Learning and Optimization in Multiagent Decision-Making Systems

Lecture Notes: Static Noncooperative Games

Instructor: Rasoul Etesami

In this part, we consider static nooncooperative games. However, before we study the general case, we first consider a special case of the 2-player static noncooperative games known as zero-sum matrix games.

Zero-Sum Matrix Games

Consider two players. Let us denote the action sets of Player 1 and Player 2 by $[n] = \{1, 2, ..., n\}$ and $[m] = \{1, 2, ..., m\}$, respectively. Let A be an $n \times m$ matrix representing the payoffs to Player 2 (column player). Each entry A_{ij} represents the payoff to Player 2 when he chooses action j and Player 1 (row player) chooses action i. The payoff to Player 1 is defined to be $-A_{ij}$, hence the game is called a zero-sum game as the sum of players' payoffs is always zero.

Let x and y be two probability distributions over [n] and [m], respectively, i.e.,

$$x_i \ge 0$$
 for all i , $\sum_{i=1}^n x_i = 1$

$$y_j \ge 0$$
 for all j , $\sum_{i=1}^m y_j = 1$

If Player 1 chooses an action according to x and Player 2 chooses an action according to y, the expected payoff to Player 1 equals:

$$\mathbb{E}[\text{Payoff to Player 1}] = -x^T A y.$$

Similarly, the expected payoff to Player 2 equals:

$$\mathbb{E}[\text{Payoff to Player 2}] = x^T A y.$$

The vectors x and y are called *mixed strategies*.

Question: Does there exist x^* and y^* such that

$$x^{T}Ay^{*} \ge (x^{*})^{T}Ay^{*} \quad \forall x \in \Delta_{n},$$
$$(x^{*})^{T}Ay \le (x^{*})^{T}Ay^{*} \quad \forall y \in \Delta_{m}.$$

If so, (x^*, y^*) is called a Nash equilibrium (NE), i.e., neither player has an incentive to deviate.

Player 1's problem: Choose *x* to minimize the maximum loss:

$$\min_{x \in \Delta_n} \max_{y \in \Delta_m} x^T A y$$

Player 2's problem: Choose *y* to maximize the minimum gain:

$$\max_{y \in \Delta_m} \min_{x \in \Delta_n} x^T A y$$

Theorem 81 (Minimax Theorem). For any finite $n \times m$ payoff matrix A, we have

$$\min_{x \in \Delta_n} \max_{y \in \Delta_m} x^T A y = \max_{y \in \Delta_m} \min_{x \in \Delta_n} x^T A y = v^*,$$

and the common value v^* is called the **value of the game**.

Proof: We can compute the value of the game using linear programming as follows:

$$\min_{x \in \Delta_n} \max_{y \in \Delta_m} x^T A y = \min_{x \in \Delta_n} \max_j (x^T A)_j.$$

Therefore, by introducing a new variable v_2 the right-hand side can be computed using the following linear program (LP1):

$$\min v_2$$

$$(x^T A)_j \le v_2 \quad \forall j$$

$$\sum_{i=1}^n x_i = 1$$

$$x_i \ge 0 \ \forall i.$$

Similarly, we can write

$$\max_{y \in \Delta_m} \min_{x \in \Delta_n} x^T A y = \max_{y \in \Delta_m} \min_i (A y)_i.$$

Therefore, by introducing a new variable v_1 the right-hand side can be computed using the following linear program (LP₂):

$$\max v_1$$

$$(Ay)_i \ge v_1 \quad \forall i$$

$$\sum_{j=1}^m y_j = 1$$

$$y_j \ge 0 \ \forall j.$$

Now, it is easy to verify that these two LPs are duals of each other, and therefore, by the strong duality theorem $\max_{v} \min_{x} x^{T}Ay = \min_{x} \max_{v} x^{T}Ay = v^{*}$.

