Learning and Optimization in Multiagent Decision-Making Systems
Lecture Notes: Static Noncooperative Games
Instructor: Rasoul Etesami

In this part, we consider static nooncooperative games. However, before we study the general
case, we first consider a special case of the 2-player static noncooperative games known as
zero-sum matrix games.

Zero-Sum Matrix Games

Consider two players. Let us denote the action sets of Player 1 and Player 2 by [n] = {1,2,...,n}
and [m] ={1,2,...,m}, respectively. Let A be an n x m matrix representing the payoffs to Player
2 (column player). Each entry A;; represents the payoff to Player 2 when he chooses action j and
Player 1 (row player) chooses action i. The payoff to Player 1 is defined to be —A;;, hence the
game is called a zero-sum game as the sum of players’ payoffs is always zero.

Let x and y be two probability distributions over [n] and [m], respectively, i.e.,

j>

n

x; >0 foralli, inzl
i=1

m
yj=0 forallj, Zyj=1
j=1

If Player 1 chooses an action according to x and Player 2 chooses an action according to y, the
expected payoff to Player 1 equals:

E[Payoff to Player 1] = —x T Ay.
Similarly, the expected payoff to Player 2 equals:
E[Payoff to Player 2] = x T Ay.

The vectors x and y are called mixed strategies.

Question: Does there exist x* and y* such that

xTAy* > (x)TAy* Vx e A,
(x)Ay < (x*)TAY* Yy € A,

If so, (x*, y*) is called a Nash equilibrium (NE), i.e., neither player has an incentive to deviate.

Player 1’s problem: Choose x to minimize the maximum loss:

min max x Ay
XEA, YEA,

Player 2’s problem: Choose y to maximize the minimum gain:

max min x! Ay
YEA,, XEA,
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Theorem 81 (Minimax Theorem). For any finite n x m payoff matrix A, we have

min max x/ Ay = max min x'Ay = v¥,
XEA, YEA,, YEA,, XEA,

and the common value v* is called the value of the game.
Proof: We can compute the value of the game using linear programming as follows:

min max x! Ay = min max (x!A) ;-
XEA, YEA, XEA, ]

Therefore, by introducing a new variable v, the right-hand side can be computed using the
following linear program (LP1):

min vy

(xTA); < vy Vj

n

in:1

i=1
X >0 Vl

Similarly, we can write

max min x' Ay = max min(Ay);.
YEA,, XEA, YEA, 1

Therefore, by introducing a new variable v, the right-hand side can be computed using the
following linear program (LP2):

max v,
(Ay); = v, Vi

m
2.0i=1
=1

Now, it is easy to verify that these two LPs are duals of each other, and therefore, by the strong

duality theorem max, min, x"Ay = min, max, x"Ay = v*. O

Proposition 82. The following statements are true:

* Ifx* solves LP1 and y* solves LP2, then, max, min, xTAy = min, max, xTAy = (x*)TAy*.

e Ifx* solves LP1 and y* solves LP2, then, (x*,y*) is a NE.

* If(x*,y*) is a NE, then max, min, x" Ay = min, max, x"Ay = (x*)"Ay*.

o If(x*,y") is a NE, then x* must solve LP1 and y* must solve LP2.

Proof: (a): If x* solves LP1, we have

minmaxx! Ay = max((x*)TA)‘ =v;,
X y j J
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which implies v; > ((x*)TA)J. Vj. Therefore, for any y € A,,, and in particular y = y*, we have
vy > (x*)TAy*. Similarly, if y* solves LP2, we must have vy < (x*)TAy*. But we know from the
Minimax theorem that v} = v; = v*, which implies v{ = vJ = (x)TAy*.

(b): Since x* solves LP1, we have

max(x*)TAy = minmaxxTAy
y x oy
= maxminx’ Ay

y X
=minxTAy* < (x*)TAy*,
X

where the second equality is by the Minimax Theorem and the last equality holds because y*
solves LP2. Using a similar argument one can see that (x*)TAy* < min, xTAy*, which shows
that (x*, y*) must be a NE.

(©), (d): The proof of the last two statements are similar and we leave as an exercise. O

Remark 19. The implication of the above proposition is that we can find a NE in zero-sum games
in polynomial time by solving LP1 and LP2. Moreover, if (x], y}) and (x3, y;) are two NE, then
(x},¥y3) and (x5, y;) are also NE (as they solve the corresponding LPs). This property is called
saddle point interchangeability because in zero-sum games, the NE is also called a saddle point.

