Principal Stratification

Zhichao Jiang

2023 summer short course

July 2023

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model
- partial identification
- principal ignorability
- auxiliary independence
- Recent applications of principal stratification

Outline

- Potential outcomes and ACE

> Post-treatment variable

> Principal stratification
> noncompliance
> truncation by death
> surrogate evaluation

> Identification and statistical inference
> binary instrumental variable model
> partial identification
> principal ignorability

Potential outcome and average causal effect

- Observed data: treatment Z_{i}, outcome Y_{i}
- Potential outcomes: $Y_{i}(1)$ and $Y_{i}(0)$
- Observed outcome: $Y_{i}\left(Z_{i}\right) \rightsquigarrow$ only one potential outcome is observed for each unit

Potential outcome and average causal effect

- Observed data: treatment Z_{i}, outcome Y_{i}
- Potential outcomes: $Y_{i}(1)$ and $Y_{i}(0)$
- Observed outcome: $Y_{i}\left(Z_{i}\right) \rightsquigarrow$ only one potential outcome is observed for each unit
- Individual causal effect: $Y_{i}(1)-Y_{i}(0) \rightsquigarrow$ difficult to estimate
- Average causal effect $(\mathrm{ACE}): \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$

Identification and inference

- Two methodological issues of causal inference:
(1) Identification: what can we learn if we have infinite amount of data?
\rightsquigarrow study design uncertainty
(2) Inference: what can we learn about identifiable quantities from a finite sample? \rightsquigarrow statistical uncertainty

Identification and inference

- Two methodological issues of causal inference:
(1) Identification: what can we learn if we have infinite amount of data?
\rightsquigarrow study design uncertainty
(2) Inference: what can we learn about identifiable quantities from a finite sample? \rightsquigarrow statistical uncertainty
- Both are important, but identification precedes inference

Identification and inference

- Two methodological issues of causal inference:
(1) Identification: what can we learn if we have infinite amount of data? \rightsquigarrow study design uncertainty
(2) Inference: what can we learn about identifiable quantities from a finite sample? \rightsquigarrow statistical uncertainty
- Both are important, but identification precedes inference

- In order to achieve identification, assumptions are unavoidable, but we need to figure out what assumptions are plausible in practice \rightsquigarrow design trumps analysis

Identification for ACE

- Randomized experiment: $Z_{i} \Perp Y_{i}(z)$

$$
\mathrm{ACE}=\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)
$$

Identification for ACE

- Randomized experiment: $Z_{i} \Perp Y_{i}(z)$

$$
\mathrm{ACE}=\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)
$$

- Unconfounded observational study: $Z_{i} \Perp Y_{i}(z) \mid \mathbf{X}_{i}$

$$
\begin{aligned}
\mathrm{ACE}= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid Z_{i}=1, \mathbf{X}_{i}\right)\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid Z_{i}=0, \mathbf{X}_{i}\right)\right\} \quad \text { (outcome reg.) } \\
= & \mathbb{E}\left\{\frac{Z_{i} Y_{i}}{\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\}-\mathbb{E}\left\{\frac{\left(1-Z_{i}\right) Y_{i}}{1-\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\} \quad \text { (IPW) } \\
= & \mathbb{E}\left[\frac{Z_{i}\left\{Y_{i}-\mu_{1}\left(X_{i}\right)\right\}}{\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\}-\mathbb{E}\left\{\frac{\left(1-Z_{i}\right)\left\{Y_{i}-\mu_{0}\left(X_{i}\right)\right\}}{1-\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right] \\
& +\mathbb{E}\left\{\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)\right\} \quad \text { (doubly robust) }
\end{aligned}
$$

Identification for ACE

- Randomized experiment: $Z_{i} \Perp Y_{i}(z)$

$$
\mathrm{ACE}=\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)
$$

- Unconfounded observational study: $Z_{i} \Perp Y_{i}(z) \mid \mathbf{X}_{i}$

$$
\begin{aligned}
\mathrm{ACE}= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid Z_{i}=1, \mathbf{X}_{i}\right)\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid Z_{i}=0, \mathbf{X}_{i}\right)\right\} \quad \text { (outcome reg.) } \\
= & \mathbb{E}\left\{\frac{Z_{i} Y_{i}}{\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\}-\mathbb{E}\left\{\frac{\left(1-Z_{i}\right) Y_{i}}{1-\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\} \quad \text { (IPW) } \\
= & \mathbb{E}\left[\frac{Z_{i}\left\{Y_{i}-\mu_{1}\left(X_{i}\right)\right\}}{\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right\}-\mathbb{E}\left\{\frac{\left(1-Z_{i}\right)\left\{Y_{i}-\mu_{0}\left(X_{i}\right)\right\}}{1-\mathbb{P}\left(Z_{i}=1 \mid \mathbf{X}_{i}\right)}\right] \\
& +\mathbb{E}\left\{\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)\right\} \quad \text { (doubly robust) }
\end{aligned}
$$

- Latent confounding: instrumental variable, DID, synthetic control, proximal inference...

Outline

- Potential outcomes and ACE
- Post-treatment variable

Recent applications of principal stratification

Post-treatment variable

- Post-treatment variable (S) : variables that are affected by the treatment (Z) and possibly affect the outcome (Y)

Post-treatment variable

- Post-treatment variable (S): variables that are affected by the treatment (Z) and possibly affect the outcome (Y)
- Studies with post-treatment variables include
- clinical trials where the treatment receipt may be different from the treatment assignment

Post-treatment variable

- Post-treatment variable (S) : variables that are affected by the treatment (Z) and possibly affect the outcome (Y)
- Studies with post-treatment variables include
- clinical trials where the treatment receipt may be different from the treatment assignment
- studies with long follow-up, where the dropout of the units is a post-treatment variable

Post-treatment variable

- Post-treatment variable (S) : variables that are affected by the treatment (Z) and possibly affect the outcome (Y)
- Studies with post-treatment variables include
- clinical trials where the treatment receipt may be different from the treatment assignment
- studies with long follow-up, where the dropout of the units is a post-treatment variable
- clinical trials, where the outcome may be truncated by death

Post-treatment variable

- Post-treatment variable (S) : variables that are affected by the treatment (Z) and possibly affect the outcome (Y)
- Studies with post-treatment variables include
- clinical trials where the treatment receipt may be different from the treatment assignment
- studies with long follow-up, where the dropout of the units is a post-treatment variable
- clinical trials, where the outcome may be truncated by death
- studies with time-consuming or costly outcomes, where the surrogate (biomarker) is a post-treatment variable