Proposition 82. The following statements are true:

- If x^* solves LP1 and y^* solves LP2, then, $\max_y \min_x x^T A y = \min_x \max_y x^T A y = (x^*)^T A y^*$.
- If x^* solves LP1 and y^* solves LP2, then, (x^*, y^*) is a NE.
- If (x^*, y^*) is a NE, then $\max_{y} \min_{x} x^T A y = \min_{x} \max_{y} x^T A y = (x^*)^T A y^*$.
- If (x^*, y^*) is a NE, then x^* must solve LP1 and y^* must solve LP2.

Proof: (a): If x^* solves LP1, we have

$$\min_{x} \max_{y} x^{T} A y = \max_{j} ((x^{*})^{T} A)_{j} = v_{2}^{*},$$

which implies $v_2^* \ge \left((x^*)^T A \right)_j \ \forall j$. Therefore, for any $y \in \Delta_m$, and in particular $y = y^*$, we have $v_2^* \ge (x^*)^T A y^*$. Similarly, if y^* solves LP2, we must have $v_1^* \le (x^*)^T A y^*$. But we know from the Minimax theorem that $v_1^* = v_2^* = v^*$, which implies $v_1^* = v_2^* = (x^*)^T A y^*$.

(b): Since x^* solves LP1, we have

$$\max_{y} (x^*)^T A y = \min_{x} \max_{y} x^T A y$$
$$= \max_{y} \min_{x} x^T A y$$
$$= \min_{x} x^T A y^* \le (x^*)^T A y^*,$$

where the second equality is by the Minimax Theorem and the last equality holds because y^* solves LP2. Using a similar argument one can see that $(x^*)^T A y^* \le \min_x x^T A y^*$, which shows that (x^*, y^*) must be a NE.

(c), (d): The proof of the last two statements are similar and we leave as an exercise. \Box

Remark 19. The implication of the above proposition is that we can find a NE in zero-sum games in polynomial time by solving LP1 and LP2. Moreover, if (x_1^*, y_1^*) and (x_2^*, y_2^*) are two NE, then (x_1^*, y_2^*) and (x_2^*, y_1^*) are also NE (as they solve the corresponding LPs). This property is called saddle point interchangeability because in zero-sum games, the NE is also called a saddle point.

General Noncooperative Static Games

Definition: A normal (strategic) form game is a triplet $G = ([n], \{A_i\}_{i \in [n]}, \{u_i\}_{i \in [n]})$, where:

- $[n] = \{1, 2, \dots, n\}$ is a finite set of players,
- $A_i \neq \emptyset$ is the action set for player $i \in [n]$,
- $u_i: \prod_{j\in[n]} A_j \to \mathbb{R}$ is the payoff function of player i. Our convention is that each player i is interested in maximizing its payoff function $u_i(\cdot)$.
- Any $a_i \in A_i$ is called an *action* or *pure strategy* for player i. We let a_{-i} denote a vector of actions for all players other than i, i.e., $a_{-i} = (a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$. Then we write $A_{-i} = \prod_{j \neq i} A_j$.

Example: 2-Player Nonzero-sum Games

For a 2-player nonzero-sum game, we can represent the payoff function using a matrix. Each row corresponds to an action of the first player (row player), and each column corresponds to an action of the second player (column player). The cell indexed by row i and column j contains a pair (a, b), where:

$$a = u_1(i, j), \quad b = u_2(i, j)$$
Heads (P2) | Tails (P2) |
Heads (P1) | (1, 1) | (-1, 1) |
Tails (P1) | (1, -1) | (-1, -1) |

Note that this game is not a zero-sum game because the sum of the payoffs is not zero. In fact, in a sharp contrast with zero-sum games, computing a NE in 2-player nonzero-sum games is generally a computationally hard problem.

Example: Games with Infinite Action Sets (Cournot Competition Game)

Action sets can also be infinite. For instance, in a Cournot competition game, two firms (players) produce a homogeneous good and aim to maximize their profits. Formally, let $G = ([2], \{A_1, A_2\}, \{u_1, u_2\})$, where:

- $A_i = [0, \infty)$ for i = 1, 2 (amount of good produced by firm i),
- $u_i(a_1, a_2) = p(q) \cdot a_i c_i a_i$, with $q = a_1 + a_2$, $p(\cdot)$ the price function, and c_i the unit cost of production for firm i.

