
On Tukey’s Polyefficiency

The assumed underlying distribution of the Data does not usually represent the reality which

is often “somewhere in between” of what experts think about. Thus, statistical inference based

on one model is usually not accurate with real data. In finite samples, the need of robustness

of conclusions due to deviations from the assumed model motivated John Tukey to introduce the

notion of Polyefficiency.

Note: First draft of this section. Please let me know if there are typos or something is not clear.

Thank you!

Set-up of a statistical estimation problem

Observe data Xn = (X1, . . . , Xn) from a model/density f(x, θ) with the parameter θ unknown.

• Sn = S(Xn) : estimate of interest for θ.

• Tn = T (Xn) : a generic estimate of θ.

• R(Tn, θ) : the cost (called “Risk”) in estimating θ with Tn, calculated under f.

R(x, y) is a distance-measure with properties: i)R(x, x) = 0,

ii)R(x, y) = R(y, x), for every x, y in the domain ofR.

What is missing to makeR a distance? (More to make you realize is a distance-measure.)

Example: R(Tn, θ) = E(Tn − θ)2 with the expected value taken under f.

Definition: The efficiency of estimate Sn for θ and f, within a class C of estimates is

inf{R(Tn, θ);Tn ∈ C}
R(Sn, θ)

= inf{R(Tn, θ)

R(Sn, θ)
;Tn ∈ C} (1)

It is desired that the efficiency of Sn is near 1 (from below).

The class C : cannot iclude all possible estimates of θ because then estimates which are each a

constant number will be in C and therefore infn{R(Tn, θ);Tn ∈ C} = 0.

Example: When θ is a location parameter and Sn is unbiased estimate, then C can be the class

of all unbiased estimates of θ, and under mild conditions on f the Cramer-Rao bound provides

inf{E(Tn − θ)2;Tn ∈ C}
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to determine efficiency of Sn.

The efficiency of an estimate Sn is usually computed at the assumed underlying distribution

f. Unfortunately estimates that have high efficiency for the assumed underlying distribution do

not necessarily have high efficiency for the true distribution. This fact motivated several notions

of robustness of an estimate, most relying on the asymptotic properties of the estimators (Huber,

1964; Hampel, 1971).

A different notion of robustness, based on the finite sample behavior of estimates, was intro-

duced by Tukey (1987) and Mosteller & Tukey (1977, p. 206). Because it is rare that a real

situation can be represented by a single assumed distribution, Tukey proposed to calculate effi-

ciencies at a reasonable collection of distributions called “corners”. This has led to a new notion

of efficiency.

We are interested in having high efficiency in a variety of situations rather than in one situ-

ation. Thus, a finite number of alternative densities/distributions is considered, each representing

relatively diverse circumstances.

Definition: The Polyefficiency of Sn is the infimum of the efficiencies of Sn at a “reasonable”

collection of densities/distributions called “corners”.

Interest is restricted to estimates with high polyefficiency.

Definition: An estimate that achieves the supremum of the polyefficiencies is called efficient-

robust or polyefficient optimal with respect to the corners.

Tukey usually considers three corners: the normal N(0, 1) distribution; the slash distribution

obtained by dividing a standard normal random variable with an independent uniform U(0, 1)

random variable; the one-wild distribution obtained sampling 95% N(0, 1) random variables and

5% N(0, 100) random variables.

Estimates with high polyefficiency have been constructed, under different circumstances, in

unpublished Princeton theses by R. Guarino and G. S. Easton among others.
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Major criticisms of polyefficiency are the arbitrariness in the choice of the corners, and that

nothing is known about interpolation among these corners (Tukey, 1987, p. 5). The idea behind

this notion of robustness is that if an estimate performs well at each of the corners chosen

to represent the extreme kinds of data it should also perform well at distributions that lie in

between them, in a sense not yet specified.

By enlarging the set of possible corners to be used in a given situation the first criticism is

relaxed. Thus, a finite number k of corners is adopted, with k as large as desired. Usually, this

idea is interpreted by condidering in R convex combinations of the corners densities, g1, . . . , gk,

defined on R, i.e.

a1g1(x) + . . .+ akgk(x), x ∈ R, (2)

with the conditions
k∑
i=1

ai = 1, ai ≥ 0, i = 1, . . . , k. (3)

With a sample of size n the question is whether it is more informative to look at the sample as

vector of observations or simply as n observations. In the latter case the joint density of the sample

is product of densities (2). Looking at vector Xn the corners in (2) are each a density in Rn.

Seeing corners as distributions of the n dimensional sample Xn, it is shown that if an estimate

Sn has high polyefficiency it will also have at least equally high efficiency over all mixtures of

these corners in (2), thus relaxing the second criticism.

The following elementary lemma is used; it can be proved by induction.

Lemma: Let ai, ui, vi be all positive, i = 1, . . . , k.Then,

a1u1 + . . .+ akuk
a1v1 + . . .+ akvk

≥ min{u1
v1
, . . . ,

uk
vk
} (4)

Assume now that the n-dimensional random vector X(∈ Rn) is observed with density

fθ,a(x) = a1gθ,1(x) + ...+ akgθ,k(x), (5)

x ∈ Rn, a = (a1, . . . , ak), with i-th corner density gθ,i, ai > 0, i = 1, . . . , k.

3



Let Sn = S(X) be the estimate of θ in class C we compute its polyefficiency. Tn is a generic

estimate in class C. Ra(θ, Tn) is the risk function of Tn with respect to fθ,a. Observe that if ei is

the vector with all coordinates (ei)j = 0,  6= i, and the i-th coordinate (ei)i = 1, then Rei is the

Risk with respect to gθ,i in (5), i = 1, . . . , k. If in (4) we identify ui with the risk Rei , (θ, Tn) and

vi with the risk Rei(θ, Sn), where (ei)j = 1 if j = i and 0 otherwise, we immediately have the

following.

Proposition. For each a ∈ Rk satisfying (3),

inf
Tn∈C
{Ra(θ, Tn)

Ra(θ, Sn)
} ≥ min

1≤i≤k
[ inf
Tn∈C

Rei(θ, Tn)

Rei(θ, Sn)
]. (6)

The proposition can be rephrased: high polyefficiency implies at least as high an efficiency for

any element of the smallest convex set containing the corners.

An example can be found showing that for a family of distributions with an infinite number of

extreme points, one cannot necessarily find a lower bound on the efficiency of an estimate based

on its polyefficiency at a finite number of corners.

REFERENCES

Hampel, F. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42, 1887-96.

Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73-101.

Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression. Reading, Mass.: Addison-

Wesley. Tukey, J. W. (1987). Configural polysampling. SIAM Rev. 29, 1-20.

4


