
∑

A∈([n]
k )

XA be the number of monochromatic k-subsets. Then we have

E[X] =
∑

A∈([n]
k )

E[XA] =

(
n

k

)
21−(

k
2).

So there exists a 2-edge-coloring of Kn whose number of monochromatic k-subsets is at most

E[X] =
(
n
k

)
21−(

k
2). Next, we remove one vertex from each monochromatic k-subset. This will

delete at most X ≤ E[X] ≤
(
n
k

)
21−(

k
2) vertices and will destroy all monochromatic k-subsets. So

it remains at least n−
(
n
k

)
21−(

k
2) vertices, which contains NO monochromatic k-subsets.

Corollary 9.33.

R(k, k) >
1

e
(1 + o(1))k2

k
2 .

Proof. We leave the proof of this corollary as an exercise.

Exercise 9.34. Prove Corollary 9.33 by maximizing n−
(
n
k

)
21−(

k
2) for a fixed k.

9.5 Markov’s inequality

Theorem 9.35 (Markov’s Inequality). Let X ≥ 0 be a random variable and t > 0, then

P(X ≥ t) ≤ E[X]

t
.

Corollary 9.36. Let Xn ≥ 0 be an integer-value random variable for n ∈ N+ in (Ωn, Pn). If

E[Xn] → 0 as n → +∞,

then
P(Xn = 0) → 1 as n → +∞.

That is, Xn = 0 almost surely occurs.

Lemma 9.37. For a random graph G(n, p) where p ∈ (0, 1), we have

P
(
α(G(n, p)) ≤ ⌈2 lnn

p
⌉
)

→ 1 as n → +∞.

Note that here p can be a function of n.

Proof. Let t = ⌈2 lnn
p ⌉. Let Xn be the number of independent sets of size t + 1 in G(n, p). For

any S ∈
(
[n]
t+1

)
, let XS be the indicator random variable of the event that S is an independent set

in G(n, p). Then

Xn =
∑

S∈( [n]
t+1)

XS

and
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E[Xn] =
∑

S∈( [n]
t+1)

E[XS ] =
∑

S∈( [n]
t+1)

(1− p)(
t+1
2 ) =

(
n

t+ 1

)
(1− p)(

t+1
2 )

≤ nt+1

(t+ 1)!
e−p(t+1

2 ) =
1

(t+ 1)!
(ne−p· t

2 )t+1

≤ 1

(t+ 1)!
→ 0 as n → +∞.

By Corollary 9.36, we see that P(α(G(n, p)) ≤ t) = P(Xn = 0) → 1 as n → +∞.

Definition 9.38. For a graph G, the chromatic number χ(G) is the minimum integer k such
that V (G) can be partitioned into k independent sets.

Fact 9.39. (1) χ(Kn) = n;
(2) χ(C2n+1) = 3;
(3) χ(G) ≤ 2 if and only if G is bipartite.

Proposition 9.40. For any graph G on n vertices, we have χ(G) · α(G) ≥ n.

Definition 9.41. The girth g(G) of a graph G is the length of the shortest cycle in G.

Theorem 9.42 (Erdős). For any fixed k ∈ N+, there exists a graph G with χ(G) ≥ k and
g(G) ≥ k.

Proof. Consider a random graph G = G(n, p), where p will be determined later. Let t = ⌈2 lnn
p ⌉,

then by Lemma 9.37 we have P(α(G) ≤ t) → 1 as n → +∞.
Let Xn be the total number of cycles of length less than k in G. Then

E[Xn] =
k−1∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
pi,

where n(n−1)···(n−i+1)
2i is the number of C ′

is in Kn. So

E[Xn] ≤
k−1∑
i=3

(np)i =
(np)k − 1

np− 1
.

By Markov’s inequality,

P(Xn >
n

2
) ≤ E[Xn]

n/2
≤ 2((np)k − 1)

n(np− 1)
.

Let p = n− k−1
k . So np = n

1
k . Then

P(Xn >
n

2
) ≤ 2(n− 1)

n(n
1
k − 1)

→ 0 as n → +∞.

Let n be sufficiently large then there exists a graph G on n vertices with Xn ≤ n
2 and α(G) ≤

t = ⌈2 lnn
p ⌉ ≤ 3n

k−1
k lnn.
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By deleting one vertex from each cycle of length at most k − 1, we can find an induced
subgraph G∗ of G, which has at least n

2 vertices and has NO cycles of length at most k−1. Hence
g(G∗) ≥ k. As G∗ is an induced subgraph of G, we have

α(G∗) ≤ α(G) ≤ 3n
k−1
k lnn.

By Proposition 9.40, we have

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥
n
2

3n
k−1
k lnn

=
n

1
k

6 lnn
≥ k (as n is large enough).

Therefore G∗ is the desired graph.

9.6 Lovász Local Lemma

Consider ”bad events” A1, . . . , An. We want to avoid them all.

• If all P (Ai) small, say
∑

i P (Ai) < 1, then we can avoid all bad events.