Definition 83 (Best Response Map). Given player i and an action profile a_{-i} of the other players, the best response map for player i is defined by:

$$B_i(a_{-i}) = \left\{ a_i \in A_i \mid u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \text{ for all } a_i' \in A_i \right\}.$$

Example: Cournot Competition with Specific Price Function

Suppose *G* is a Cournot game with $c_1 = c_2 = 1$ and

$$p(q) = \max\{0, 2-q\}$$
. (linear inverse demand)

Then player 1's best response is:

$$B_1(a_2) = \arg\max_{a_1 \ge 0} [a_1 \cdot \max\{0, 2 - (a_1 + a_2)\} - a_1].$$

Solving this maximization problem, we get:

$$B_1(a_2) = \begin{cases} \frac{1-a_2}{2}, & \text{if } a_2 \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Similarly,

$$B_2(a_1) = \begin{cases} \frac{1-a_1}{2}, & \text{if } a_1 \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Definition 84. A mixed strategy for player i is any probability distribution over the action set A_i . 6 For finite action games, we often denote a mixed strategy for player i as:

$$\sigma_i = (p_1, p_2, \dots, p_m),$$

where p_i is the probability that player i chooses action $j \in A_i$.

Definition 85 (Pure Nash Equilibrium). Given a game $G = ([n], \{A_i\}, \{u_i\})$, an action profile $a^* = (a_1^*, a_2^*, \dots, a_n^*) \in \prod_{i=1}^n A_i$ is called a pure Nash equilibrium if for all $i \in [n]$, we have:

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i.$$

In other words, a pure strategy profile a^* is a Nash equilibrium if no player i can benefit by unilaterally deviating from their action a_i^* , assuming all other players stick to their actions a_{-i}^* .

Remark 20. The definition of pure Nash equilibrium can also be stated in terms of the best response map. That is, a^* is a pure Nash equilibrium if:

$$a_i^* \in B_i(a_{-i}^*)$$
 for all $i \in [n]$.

⁶For instance, in the above nonzero-sum game, the strategy of playing Heads with probability p and Tails with probability 1-p forms a mixed strategy for player i.

Example: Bimatrix Games

Consider the following bimatrix game:

	C_1	C_2
R_1	(2,1)	(0,0)
R_2	(0,0)	(1,2)

This game has two pure Nash equilibria: (R_1, C_1) and (R_2, C_2) . However, note that not all games admit a pure Nash equilibrium. The following is an example of a bimatrix game without any pure Nash equilibrium:

$$\begin{array}{c|c|c} & C_1 & C_2 \\ \hline R_1 & (-1,1) & (0,0) \\ \hline R_2 & (0,0) & (1,-1) \\ \end{array}$$

Definition 86 (Mixed Nash Equilibrium). A mixed strategy profile $\sigma = (\sigma_1, ..., \sigma_n)$ is called a mixed Nash equilibrium if for each player i:

$$u_i(\sigma_i,\sigma_{-i}) \geq u_i(\sigma_i',\sigma_{-i}) \quad \forall \sigma_i' \in \Delta_i,$$

where Δ_i denotes the probability simplex (set of all mixed strategies) over A_i , and the expected utility is defined by $u_i(\sigma_i, \sigma_{-i}) = \sum_{a \in A} u_i(a) \cdot \sigma(a)$, where $\sigma(a) = \prod_{j=1}^n \sigma_j(a_j)$.

Remark 21. For any fixed σ_{-i} , the utility function $u_i(\sigma_i, \sigma_{-i})$ is a linear (and hence continuous) function of σ_i . That is, for any $\sigma_i^1, \sigma_i^2 \in \Delta_i$, and any $\lambda \in [0, 1]$, we have:

$$u_i(\lambda \sigma_i^1 + (1 - \lambda)\sigma_i^2, \sigma_{-i}) = \lambda u_i(\sigma_i^1, \sigma_{-i}) + (1 - \lambda)u_i(\sigma_i^2, \sigma_{-i}).$$

Theorem 87 (Weierstrass). Let A be a nonempty compact set and $f: A \to \mathbb{R}$ be a continuous function. Then the optimization problem $\max_{x \in A} f(x)$ admits a solution.