Post-treatment variable

- Post-treatment variable (S): variables that are affected by the treatment (Z) and possibly affect the outcome (Y)
- Studies with post-treatment variables include
- clinical trials where the treatment receipt may be different from the treatment assignment
- studies with long follow-up, where the dropout of the units is a post-treatment variable
- clinical trials, where the outcome may be truncated by death
- studies with time-consuming or costly outcomes, where the surrogate (biomarker) is a post-treatment variable
- Adjusting for the post-treatment variable is necessary
- post-treatment variable encodes characteristics of the unit as well as of the treatment
- ACE is not well defined, or cannot answer the question of interest

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- Noncompliance in randomized trials
- Z_{i} : treatment assignment; S_{i} : treatment receipt

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- Noncompliance in randomized trials
- Z_{i} : treatment assignment; S_{i} : treatment receipt
- intention-to-treat (ITT) effect: effect of $Z \neq$ treatment effect

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- Noncompliance in randomized trials
- Z_{i} : treatment assignment; S_{i} : treatment receipt
- intention-to-treat (ITT) effect: effect of $Z \neq$ treatment effect
- as-treated analysis: $\mathbb{E}\left(Y_{i} \mid S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid S_{i}=0\right)$
- per-protocol analysis: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- Noncompliance in randomized trials
- Z_{i} : treatment assignment; S_{i} : treatment receipt
- intention-to-treat (ITT) effect: effect of $Z \neq$ treatment effect
- as-treated analysis: $\mathbb{E}\left(Y_{i} \mid S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid S_{i}=0\right)$
- per-protocol analysis: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$
- Surrogate
- ACE provides no information about surrogate S

Post-treatment variable adjustment

- Truncation by death in randomized trials
- S_{i} : survival indicator
- Y_{i} is well defined only if $S_{i}=1 \rightsquigarrow \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}$ not well defined
- Naive method: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- Noncompliance in randomized trials
- Z_{i} : treatment assignment; S_{i} : treatment receipt
- intention-to-treat (ITT) effect: effect of $Z \neq$ treatment effect
- as-treated analysis: $\mathbb{E}\left(Y_{i} \mid S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid S_{i}=0\right)$
- per-protocol analysis: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$
- Surrogate
- ACE provides no information about surrogate S
- criterion for a good surrogate: $Z \Perp Y \mid S$?

Issue of adjusting for observed post-treatment variable

- Potential values: $Y_{i}(z)$ and $S_{i}(z)$
- Observed variables: $S_{i}=S_{i}\left(Z_{i}\right)$ and $Y_{i}=Y_{i}\left(Z_{i}\right)$
- Randomized experiments: $\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \Perp Z_{i}$

Issue of adjusting for observed post-treatment variable

- Potential values: $Y_{i}(z)$ and $S_{i}(z)$
- Observed variables: $S_{i}=S_{i}\left(Z_{i}\right)$ and $Y_{i}=Y_{i}\left(Z_{i}\right)$
- Randomized experiments: $\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \Perp Z_{i}$
- A causal effect is defined to be the comparison between potential outcomes for the same units
- Comparison of $\left\{Y_{i}(1), i \in \operatorname{set}_{1}\right\}$ and $\left\{Y_{i}(0), i \in \operatorname{set}_{0}\right\}$
- Two sets should be identical: set $_{1}=\operatorname{set}_{0}$
- ACE: $\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)=\mathbb{E}\left\{Y_{i}(1)\right\}-\mathbb{E}\left\{Y_{i}(0)\right\}$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=1\right\}$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=1\right\}$
- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=1\right\}$
- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)=\mathbb{E}\left\{Y_{i}(0) \mid Z_{i}=0, S_{i}(0)=0\right\}=\mathbb{E}\left\{Y_{i}(0) \mid\right.$ $\left.S_{i}(0)=0\right\}$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=1\right\}$
- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)=\mathbb{E}\left\{Y_{i}(0) \mid Z_{i}=0, S_{i}(0)=0\right\}=\mathbb{E}\left\{Y_{i}(0) \mid\right.$ $\left.S_{i}(0)=0\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=0\right\}$

Issue of adjusting for observed post-treatment variable

- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=z, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=z, S_{i}(z)=1\right\}=\mathbb{E}\left\{Y_{i}(z) \mid\right.$ $\left.S_{i}(z)=1\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=1\right\}$
- Comparison of $\mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)$ and $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)$
- $\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=0\right)=\mathbb{E}\left\{Y_{i}(0) \mid Z_{i}=0, S_{i}(0)=0\right\}=\mathbb{E}\left\{Y_{i}(0) \mid\right.$ $\left.S_{i}(0)=0\right\}$
- comparison of sets $\left\{i: S_{i}(1)=1\right\}$ and $\left\{i: S_{i}(0)=0\right\}$
- Adjusting for the observed post-treatment variable does NOT yield valid causal quantities

Example

- Treatment: Z_{i}; survival indicator: S_{i}; outcome: Y_{i}

Example

- Treatment: Z_{i}; survival indicator: S_{i}; outcome: Y_{i}
- Treatment has no effect on outcome: $Y_{i}(1)=Y_{i}(0)$ for all i

Example

- Treatment: Z_{i}; survival indicator: S_{i}; outcome: Y_{i}
- Treatment has no effect on outcome: $Y_{i}(1)=Y_{i}(0)$ for all i
- Individuals with $S_{i}(0)=1$ are healthier than those with $S_{i}(1)=1$

Example

- Treatment: Z_{i}; survival indicator: S_{i}; outcome: Y_{i}
- Treatment has no effect on outcome: $Y_{i}(1)=Y_{i}(0)$ for all i
- Individuals with $S_{i}(0)=1$ are healthier than those with $S_{i}(1)=1$
- Larger $Y_{i}(z)$ for individuals with $S_{i}(0)=1$

Example

- Treatment: Z_{i}; survival indicator: S_{i}; outcome: Y_{i}
- Treatment has no effect on outcome: $Y_{i}(1)=Y_{i}(0)$ for all i
- Individuals with $S_{i}(0)=1$ are healthier than those with $S_{i}(1)=1$
- Larger $Y_{i}(z)$ for individuals with $S_{i}(0)=1$
- Analysis using the survived individuals

$$
\begin{aligned}
& \mathbb{E}\left(Y_{i} \mid Z_{i}=1, S_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0, S_{i}=1\right) \\
= & \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1\right\}-\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(0)=1\right\} \\
= & \mathbb{E}\left\{Y_{i}(0) \mid S_{i}(1)=1\right\}-\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(0)=1\right\} \\
< & 0
\end{aligned}
$$