General Noncooperative Static Games

Definition: A normal (strategic) form game is a triplet G = ([n], {A;}ie(n, {4 }iern]), where:
* [n]={1,2,...,n} is a finite set of players,
* A; # () is the action set for player i € [n],

o ui: ] jernAj 2 Ris the payoff function of player i. Our convention is that each player i is
interested in maximizing its payoff function u;(-).

* Any q; € A; is called an action or pure strategy for player i. We let a_; denote a vector of
actions for all players other than i, i.e., a_; = (ay,...,a;_1,aj4+1,---,a,). Then we write

A =TT1;.4;

Example: 2-Player Nonzero-sum Games

For a 2-player nonzero-sum game, we can represent the payoff function using a matrix. Each
row corresponds to an action of the first player (row player), and each column corresponds to an
action of the second player (column player). The cell indexed by row i and column j contains a
pair (a, b), where:
a=u(i,j), b=uy(i,j)
Heads (P2) | Tails (P2)
Heads (P1) (1,1) (-1,1)
Tails (P1) (1,-1) (-1,-1)

Note that this game is not a zero-sum game because the sum of the payoffs is not zero. In fact,
in a sharp contrast with zero-sum games, computing a NE in 2-player nonzero-sum games is
generally a computationally hard problem.
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Example: Games with Infinite Action Sets (Cournot Competition Game)

Action sets can also be infinite. For instance, in a Cournot competition game, two firms
(players) produce a homogeneous good and aim to maximize their profits. Formally, let
G =([2],{A1, Az}, {ug, uz}), where:

* A, =[0,00) fori =1,2 (amount of good produced by firm 1),

* u;(a;,ay) =p(q)-a; —c;a;, with ¢ = a; + a,, p(-) the price function, and c; the unit cost of
production for firm i.

Definition 83 (Best Response Map). Given player i and an action profile a_; of the other
players, the best response map for player i is defined by:

Bi(a_)) ={a; €A; | ui(az,a_;) > u;(al,a_;) for all a; €A}

Example: Cournot Competition with Specific Price Function
Suppose G is a Cournot game with ¢; = ¢, = 1 and
p(q) =max{0,2—q}. (linear inverse demand)
Then player 1’s best response is:
Bi(ay) = al’gg}gg [a; - max{0,2 —(a; + ap)} —a;].

Solving this maximization problem, we get:

1_(12

N lf as < 1
Bi(a,) = 2
(@) {0, otherwise.

Similarly,
B4 ifa; <1

0, otherwise.

By(a;) = {

Definition 84. A mixed strategy for playeri is any probability distribution over the action set
A;.6 For finite action games, we often denote a mixed strategy for playeri as:

O; = (plapZ’-- -:pm):

where p; is the probability that player i chooses action j € A;.

Definition 85 (Pure Nash Equilibrium). Given a game G = ([n], {A;}, {u;}), an action profile
a*=(aj,a;,...,a;) € H?:lAi is called a pure Nash equilibrium if for all i € [n], we have:

ui(a;,a’;) Zz ui(a;, a’;) Va; €A;.

In other words, a pure strategy profile a* is a Nash equilibrium if no player i can benefit by
unilaterally deviating from their action a;, assuming all other players stick to their actions a* ..

Remark 20. The definition of pure Nash equilibrium can also be stated in terms of the best
response map. That is, a* is a pure Nash equilibrium if:
a; € By(a*;) forallie [n].

6For instance, in the above nonzero-sum game, the strategy of playing Heads with probability p and Tails with
probability 1 — p forms a mixed strategy for player i.
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Example: Bimatrix Games

Consider the following bimatrix game:

G | G
R, | (2,1) ] (0,0)
R, | (0,0) ] (1,2)

This game has two pure Nash equilibria: (R;, C;) and (R,, C,). However, note that not all games
admit a pure Nash equilibrium. The following is an example of a bimatrix game without any
pure Nash equilibrium:
G Cy
Ry | (—1,1)| (0,0)
R, | (0,0) | (1,-1)

Definition 86 (Mixed Nash Equilibrium). A mixed strategy profile ¢ = (01,...,0,,) is called
a mixed Nash equilibrium if for each playeri:

u(0,0-) 2u(o),0-) Vo,eA,

where A; denotes the probability simplex (set of all mixed strategies) over A;, and the expected
utility is defined by u;(o;,0_;) = Y. cati(a) - o(a), where o(a) = ]_[?:1 o;(a;).