Theorem 88 (Kakutani Fixed Point). Let $f: A \to 2^A$ be a set-valued function such that:

- 1. A is a compact, convex, and nonempty subset of a finite-dimensional Euclidean space,
- 2. f(x) is nonempty for all $x \in A$,
- 3. f(x) is a convex set for all $x \in A$,
- 4. f has a closed graph: If $(x^k, y^k) \rightarrow (x, y)$ with $y^k \in f(x^k)$, then $y \in f(x)$.

Then, there exists $x \in A$ such that $x \in f(x)$.

Theorem 89. Every finite noncooperative static game admits a mixed Nash equilibrium.

Proof: Let $\Sigma = \Delta_1 \times \cdots \times \Delta_n$ be the set of all mixed strategy profiles. Define the best response map $B: \Sigma \to 2^{\Sigma}$ as:

$$B(\sigma) = (B_1(\sigma_{-1}), \dots, B_n(\sigma_{-n})),$$

where:

$$B_i(\sigma_{-i}) = \arg \max_{\sigma_i \in \Delta_i} u_i(\sigma_i, \sigma_{-i}).$$

We aim to apply Kakutani's theorem to *B*. Let us verify the conditions:

- 1. Each Δ_i is a compact, convex, nonempty subset of \mathbb{R}^m . Hence, Σ is compact, convex, and nonempty.
- 2. By Weierstrass' theorem and continuity of u_i , $B_i(\sigma_{-i})$ is nonempty for all σ_{-i} . Hence, $B(\sigma)$ is nonempty for all $\sigma \in \Sigma$.
- 3. For any $\sigma_i^1, \sigma_i^2 \in B_i(\sigma_{-i})$ and $\lambda \in [0, 1]$, we have:

$$u_i(\lambda\sigma_i^1+(1-\lambda)\sigma_i^2,\sigma_{-i})=\lambda u_i(\sigma_i^1,\sigma_{-i})+(1-\lambda)u_i(\sigma_i^2,\sigma_{-i})\geq u_i(\sigma_i',\sigma_{-i})\quad\forall\sigma_i'\in\Delta_i.$$

Therefore, $\lambda \sigma_i^1 + (1 - \lambda)\sigma_i^2 \in B_i(\sigma_{-i})$, so $B_i(\sigma_{-i})$ is convex. Thus, $B(\sigma)$ is convex-valued.

4. *B* has a closed graph: Suppose, for contradiction, $(\sigma^k, \bar{\sigma}^k) \to (\sigma, \bar{\sigma})$ with $\bar{\sigma}^k \in B(\sigma^k)$ but $\bar{\sigma} \notin B(\sigma)$. Then there exists player *i*, and $\hat{\sigma}_i \in \Delta_i$ such that:

$$u_i(\hat{\sigma}_i, \sigma_{-i}) > u_i(\bar{\sigma}_i, \sigma_{-i}) + 3\epsilon$$
 for some $\epsilon > 0$.

Since $\sigma_{-i}^k \to \sigma_{-i}$ and by continuity of u_i , for sufficiently large k, we have $u_i(\hat{\sigma}_i, \sigma_{-i}^k) > u_i(\hat{\sigma}_i, \sigma_{-i}) - \epsilon$. Combining these two relations and using continuity of u_i , we obtain

$$u_i(\hat{\sigma}_i, \sigma_{-i}^k) > u_i(\bar{\sigma}_i^k, \sigma_{-i}^k) + \epsilon,$$

contradicting that $\bar{\sigma}_i^k \in B_i(\sigma_{-i}^k)$. Thus, the mapping B is closed.