The hazard of hazard ratio (Hernán, 2010)

- Treatment Z_{i} and time-to-event outcome Y_{i}

The hazard of hazard ratio (Hernán, 2010)

- Treatment Z_{i} and time-to-event outcome Y_{i}
- Hazard: the event rate at time t conditional on survival until time t or later

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y<t+\Delta t \mid Y \geq t)}{\Delta t}
$$

The hazard of hazard ratio (Hernán, 2010)

- Treatment Z_{i} and time-to-event outcome Y_{i}
- Hazard: the event rate at time t conditional on survival until time t or later

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y<t+\Delta t \mid Y \geq t)}{\Delta t}
$$

- Survival analysis assumes models for hazard, e.g., Cox model, additive hazard model

The hazard of hazard ratio (Hernann, 2010)

- Treatment Z_{i} and time-to-event outcome Y_{i}
- Hazard: the event rate at time t conditional on survival until time t or later

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y<t+\Delta t \mid Y \geq t)}{\Delta t}
$$

- Survival analysis assumes models for hazard, e.g., Cox model, additive hazard model
- Hazard ratio between the treatment and control compares
$\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y(1)<t+\Delta t \mid Y(1) \geq t)}{\Delta t}, \quad \lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y(0)<t+\Delta t \mid Y(0) \geq t)}{\Delta t}$
which compares the populations $\{i: Y(1) \geq t\}$ and $\{i: Y(0) \geq t\}$

The hazard of hazard ratio (Hernán, 2010)

- Treatment Z_{i} and time-to-event outcome Y_{i}
- Hazard: the event rate at time t conditional on survival until time t or later

$$
\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y<t+\Delta t \mid Y \geq t)}{\Delta t}
$$

- Survival analysis assumes models for hazard, e.g., Cox model, additive hazard model
- Hazard ratio between the treatment and control compares
$\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y(1)<t+\Delta t \mid Y(1) \geq t)}{\Delta t}, \quad \lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}(t \leq Y(0)<t+\Delta t \mid Y(0) \geq t)}{\Delta t}$
which compares the populations $\{i: Y(1) \geq t\}$ and $\{i: Y(0) \geq t\}$
- Hazard ratio has a built-in selection bias

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
truncation by death
surrogate evaluation
Identification and statistical inference binary instrumental variable model partial identification principal ignorability auxiliary independence

Recent applications of principal stratification

Principal stratification

- Principal stratification: stratification based on the joint potential values $\left\{S_{i}(1), S_{i}(0)\right\}$, denoted by U_{i}
- U_{i} is an unobserved variable
- U_{i} is unaffected by the treatment, similar to a covariate
- binary $S_{i} \rightsquigarrow$ four valued U_{i}
- principal effect: comparison of $\left\{Y_{i}(1): U_{i}=u\right\}$ and $\left\{Y_{i}(0): U_{i}=u\right\}$

Principal stratification

- Principal stratification: stratification based on the joint potential values $\left\{S_{i}(1), S_{i}(0)\right\}$, denoted by U_{i}
- U_{i} is an unobserved variable
- U_{i} is unaffected by the treatment, similar to a covariate
- binary $S_{i} \rightsquigarrow$ four valued U_{i}
- principal effect: comparison of $\left\{Y_{i}(1): U_{i}=u\right\}$ and $\left\{Y_{i}(0): U_{i}=u\right\}$
- Any principal effect is a causal effect
- principal causal effect: $\mathrm{ACE}_{u}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}$
- scientific meanings differ in different applications

$$
\mathrm{ACE}=\sum_{u} \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\} \mathbb{P}\left(U_{i}=u\right)
$$

Outline

- Recap: potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
truncation by death
surrogate evaluation

Identification and statistical inference
binary instrumental variable model
partial identification
principal ignorability
auxiliary independence

Recent applications of principal stratification

Encouragement Design

- Often, for ethical and logistical reasons, we cannot force all experimental units to follow the randomized treatment assignment
(1) some in the treatment group refuse to take the treatment
(2) some in the control group manage to receive the treatment

Encouragement Design

- Often, for ethical and logistical reasons, we cannot force all experimental units to follow the randomized treatment assignment
(1) some in the treatment group refuse to take the treatment
(2) some in the control group manage to receive the treatment
- Encouragement design: randomize the encouragement to receive the treatment rather than the receipt of the treatment
- job training program, insurance program

Encouragement Design

- Often, for ethical and logistical reasons, we cannot force all experimental units to follow the randomized treatment assignment
(1) some in the treatment group refuse to take the treatment
(2) some in the control group manage to receive the treatment
- Encouragement design: randomize the encouragement to receive the treatment rather than the receipt of the treatment
- job training program, insurance program
- Treatment effect: effect of the actually received treatment

Noncompliance

- Treatment assignment Z_{i}; treatment receipt S_{i}

Noncompliance

- Treatment assignment Z_{i}; treatment receipt S_{i}
- Four principal strata represent compliance behavior:
- compliers $\left(S_{i}(1), S_{i}(0)\right)=(1,0)$
- non-compliers $\left\{\begin{array}{cl}\text { always - takers } & \left(S_{i}(1), S_{i}(0)\right)=(1,1) \\ \text { never - takers } & \left(S_{i}(1), S_{i}(0)\right)=(0,0) \\ \text { defiers } & \left(S_{i}(1), S_{i}(0)\right)=(0,1)\end{array}\right.$
- Observed strata and compliance behavior:

$Z_{i}=1$	$Z_{i}=0$	
	Complier/Always-taker	Defier/Always-taker
$S_{i}=1$		
	Defier/Never-taker	Complier/Never-taker

Principal causal effects

- Four principal causal effects
- complier average causal effect (CACE): $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,0)\right\}$
- always takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,1)\right\}$
- never takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,0)\right\}$
- defiers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,1)\right\}$

Principal causal effects

- Four principal causal effects
- complier average causal effect (CACE): $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,0)\right\}$
- always takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,1)\right\}$
- never takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,0)\right\}$
- defiers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,1)\right\}$
- For compliers, $Z_{i}=S_{i} \rightsquigarrow$