Remark 21. For any fixed o_;, the utility function u;(c;,o_;) is a linear (and hence continuous)
function of o;. That is, for any al.l, O'i2 € A;, and any A € [0, 1], we have:

ui(kcril +(1-— k)aiz, o_)= Aui((ril, o_)+(1— A)ui(ol.z, o_;).

Theorem 87 (Weierstrass). Let A be a nonempty compact set and f : A— R be a continuous
function. Then the optimization problem max,.c, f (x) admits a solution.

Theorem 88 (Kakutani Fixed Point). Let f : A— 2 be a set-valued function such that:
1. A is a compact, convex, and nonempty subset of a finite-dimensional Euclidean space,
2. f(x) is nonempty for all x € A,
3. f(x) is a convex set for all x € A,
4. f has a closed graph: If (x*,y*) — (x,y) with y* € f(x*), then y € f(x).
Then, there exists x € A such that x € f(x).

Theorem 89. Every finite noncooperative static game admits a mixed Nash equilibrium.

Proof: Let ¥ = A; x--- x A, be the set of all mixed strategy profiles. Define the best response
map B : & — 2% as:
B(o)= (Bl(o-—l): e :Bn(a—n))a
where:
Bi(o_;) = arg max u;(0;,0_;).
O €EN;

We aim to apply Kakutani’s theorem to B. Let us verify the conditions:
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1. Each A, is a compact, convex, nonempty subset of R™. Hence, X is compact, convex, and
nonempty.

2. By Weierstrass’ theorem and continuity of u;, B;(o_;) is nonempty for all o_;. Hence, B(o’)
is nonempty for all o € .

3. For any O'il, al.z € B;(0_;) and A €[0, 1], we have:
(Ao} +(1—No? o) =Ay(o}, o) +(1—VDy(o?,0_) > u(o],0) Vo, €A,
Therefore, Aail +(1- A)aiz € B;(0_;), so B;(o_;) is convex. Thus, B(co) is convex-valued.

4. B has a closed graph: Suppose, for contradiction, (o, %) — (o, &) with X € B(c*) but
G ¢ B(0). Then there exists player i, and &; € A, such that:

ui(6i,0_i)>ui(5'i,0_i)+3€ for some € > 0.

Since ok . — o_; and by continuity of u;, for sufficiently large k, we have u;(5;, ok D>

u;(6;,0_;) —e. Combining these two relations and using continuity of u;, we obtain
u;(64,05) > u; (65, 05) +e,
contradicting that c'rf € B;(ck .). Thus, the mapping B is closed.
By Kakutani’s theorem, B has a fixed point ¢* € B(c*), which is a mixed Nash equilibrium.
O
Existence of Pure Nash Equilibrium

As we saw earlier, finite noncooperative games do not necessarily admit a pure Nash equilibrium
(NE). However, in many practical situations, one is only interested in pure NE. Therefore, it is
important to identify subclasses of games for which the existence of a pure NE is guaranteed.

Definition (Coupled Action Sets)

We say that the action sets of players, denoted by a = (a;, a,,...,a,), are coupled if a € R, where
RC[];A; is a subset of the full (uncoupled) action space, characterized by some constraints. In
the special case where R = [ [, A;, we recover the original uncoupled action space.

Remark 22. Analyzing games with coupled action sets is generally more complex. Note that
the existence of mixed NE discussed earlier only holds for finite games with uncoupled action
spaces.

Example: Coupled Cournot Game

Consider a two-player Cournot game where the actions of the players are coupled by constraints.
Define the feasible set:

R := {(a1’a2) GRZ | 3611 +2a2 < 6, a, > O}

For instance, if a; = 1, then the constraint restricts a, to satisfy a, < %
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Theorem 9o (Pure NE in Coupled Games). Let R be a coupled action set. Suppose that:
* R is compact, convex, and nonempty,
* for each fixed a_; € A_;, the utility function u;(a;,a_;) is continuous and concave in a;.

Then, the game G = ([n],R, {u;}) admits a pure Nash equilibrium.
Proof: Recall a €R is a pure NE if for all i,
u;(a;,a_;) = u;(al,a;) Va! such that (a;,a_;) €R.