By Kakutani's theorem, B has a fixed point $\sigma^* \in B(\sigma^*)$, which is a mixed Nash equilibrium.

Existence of Pure Nash Equilibrium

As we saw earlier, finite noncooperative games do not necessarily admit a pure Nash equilibrium (NE). However, in many practical situations, one is only interested in pure NE. Therefore, it is important to identify subclasses of games for which the existence of a pure NE is guaranteed.

Definition (Coupled Action Sets)

We say that the action sets of players, denoted by $a = (a_1, a_2, ..., a_n)$, are *coupled* if $a \in R$, where $R \subseteq \prod_i A_i$ is a subset of the full (uncoupled) action space, characterized by some constraints. In the special case where $R = \prod_i A_i$, we recover the original uncoupled action space.

Remark 22. Analyzing games with coupled action sets is generally more complex. Note that the existence of mixed NE discussed earlier only holds for finite games with uncoupled action spaces.

Example: Coupled Cournot Game

Consider a two-player Cournot game where the actions of the players are coupled by constraints. Define the feasible set:

$$R := \left\{ (a_1, a_2) \in \mathbb{R}^2 \mid 3a_1 + 2a_2 \le 6, \ a_2 \ge 0 \right\}.$$

For instance, if $a_1 = 1$, then the constraint restricts a_2 to satisfy $a_2 \le \frac{3}{2}$.

Theorem 90 (Pure NE in Coupled Games). Let R be a coupled action set. Suppose that:

- R is compact, convex, and nonempty,
- for each fixed $a_{-i} \in A_{-i}$, the utility function $u_i(a_i, a_{-i})$ is continuous and concave in a_i .

Then, the game $G = ([n], R, \{u_i\})$ admits a pure Nash equilibrium.

Proof: Recall $a \in R$ is a pure NE if for all i,

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \quad \forall a_i' \text{ such that } (a_i', a_{-i}) \in R.$$

Define a function $L: R \times R \to \mathbb{R}$ by:

$$L(b,a) = \sum_{i=1}^{n} u_i(b_i, a_{-i}).$$

If there exists an action profile $a \in R$ such that:

$$a \in \arg \max_{b \in R} L(b, a),$$

then a must be a pure NE. Now suppose, for contradiction, that a is not a pure NE. Then there exists some player i and $a'_i \in A_i$ such that $(a'_i, a_{-i}) \in R$ and:

$$u_i(a'_i, a_{-i}) > u_i(a_i, a_{-i}).$$

Define $b = (a'_i, a_{-i}) \in R$. Then:

$$L(b,a) = u_i(a'_i, a_{-i}) + \sum_{j \neq i} u_j(a_j, a_{-j}) > L(a, a),$$

contradicting that a is a maximizer of L(b, a).

Define the set-valued map $g: R \to 2^R$ by:

$$g(a) = \arg \max_{b \in R} L(b, a).$$

To find a pure NE, it suffices to show that g has a fixed point, i.e., some $a \in R$ such that $a \in g(a)$. We now verify that g satisfies the conditions of Kakutani's fixed point theorem:

- 1. R is compact, convex, and nonempty by assumption.
- 2. For each $a \in R$, g(a) is nonempty and convex:
 - Nonemptiness follows from Weierstrass's theorem, since L(b,a) is continuous in b and R is compact.
 - Convexity follows from the concavity of L(b,a) in b (which holds since each $u_i(b_i,a_{-i})$ is concave in b_i).
- 3. The mapping g is closed: That is, if $(a^k, b^k) \to (a, b)$, with $b^k \in g(a^k)$, then $b \in g(a)$. This follows by continuity of L and upper semi-continuity of arg max.

Therefore, by Kakutani's theorem, there exists $a^* \in R$ such that $a^* \in g(a^*)$, and a^* will be a pure NE.