CACE $=$ treatment effect for compliers

Principal causal effects

- Four principal causal effects
- complier average causal effect (CACE): $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,0)\right\}$
- always takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(1,1)\right\}$
- never takers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,0)\right\}$
- defiers: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=(0,1)\right\}$
- For compliers, $Z_{i}=S_{i} \rightsquigarrow$ CACE $=$ treatment effect for compliers
- CACE \neq overall treatment effect unless the treatment effect for non-compliers equals CACE

Special case: one-sided noncompliance

- Individuals in the control have no access to the treatment
- In some vaccine trials, vaccine antigens must be present to induce a specific immune response

Special case: one-sided noncompliance

- Individuals in the control have no access to the treatment
- In some vaccine trials, vaccine antigens must be present to induce a specific immune response
- One-sided noncompliance: $S_{i}(0)=$ constant

Special case: one-sided noncompliance

- Individuals in the control have no access to the treatment
- In some vaccine trials, vaccine antigens must be present to induce a specific immune response
- One-sided noncompliance: $S_{i}(0)=$ constant
- principal stratum simplifies as $U_{i}=S_{i}(1)$
- two principal strata: $S_{i}(1)=1$ and $S_{i}(1)=0$

Special case: one-sided noncompliance

- Individuals in the control have no access to the treatment
- In some vaccine trials, vaccine antigens must be present to induce a specific immune response
- One-sided noncompliance: $S_{i}(0)=$ constant
- principal stratum simplifies as $U_{i}=S_{i}(1)$
- two principal strata: $S_{i}(1)=1$ and $S_{i}(1)=0$
- CACE $=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1\right\}$

Outline

- Recap: potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death

Identification and statistical inference
binary instrumental variable model
partial identification
principal ignorability
auxiliary independence

Recent applications of principal stratification

Truncation by death

- Example 1: the effect of treatment (Z) on quality of life $(Y) \rightsquigarrow$ some patients may die before the outcome is observed
- Example 2: the effect of job training on hourly wage \rightsquigarrow some subjects may be unemployed
- In example $1, S_{i}$ is the survival status and in example $2, S_{i}$ is the employment status

Truncation by death

- Example 1: the effect of treatment (Z) on quality of life $(Y) \rightsquigarrow$ some patients may die before the outcome is observed
- Example 2: the effect of job training on hourly wage \rightsquigarrow some subjects may be unemployed
- In example $1, S_{i}$ is the survival status and in example $2, S_{i}$ is the employment status
- Traditional method treats the truncation by death problem as a standard missing data problem (censoring by death)
- Heckman selection model: models for $\mathbb{E}\left(Y_{i} \mid Z_{i}, \mathbf{X}_{i}\right)$ and $\mathbb{E}\left(S_{i} \mid \mathbf{X}_{i}\right)$
- assumes that the outcome is well-defined for all units

Principal stratification for truncation by death problem

- Four principal strata:
- always survivors: $\left(S_{i}(1)=1, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ always well defined
- $\left(S_{i}(1)=1, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=0$
- $\left(S_{i}(1)=0, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=1$
- $\left(S_{i}(1)=0, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ never well defined

Principal stratification for truncation by death problem

- Four principal strata:
- always survivors: $\left(S_{i}(1)=1, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ always well defined
- $\left(S_{i}(1)=1, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=0$
- $\left(S_{i}(1)=0, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=1$
- $\left(S_{i}(1)=0, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ never well defined
- Comparison of $Y_{i}(1)$ and $Y_{i}(0)$ is valid only for always survivors

Principal stratification for truncation by death problem

- Four principal strata:
- always survivors: $\left(S_{i}(1)=1, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ always well defined
- $\left(S_{i}(1)=1, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=0$
- $\left(S_{i}(1)=0, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=1$
- $\left(S_{i}(1)=0, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ never well defined
- Comparison of $Y_{i}(1)$ and $Y_{i}(0)$ is valid only for always survivors
- Survivor average causal effect (Rubin, 2006)

$$
\mathrm{SACE}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}
$$

Principal stratification for truncation by death problem

- Four principal strata:
- always survivors: $\left(S_{i}(1)=1, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ always well defined
- $\left(S_{i}(1)=1, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=0$
- $\left(S_{i}(1)=0, S_{i}(0)=1\right) \rightsquigarrow Y_{i}$ not well defined when $Z_{i}=1$
- $\left(S_{i}(1)=0, S_{i}(0)=0\right) \rightsquigarrow Y_{i}$ never well defined
- Comparison of $Y_{i}(1)$ and $Y_{i}(0)$ is valid only for always survivors
- Survivor average causal effect (Rubin, 2006)

$$
\mathrm{SACE}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}
$$

- Other principal causal effects are not well defined

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation

Recent applications of principal stratification

Surrogate

- Outcomes may be time-consuming or costly to measure
- Develop of measurement tool and training of people
- Long term outcomes: long-term survival in clinical trials and long-run return to early life interventions

Surrogate

- Outcomes may be time-consuming or costly to measure
- Develop of measurement tool and training of people
- Long term outcomes: long-term survival in clinical trials and long-run return to early life interventions
- Surrogate: a proxy of outcome that is easy to measure
- should be strongly associated with outcome? $\rightsquigarrow \operatorname{large} \operatorname{cor}\left(S_{i}, Y_{i}\right)$
- should be on the causal pathway from treatment to outcome? $Z_{i} \rightarrow S_{i} \rightarrow Y_{i}$

Surrogate

- Outcomes may be time-consuming or costly to measure
- Develop of measurement tool and training of people
- Long term outcomes: long-term survival in clinical trials and long-run return to early life interventions
- Surrogate: a proxy of outcome that is easy to measure
- should be strongly associated with outcome? $\rightsquigarrow \operatorname{large} \operatorname{cor}\left(S_{i}, Y_{i}\right)$
- should be on the causal pathway from treatment to outcome? $Z_{i} \rightarrow S_{i} \rightarrow Y_{i}$
- Examples of surrogates
- CD4 cell count as surrogate for the survival status of HIV patients
- short-term survival as surrogate for long-term survival
- kindergarten test scores as surrogate for long-run return

Catastrophic consequence using an invalid surrogate

- Ventricular arrhythmia as surrogate for death related to cardiac complications
- VA is associated with a fourfold increase in the risk for death
- it was hypothesized that suppression of ventricular arrhythmias would reduce the rate of death