Define a function L : R x R — R by:

n

L(b,a)= > u;(bs,a_y).

i=1

If there exists an action profile a € R such that:

a € argmaxL(b,a),
gmaxL(b, a)

then a must be a pure NE. Now suppose, for contradiction, that a is not a pure NE. Then there
exists some player i and a; € A; such that (a,a_;) €R and:

ui(a; a_;) > u;(a;, a_y).
Define b = (a/,a_;) €R. Then:
L(b,a) = u;y(aj,a_;) +Zuj(aj,a_j) > L(a,a),
Jj#L

contradicting that a is a maximizer of L(b,a).
Define the set-valued map g : R — 2K by:

= L .
g(a) argmax (b,a)

To find a pure NE, it suffices to show that g has a fixed point, i.e., some a € R such that a € g(a).
We now verify that g satisfies the conditions of Kakutani’s fixed point theorem:

1. R is compact, convex, and nonempty by assumption.
2. For each a €R, g(a) is nonempty and convex:

* Nonemptiness follows from Weierstrass’s theorem, since L(b, a) is continuous in b
and R is compact.

* Convexity follows from the concavity of L(b, a) in b (which holds since each u;(b;,a_;)
is concave in b;).

3. The mapping g is closed: That is, if (a*, b*) — (a, b), with b* € g(a¥), then b € g(a). This
follows by continuity of L and upper semi-continuity of arg max.

Therefore, by Kakutani’s theorem, there exists a* € R such that a* € g(a*), and a* will be a
pure NE. O
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Potential Games

Another interesting class of strategic static games that admit a pure Nash Equilibrium (NE) is the
class of potential games, defined as follows:

Definition 91 (Weighted Potential Game). A game G = ([n], {A;}icn); {titiern)) is called a
weighted potential game if there exists a global function ® : | [;A; — R, such that for any player
i €[n], and for all a;,a; €A;, and a_; € A_;, we have:

®(aj,a_;) —®(a;,a_;) = w; (ui(al{: a_)—ua;,ay)),

where w; is some positive scalar. In case w; = 1 for all i, the game is called an exact potential
game. We refer to the function ®(-) as a weighted (or exact) potential function.

Theorem 92. Finite-action potential games admit a pure NE. In particular, any sequence of
best-response (or better-response) moves in which players sequentially (in any order) update
their actions to a strictly better action converges to a pure NE.

Proof: Consider an exact potential game with potential function ®. (The argument for weighted
potential games is identical.) Consider the following repeated play: Each player starts with an
arbitrary action. Players take turns and one player at a time chooses a new action which strictly
improves their utility. Each such action increases the value of ®. Since there are only a finite set
of joint actions, we must eventually reach a local maximum of ¢, at which point no player can
increase their utility by unilaterally changing their action. Thus, a pure NE is reached. a

Example: A Load Balancing Game

Consider a game with [n] ={1,2,...,n} players. Player i holds a job with weight w;. There are
[m]={1,2,...,m} machines. An action for player i is to choose one of the machines and place
their job on that machine, i.e., a; € [m]. Given an action profile a = (a,,...,a,) € [m]", the cost
of player i is given by:”
¢;(a) =load on machine a; = Z w;.
Jjiaj=q;

Then this load balancing game admits a pure NE. To prove this, for a given action profile a, let
Li(a)= D a=j Wi be the total load on machine j under profile a. Define:

d(a)= > L%(a).
j=1

This function captures the squared load on all machines, and can be thought of as a measure
of load imbalance (larger ¢ indicates worse balance). We show that ¢ is a weighted potential
function for the game.

Consider a unilateral deviation by player i from machine a; to a;. Then:

®(aj,a_;)—®(a;,a_;) = [Lig(af, a)+ chli (aj, a—i)] - [ng(ai, a)+ Li (a;, a—i)]
=[(La(@) +w)? + (Lo (@ —w)? |- [L2(@) + 12 (a) ]

=2w; (Wl- + Lal{(a) — L, (a)) .

7Here, instead of utilities we are working with costs, i.e., ¢;(:) = —u;(+).
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On the other hand, we have
ci(al,a_)—ci(a,ay) = (w;+ Lag(a)) — L (a).

Hence, comparing the above two relations, we can see that the changes in the potential function
and the changes in the cost functions satisfy:

®(a},a_;)—®(a;,a_;) =2w; (Ci(al{: a_;)—c(a;, a—i)) .

Thus, the game is a weighted potential game with finitely many actions, and it admits a pure NE.

74