Potential Games

Another interesting class of strategic static games that admit a pure Nash Equilibrium (NE) is the class of **potential games**, defined as follows:

Definition 91 (Weighted Potential Game). A game $G = ([n], \{A_i\}_{i \in [n]}, \{u_i\}_{i \in [n]})$ is called a weighted potential game if there exists a global function $\Phi : \prod_i A_i \to \mathbb{R}$, such that for any player $i \in [n]$, and for all $a_i, a_i' \in A_i$, and $a_{-i} \in A_{-i}$, we have:

$$\Phi(a'_i, a_{-i}) - \Phi(a_i, a_{-i}) = w_i \left(u_i(a'_i, a_{-i}) - u_i(a_i, a_{-i}) \right),$$

where w_i is some positive scalar. In case $w_i = 1$ for all i, the game is called an exact potential game. We refer to the function $\Phi(\cdot)$ as a weighted (or exact) potential function.

Theorem 92. Finite-action potential games admit a pure NE. In particular, any sequence of best-response (or better-response) moves in which players sequentially (in any order) update their actions to a strictly better action converges to a pure NE.

Proof: Consider an exact potential game with potential function Φ . (The argument for weighted potential games is identical.) Consider the following repeated play: Each player starts with an arbitrary action. Players take turns and one player at a time chooses a new action which strictly improves their utility. Each such action increases the value of Φ . Since there are only a finite set of joint actions, we must eventually reach a local maximum of Φ , at which point no player can increase their utility by unilaterally changing their action. Thus, a pure NE is reached.

Example: A Load Balancing Game

Consider a game with $[n] = \{1, 2, ..., n\}$ players. Player i holds a job with weight w_i . There are $[m] = \{1, 2, ..., m\}$ machines. An action for player i is to choose one of the machines and place their job on that machine, i.e., $a_i \in [m]$. Given an action profile $\mathbf{a} = (a_1, ..., a_n) \in [m]^n$, the cost of player i is given by:⁷

$$c_i(\mathbf{a}) = \text{load on machine } a_i = \sum_{j:a_i = a_i} w_j.$$

Then this load balancing game admits a pure NE. To prove this, for a given action profile **a**, let $L_j(\mathbf{a}) = \sum_{i:a_i=j} w_i$ be the total load on machine j under profile **a**. Define:

$$\Phi(\mathbf{a}) = \sum_{j=1}^{m} L_j^2(\mathbf{a}).$$

This function captures the squared load on all machines, and can be thought of as a measure of load imbalance (larger Φ indicates worse balance). We show that Φ is a weighted potential function for the game.

Consider a unilateral deviation by player *i* from machine a_i to a_i' . Then:

$$\begin{split} \Phi(a_i',a_{-i}) - \Phi(a_i,a_{-i}) &= \left[L_{a_i'}^2(a_i',a_{-i}) + L_{a_i}^2(a_i',a_{-i}) \right] - \left[L_{a_i'}^2(a_i,a_{-i}) + L_{a_i}^2(a_i,a_{-i}) \right] \\ &= \left[(L_{a_i'}(\mathbf{a}) + w_i)^2 + (L_{a_i}(\mathbf{a}) - w_i)^2 \right] - \left[L_{a_i'}^2(\mathbf{a}) + L_{a_i}^2(\mathbf{a}) \right] \\ &= 2w_i \left(w_i + L_{a_i'}(\mathbf{a}) - L_{a_i}(\mathbf{a}) \right). \end{split}$$

⁷Here, instead of utilities we are working with costs, i.e., $c_i(\cdot) = -u_i(\cdot)$.

On the other hand, we have

$$c_i(a_i',a_{-i})-c_i(a_i,a_{-i})=\big(w_i+L_{a_i'}(\mathbf{a})\big)-L_{a_i}(\mathbf{a}).$$

Hence, comparing the above two relations, we can see that the changes in the potential function and the changes in the cost functions satisfy:

$$\Phi(a_i',a_{-i}) - \Phi(a_i,a_{-i}) = 2w_i \left(c_i(a_i',a_{-i}) - c_i(a_i,a_{-i}) \right).$$

Thus, the game is a weighted potential game with finitely many actions, and it admits a pure NE.