Catastrophic consequence using an invalid surrogate

- Ventricular arrhythmia as surrogate for death related to cardiac complications
- VA is associated with a fourfold increase in the risk for death
- it was hypothesized that suppression of ventricular arrhythmias would reduce the rate of death
- Drugs found to suppress arrhythmia were approved by the FDA
- more than 200000 persons per year took these drugs

Catastrophic consequence using an invalid surrogate

- Ventricular arrhythmia as surrogate for death related to cardiac complications
- VA is associated with a fourfold increase in the risk for death
- it was hypothesized that suppression of ventricular arrhythmias would reduce the rate of death
- Drugs found to suppress arrhythmia were approved by the FDA
- more than 200000 persons per year took these drugs
- Follow up trials showed that the drugs increased mortality
- tens of thousands of patients died in America's worst drug disaster
- the casualties were estimated to approach levels close to those of the war in Vietnam

Prentice's criteria of a statistical surrogate

- Treatment Z_{i}; surrogate S_{i}; outcome Y_{i}

Prentice's criteria of a statistical surrogate

- Treatment Z_{i}; surrogate S_{i}; outcome Y_{i}
- S_{i} is a statistical surrogate for a comparison of the effect of $Z_{i}=1$ versus $Z_{i}=0$ on Y_{i}, if $Z_{i} \Perp Y_{i} \mid S_{i}$ (Prentice 1989)

$$
Z_{i} \longrightarrow S_{i} \longrightarrow Y_{i} \Longrightarrow Z_{i} \Perp Y_{i} \mid S_{i}, S_{i} \not \perp Y_{i}
$$

Prentice's criteria of a statistical surrogate

- Treatment Z_{i}; surrogate S_{i}; outcome Y_{i}
- S_{i} is a statistical surrogate for a comparison of the effect of $Z_{i}=1$ versus $Z_{i}=0$ on Y_{i}, if $Z_{i} \Perp Y_{i} \mid S_{i}$ (Prentice 1989)

$$
\begin{aligned}
& Z_{i} \longrightarrow S_{i} \longrightarrow Y_{i} \Longrightarrow Z_{i} \Perp Y_{i} \mid S_{i}, S_{i} \not \perp Y_{i} \\
& \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=1\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=0\right) \mid Z_{i}=0\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=0\right\}
\end{aligned}
$$

Prentice's criteria of a statistical surrogate

- Treatment Z_{i}; surrogate S_{i}; outcome Y_{i}
- S_{i} is a statistical surrogate for a comparison of the effect of $Z_{i}=1$ versus $Z_{i}=0$ on Y_{i}, if $Z_{i} \Perp Y_{i} \mid S_{i}$ (Prentice 1989)

$$
\begin{aligned}
& Z_{i} \longrightarrow S_{i} \longrightarrow Y_{i} \Longrightarrow Z_{i} \Perp Y_{i} \mid S_{i}, S_{i} \not \perp Y_{i} \\
& \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=1\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=0\right) \mid Z_{i}=0\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=0\right\}
\end{aligned}
$$

- $\mathbb{E}\left\{h\left(S_{i}(1)\right)-h\left(S_{i}(0)\right)\right\}=0$ implies $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}=0$

Prentice's criteria of a statistical surrogate

- Treatment Z_{i}; surrogate S_{i}; outcome Y_{i}
- S_{i} is a statistical surrogate for a comparison of the effect of $Z_{i}=1$ versus $Z_{i}=0$ on Y_{i}, if $Z_{i} \Perp Y_{i} \mid S_{i}$ (Prentice 1989)

$$
\begin{aligned}
& Z_{i} \longrightarrow S_{i} \longrightarrow Y_{i} \Longrightarrow Z_{i} \Perp Y_{i} \mid S_{i}, S_{i} \not \Perp Y_{i} \\
& \mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=1\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}, Z_{i}=0\right) \mid Z_{i}=0\right\} \\
= & \mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=1\right\}-\mathbb{E}\left\{\mathbb{E}\left(Y_{i} \mid S_{i}\right) \mid Z_{i}=0\right\}
\end{aligned}
$$

- $\mathbb{E}\left\{h\left(S_{i}(1)\right)-h\left(S_{i}(0)\right)\right\}=0$ implies $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\}=0$
- there exist units with no causal effect of treatment on the surrogate but experience causal effects of treatment on outcome: $S_{i}(1)=S_{i}(0)$ but $Y_{i}(1) \neq Y_{i}(0)$

Properties of a good surrogate

- Intuitively, a good surrogate should satisfy:
- if the treatment does not affect surrogate, it does not affect outcome
- if the treatment affects surrogate, it affects outcome
- Formally, a good surrogate should satisfy:
- causal necessity (Frangakis and Rubin 2002)

$$
S_{i}(1)=S_{i}(0) \Longrightarrow Y_{i}(1)=Y_{i}(0)
$$

- causal sufficiency (Gilbert and Hudgens 2008)

$$
S_{i}(1) \neq S_{i}(0) \Longrightarrow Y_{i}(1) \neq Y_{i}(0)
$$

Principal stratification and principal causal effects

- A simple example: treatment comparison for AIDS patients, where CD4 is the candidate surrogate
- Four principal strata defined by $\left\{S_{i}(1), S_{i}(0)\right\}$

$$
U_{i} \equiv\left\{S_{i}(1), S_{i}(0)\right\} \in\{H H, H L, L H, L L\}
$$

Principal stratification and principal causal effects

- A simple example: treatment comparison for AIDS patients, where CD4 is the candidate surrogate
- Four principal strata defined by $\left\{S_{i}(1), S_{i}(0)\right\}$

$$
U_{i} \equiv\left\{S_{i}(1), S_{i}(0)\right\} \in\{H H, H L, L H, L L\}
$$

- Principal average causal effect

$$
\mathrm{ACE}_{u}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}
$$

Principal stratification and principal causal effects

- A simple example: treatment comparison for AIDS patients, where CD4 is the candidate surrogate
- Four principal strata defined by $\left\{S_{i}(1), S_{i}(0)\right\}$

$$
U_{i} \equiv\left\{S_{i}(1), S_{i}(0)\right\} \in\{H H, H L, L H, L L\}
$$

- Principal average causal effect

$$
\mathrm{ACE}_{u}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}
$$

- Criteria for a principal surrogate
- causal necessity: $\mathrm{ACE}_{H H}=\mathrm{ACE}_{L L}=0$
- causal sufficiency: $A C E_{H L} \neq 0$ and $A C E_{L H} \neq 0$