• If they are all independent, then the probability that none of Ai occurs is
∏n

i=1(1− P (Ai)) >
0 (provided that all P (Ai) < 1). We can avoid all bad events.

The Lovász Local Lemma deals with the case when each bad event Ai is independent with most
of the other events, but it could possibly be dependent with a small number of events.

Definition 9.43. An event A0 is independent from {A1, . . . , Am} if for any Bi ∈ {Ai, Ai}

P(A0 ∩B1 ∩ · · · ∩Bm) = P(A0)P(B1 ∩ · · · ∩Bm).

Theorem 9.44 (Lovász Local Lemma in symmetric form). Let {A1, . . . , An} be events with
P(Ai) = p, ∀i ∈ [n].Suppose that each Ai is independent from a set of all other Aj except for
at most d of them. If ep(d + 1) ≤ 1 (where e is the natural constant), then there is a positive
probability such that none of the events Ai occur.

Theorem 9.45 (Lovász Local Lemma in general form). Let {A1, . . . , An} be events. For i ∈ [n],
let N(i) ⊆ [n] be the set such that Ai is independent from {Aj : j /∈ N(i) ∪ {i}}. If x1, . . . , xn ∈
[0, 1) satisfy

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n],

then with probability no less than
∏n

i=1(1− xi) that none of the events Ai occur.

Proof of symmetric form by the general form. Suppose we have ep(d+ 1) ≤ 1. Let xi =
1

d+1 < 1
for all i ∈ [n]. Then

xi
∏

j∈N(i)

(1− xj) =
1

d+ 1

∏
j∈N(i)

(1− 1

d+ 1
) ≥ 1

d+ 1
(1− 1

d+ 1
)d >

1

e(d+ 1)
≥ p ≥ P(Ai),

so the condition of the general form holds. Thus there is a positive probability such that none of
the events Ai occur.
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Proof of the general form. We will prove that for any i /∈ S ⊆ [n],

P(Ai| ∩j∈S Aj) ≤ xi.

Once this is proved, we have

P(A1 ∩A2∩, . . . ,∩An) = P(A1)P(A2|A1)P(A3|A1 ∩A2) · · ·P(An|A1 ∩A2, . . . ,∩An − 1)

≥ (1− x1)(1− x2) · · · (1− xn).

Now we prove this by induction on |S|. The base case is when |S| = 0. It is trivial to get
P(Ai) ≤ xi. When |S| ≥ 1, consider i /∈ S. Let S1 = S ∪ N(i) = {j1, j2, . . . , jr}, S2 = S\N(i).
Let B = ∩j∈S2Aj , we have

P(Ai| ∩j∈S Aj) =
P(Ai ∩ (∩j∈S1Aj)|B)

P(∩j∈S1Aj |B)
.

P(Ai ∩ (∩j∈S1Aj))|B) ≤ P(Ai|B) = P(Ai) ≤ xi
∏

j∈N(i)

(1− xj).

P(∩j∈S1Aj)|B) = P(Aj1 |B)P(Aj2 |B ∩Aj1) . . .P(Ajr |B ∩Aj1 ∩ · · · ∩Ajr−1)

≥
∏
j∈S1

(1− xj) ≥
∏

j∈N(i)

(1− xj).

Therefore,

P(Ai| ∩j∈S Aj) =
P(Ai ∩ (∩j∈S1Aj)|B)

P(∩j∈S1Aj |B)
≤

xi
∏

j∈N(i)(1− xj)∏
j∈N(i)(1− xj)

= xi.

Theorem 9.46 (Spencer 1977). If e(
(
k
2

)(
n

k−2

)
+ 1)21−(

k
2) < 1, then R(k, k) > n.

Proof. Random 2-edge-coloring on Kn. For each R ∈
([n]
k

)
, let ER be the event that R induces a

monochromatic Kk. P(ER) = 21−(
k
2). ER is independent of all ES that satisfies |R ∩ S| ≤ 1. For

each R, there are at most
(
k
2

)(
n

k−2

)
choices S with |S| = k and |R ∩ S| ≥ 2.

Since e(
(
k
2

)(
n

k−2

)
+ 1)21−(

k
2) < 1, by Lovász Local Lemma in symmetric form P(∩ER) > 0,

thus R(k, k) > n.

Remark 9.47. By optimizing the choice of n, we obtain

R(k, k) > (

√
2

e
+ o(1))k2k/2

This is still the best known lower bound for R(k, k).

Theorem 9.48. A k-graph is 2-colorable if every edge intersects at most d = e−12k−1 − 1 other
edges.

Proof. For each edge f , let Af be the event that f is monochromatic (for random 2-coloring
on vertices), then P(Af ) = 21−k. Each Af is independent from all Af ′ where f ∩ f ′ = ∅. By
condition, at most d = e−12k−1 − 1 edges intersects with f and ep(d+ 1) = e21−k(e−12k−1) ≤ 1.
By Lovász Local Lemma there is a positive probability such that none of the event Af occurs.
Therefore this k-graph is 2-colorable.
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