Principal stratification and principal causal effects

- A simple example: treatment comparison for AIDS patients, where CD4 is the candidate surrogate
- Four principal strata defined by $\left\{S_{i}(1), S_{i}(0)\right\}$

$$
U_{i} \equiv\left\{S_{i}(1), S_{i}(0)\right\} \in\{H H, H L, L H, L L\}
$$

- Principal average causal effect

$$
\mathrm{ACE}_{u}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}
$$

- Criteria for a principal surrogate
- causal necessity: $\mathrm{ACE}_{H H}=\mathrm{ACE}_{L L}=0$
- causal sufficiency: $A C E_{H L} \neq 0$ and $A C E_{L H} \neq 0$
- Lauritzen (2004) proposes the criteria of a strong surrogate, which is stronger than the criteria of a principal surrogate

Statistical surrogate vs. principal surrogate

- Statistical surrogate: $Z \Perp Y \mid S$ principal surrogate: conditions on ACE_{u}

Statistical surrogate vs. principal surrogate

- Statistical surrogate: $Z \Perp Y \mid S$ principal surrogate: conditions on ACE_{u}
- If the post-treatment variable S_{i} is a principal surrogate, then it is not generally a statistical surrogate
- If the post-treatment variable S_{i} is a statistical surrogate, then it is not generally a principal surrogate

Statistical surrogate vs. principal surrogate

- Statistical surrogate: $Z \Perp Y \mid S$ principal surrogate: conditions on ACE_{u}
- If the post-treatment variable S_{i} is a principal surrogate, then it is not generally a statistical surrogate
- If the post-treatment variable S_{i} is a statistical surrogate, then it is not generally a principal surrogate
- Evaluation
- statistical surrogate: direct estimation from the observed data
- principal surrogate: requires the identification and estimation of principal causal effects

Can we avoid the disaster using these criteria?

- Surrogate "paradox" (Chen, Geng and Jia 2007, Ju and Geng 2010)
- For a principal or statistical surrogate, it is still possible that
- Positive causal effect of Z on $S: \operatorname{ACE}(Z \rightarrow S)>0$
- Positive causal effect of S on $Y: \operatorname{ACE}(S \rightarrow Y)>0$ and $\operatorname{Cor}(S, Y)>0$
- Negative causal effet of Z on $Y: \operatorname{ACE}(Z \rightarrow Y)<0$

Can we avoid the disaster using these criteria?

- Surrogate "paradox" (Chen, Geng and Jia 2007, Ju and Geng 2010)
- For a principal or statistical surrogate, it is still possible that
- Positive causal effect of Z on $S: \operatorname{ACE}(Z \rightarrow S)>0$
- Positive causal effect of S on $Y: \operatorname{ACE}(S \rightarrow Y)>0$ and $\operatorname{Cor}(S, Y)>0$
- Negative causal effet of Z on $Y: \operatorname{ACE}(Z \rightarrow Y)<0$
- It is possible that drugs are beneficial for VA but increase mortality

Principal surrogates may suffer from surrogate paradox

- Proportions of principal strata, $\pi_{u}=\mathbb{P}\left(U_{i}=u\right)$:
$\left(\pi_{H H}, \pi_{H L}, \pi_{L H}, \pi_{L L}\right)=(0.2,0.4,0.2,0.2)$

$$
\begin{aligned}
& \operatorname{ACE}(Z \rightarrow S)=\mathbb{P}\left\{S_{i}(1)=1\right\}-\mathbb{P}\left\{S_{i}(0)=1\right\} \\
= & \left(\pi_{H L}+\pi_{H H}\right)-\left(\pi_{H H}+\pi_{L H}\right)=\pi_{H L}-\pi_{L H}=0.2>0
\end{aligned}
$$

Principal surrogates may suffer from surrogate paradox

- Proportions of principal strata, $\pi_{u}=\mathbb{P}\left(U_{i}=u\right)$:

$$
\begin{aligned}
& \left(\pi_{H H}, \pi_{H L}, \pi_{L H}, \pi_{L L}\right)=(0.2,0.4,0.2,0.2) \\
& \quad \operatorname{ACE}(Z \rightarrow S)=\mathbb{P}\left\{S_{i}(1)=1\right\}-\mathbb{P}\left\{S_{i}(0)=1\right\} \\
& =\left(\pi_{H L}+\pi_{H H}\right)-\left(\pi_{H H}+\pi_{L H}\right)=\pi_{H L}-\pi_{L H}=0.2>0
\end{aligned}
$$

- Principal causal effects

$$
\mathrm{ACE}_{H H}=\mathrm{ACE}_{L L}=0, \quad \mathrm{ACE}_{H L}=0.1>0, \quad \mathrm{ACE}_{L H}=-0.3<0
$$

Principal surrogates may suffer from surrogate paradox

- Proportions of principal strata, $\pi_{u}=\mathbb{P}\left(U_{i}=u\right)$:

$$
\begin{aligned}
& \left(\pi_{H H}, \pi_{H L}, \pi_{L H}, \pi_{L L}\right)=(0.2,0.4,0.2,0.2) \\
& \qquad \begin{array}{l}
\operatorname{ACE}(Z \rightarrow S)=\mathbb{P}\left\{S_{i}(1)=1\right\}-\mathbb{P}\left\{S_{i}(0)=1\right\} \\
=\left(\pi_{H L}+\pi_{H H}\right)-\left(\pi_{H H}+\pi_{L H}\right)=\pi_{H L}-\pi_{L H}=0.2>0
\end{array}
\end{aligned}
$$

- Principal causal effects

$$
\mathrm{ACE}_{H H}=\mathrm{ACE}_{L L}=0, \quad \mathrm{ACE}_{H L}=0.1>0, \quad \mathrm{ACE}_{L H}=-0.3<0
$$

- However, the ACE on the outcome is negative
$\operatorname{ACE}(Z \rightarrow Y)=\sum_{u} \pi_{u} \mathrm{ACE}_{u}=0.4 \times 0.1+0.2 \times(-0.3)=-0.02<0$

New criteria: when a surrogate satisfies causal necessity

- $\operatorname{ACE}(Z \rightarrow S)>0$ should imply $\operatorname{ACE}(Z \rightarrow Y)>0$

$$
\operatorname{ACE}(Z \rightarrow Y)=\sum_{u} \mathrm{ACE}_{u} \cdot \mathbb{P}\left(U_{i}=u\right)
$$

New criteria: when a surrogate satisfies causal necessity

- $\operatorname{ACE}(Z \rightarrow S)>0$ should imply $\operatorname{ACE}(Z \rightarrow Y)>0$

$$
\operatorname{ACE}(Z \rightarrow Y)=\sum_{u} \mathrm{ACE}_{u} \cdot \mathbb{P}\left(U_{i}=u\right)
$$

- If $A C E_{H L}+\mathrm{ACE}_{L H} \geq 0$, then

$$
\operatorname{ACE}(Z \rightarrow Y) \geq \operatorname{ACE}(Z \rightarrow S) \times \operatorname{ACE}_{H L}
$$

New criteria: when a surrogate satisfies causal necessity

- $\operatorname{ACE}(Z \rightarrow S)>0$ should imply $\operatorname{ACE}(Z \rightarrow Y)>0$

$$
\operatorname{ACE}(Z \rightarrow Y)=\sum_{u} \mathrm{ACE}_{u} \cdot \mathbb{P}\left(U_{i}=u\right)
$$

- If $\mathrm{ACE}_{H L}+\mathrm{ACE}_{L H} \geq 0$, then

$$
\operatorname{ACE}(Z \rightarrow Y) \geq \operatorname{ACE}(Z \rightarrow S) \times \operatorname{ACE}_{H L}
$$

- $\mathrm{ACE}_{H L}>0 \Longrightarrow$ lower bound of $\operatorname{ACE}(Z \rightarrow Y)$ and $\operatorname{ACE}(Z \rightarrow S)$ have the same sign

New criteria: when a surrogate satisfies causal necessity

- $\operatorname{ACE}(Z \rightarrow S)>0$ should imply $\operatorname{ACE}(Z \rightarrow Y)>0$

$$
\operatorname{ACE}(Z \rightarrow Y)=\sum_{u} \mathrm{ACE}_{u} \cdot \mathbb{P}\left(U_{i}=u\right)
$$

- If $\mathrm{ACE}_{H L}+\mathrm{ACE}_{L H} \geq 0$, then

$$
\operatorname{ACE}(Z \rightarrow Y) \geq \operatorname{ACE}(Z \rightarrow S) \times \operatorname{ACE}_{H L}
$$

- $\mathrm{ACE}_{H L}>0 \Longrightarrow$ lower bound of $\operatorname{ACE}(Z \rightarrow Y)$ and $\operatorname{ACE}(Z \rightarrow S)$ have the same sign
- New criteria for avoiding surrogate paradox
- causal necessity: $\mathrm{ACE}_{H H}=\mathrm{ACE}_{L L}=0$
- $\mathrm{ACE}_{H L}>0$ and $\mathrm{ACE}_{H L}+\mathrm{ACE}_{L H} \geq 0$

Surrogate evaluation in colon clinical trials (Jiang et al., 2016)

- Treatment Z; outcome Y: 5-year survival status
- Target: evaluate whether disease free survival with 3-year follow-up is a good surrogate (1 for not)

Surrogate evaluation in colon clinical trials (Jiang et al., 2016)

- Treatment Z; outcome Y: 5-year survival status
- Target: evaluate whether disease free survival with 3-year follow-up is a good surrogate (1 for not)

Surrogate evaluation in colon clinical trials (Jiang et al., 2016)

- Treatment Z; outcome Y: 5-year survival status
- Target: evaluate whether disease free survival with 3-year follow-up is a good surrogate (1 for not)
- Estimated principal causal effects
- $A C E_{00}=-0.001($ s.e. $=0.042)$ and $A C E_{11}=0.015($ s.e. $=0.012)$
- $\mathrm{ACE}_{10}=0.774$ (s.e. $=0.037$) and $\mathrm{ACE}_{01}=-0.750(\mathrm{~s} . \mathrm{e} .=0.054)$

Surrogate evaluation in colon clinical trials (Jiang et al., 2016)

- Treatment Z; outcome Y: 5-year survival status
- Target: evaluate whether disease free survival with 3-year follow-up is a good surrogate (1 for not)
- Estimated principal causal effects
- $A C E_{00}=-0.001($ s.e. $=0.042)$ and $A C E_{11}=0.015($ s.e. $=0.012)$
- $\mathrm{ACE}_{10}=0.774$ (s.e. $=0.037$) and $\mathrm{ACE}_{01}=-0.750($ s.e. $=0.054)$
- DFS is a good surrogate

Mediation analysis

- Mediator S on the causal pathway from Z to Y

Mediation analysis

- Mediator S on the causal pathway from Z to Y
- principal stratification does not require S on the causal pathway

Mediation analysis

- Mediator S on the causal pathway from Z to Y
- principal stratification does not require S on the causal pathway
- Causal mechanism
- Direct effect: Z affects Y not through S
- indirect effect: Z affects Y through S

Mediation analysis

- Mediator S on the causal pathway from Z to Y
- principal stratification does not require S on the causal pathway
- Causal mechanism
- Direct effect: Z affects Y not through S
- indirect effect: Z affects Y through S
- Potential values: $S(z), Y(z, s), Y(z, S(z))$
- $Y(z)=Y(z, S(z))$

Mediation analysis

- Mediator S on the causal pathway from Z to Y
- principal stratification does not require S on the causal pathway
- Causal mechanism
- Direct effect: Z affects Y not through S
- indirect effect: Z affects Y through S
- Potential values: $S(z), Y(z, s), Y(z, S(z))$
- $Y(z)=Y(z, S(z))$
- Mediation analysis
- Natural direct effect: $\mathbb{E}\{Y(1, S(1))-Y(0, S(1))\}$
- Natural indirect effect: $\mathbb{E}\{Y(0, S(1))-Y(0, S(0))\}$

Mediation analysis and principal stratification

- Principal strata direct effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=S(0)=s\}$

Mediation analysis and principal stratification

- Principal strata direct effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=S(0)=s\}$
- for units with $S(1)=S(0)=s$,

$$
Y(1)-Y(0)=Y(1, S(1))-Y(0, S(0))=Y(1, S(1))-Y(0, S(1))
$$

Mediation analysis and principal stratification

- Principal strata direct effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=S(0)=s\}$
- for units with $S(1)=S(0)=s$,

$$
Y(1)-Y(0)=Y(1, S(1))-Y(0, S(0))=Y(1, S(1))-Y(0, S(1))
$$

- Principal strata direct effect is the natural direct effect within principal strata

Mediation analysis and principal stratification

- Principal strata direct effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=S(0)=s\}$
- for units with $S(1)=S(0)=s$,

$$
Y(1)-Y(0)=Y(1, S(1))-Y(0, S(0))=Y(1, S(1))-Y(0, S(1))
$$

- Principal strata direct effect is the natural direct effect within principal strata
- Principal strata indirect effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=1, S(0)=0\}$?

$$
\begin{aligned}
& \mathbb{E}\{Y(1)-Y(0) \mid S(1)=1, S(0)=0\} \\
= & \mathbb{E}\{Y(1, S(1))-Y(0, S(0)) \mid S(1)=1, S(0)=0\} \\
= & \mathbb{E}\{Y(1,1)-Y(0,0) \mid S(1)=1, S(0)=0\}
\end{aligned}
$$

Mediation analysis and principal stratification

- Principal strata direct effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=S(0)=s\}$
- for units with $S(1)=S(0)=s$,

$$
Y(1)-Y(0)=Y(1, S(1))-Y(0, S(0))=Y(1, S(1))-Y(0, S(1))
$$

- Principal strata direct effect is the natural direct effect within principal strata
- Principal strata indirect effect: $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=1, S(0)=0\}$?

$$
\begin{aligned}
& \mathbb{E}\{Y(1)-Y(0) \mid S(1)=1, S(0)=0\} \\
= & \mathbb{E}\{Y(1, S(1))-Y(0, S(0)) \mid S(1)=1, S(0)=0\} \\
= & \mathbb{E}\{Y(1,1)-Y(0,0) \mid S(1)=1, S(0)=0\}
\end{aligned}
$$

- $\mathbb{E}\{Y(1)-Y(0) \mid S(1)=1, S(0)=0\}$ consists of both direct and indirect effects

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
binary instrumental variable model
partial identification
principal ignorability
auxiliary independence

Recent applications of principal stratification

Statistical inference and its difficulty

- For problems of non-compliance, truncation by death, and surrogate evaluation, we need to identify and estimate principal causal effects

Statistical inference and its difficulty

- For problems of non-compliance, truncation by death, and surrogate evaluation, we need to identify and estimate principal causal effects
- we focus on the randomized experiment setting: $Z_{i} \Perp\left(Y_{i}(z), S_{i}(1), S_{i}(0)\right)$

Statistical inference and its difficulty

- For problems of non-compliance, truncation by death, and surrogate evaluation, we need to identify and estimate principal causal effects
- we focus on the randomized experiment setting: $Z_{i} \Perp\left(Y_{i}(z), S_{i}(1), S_{i}(0)\right)$
- key to identification: express ACE_{u} in terms of the observed distribution (Z, S, Y, X)

Statistical inference and its difficulty

- For problems of non-compliance, truncation by death, and surrogate evaluation, we need to identify and estimate principal causal effects
- we focus on the randomized experiment setting: $Z_{i} \Perp\left(Y_{i}(z), S_{i}(1), S_{i}(0)\right)$
- key to identification: express ACE_{u} in terms of the observed distribution (Z, S, Y, X)
- Under randomization of Z

$$
\mathrm{ACE}_{u}=\mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, U_{i}\right)-\mathbb{E}\left(Y_{i}=1 \mid Z_{i}=0, U_{i}\right)
$$

Statistical inference and its difficulty

- For problems of non-compliance, truncation by death, and surrogate evaluation, we need to identify and estimate principal causal effects
- we focus on the randomized experiment setting: $Z_{i} \Perp\left(Y_{i}(z), S_{i}(1), S_{i}(0)\right)$
- key to identification: express ACE_{u} in terms of the observed distribution (Z, S, Y, X)
- Under randomization of Z

$$
\mathrm{ACE}_{u}=\mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, U_{i}\right)-\mathbb{E}\left(Y_{i}=1 \mid Z_{i}=0, U_{i}\right)
$$

- difficulty: $S_{i}(1)$ and $S_{i}(0)$ are not simultaneous observed $\rightsquigarrow U_{i}$ is latent

Outline

- Recap: potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model principal ignorability

Recent applications of principal stratification

Noncompliance

- Four principal strata (latent types):
- compliers $\left(S_{i}(1), S_{i}(0)\right)=(1,0)$,
- non-compliers $\left\{\begin{array}{cc}\text { always - takers } & \left(S_{i}(1), S_{i}(0)\right)=(1,1), \\ \text { never - takers } & \left(S_{i}(1), S_{i}(0)\right)=(0,0), \\ \text { defiers } & \left(S_{i}(1), S_{i}(0)\right)=(0,1)\end{array}\right.$
- denote the compliance behavior (a, n, c, d) by $U_{i} \rightsquigarrow S_{i}$ is a function of Z_{i} and U_{i}

Noncompliance

- Four principal strata (latent types):
- compliers $\left(S_{i}(1), S_{i}(0)\right)=(1,0)$,
- non-compliers $\left\{\begin{array}{cc}\text { always - takers } & \left(S_{i}(1), S_{i}(0)\right)=(1,1), \\ \text { never - takers } & \left(S_{i}(1), S_{i}(0)\right)=(0,0), \\ \text { defiers } & \left(S_{i}(1), S_{i}(0)\right)=(0,1)\end{array}\right.$
- denote the compliance behavior (a, n, c, d) by $U_{i} \rightsquigarrow S_{i}$ is a function of Z_{i} and U_{i}
- Observed strata and compliance behavior:

$$
Z_{i}=1 \quad Z_{i}=0
$$

	Complier/Always-taker	Defier/Always-taker
	Defier/Never-taker	Complier/Never-taker

Noncompliance

- Four principal strata (latent types):
- compliers $\left(S_{i}(1), S_{i}(0)\right)=(1,0)$,
- non-compliers $\left\{\begin{array}{cc}\text { always - takers } & \left(S_{i}(1), S_{i}(0)\right)=(1,1), \\ \text { never - takers } & \left(S_{i}(1), S_{i}(0)\right)=(0,0), \\ \text { defiers } & \left(S_{i}(1), S_{i}(0)\right)=(0,1)\end{array}\right.$
- denote the compliance behavior (a, n, c, d) by $U_{i} \rightsquigarrow S_{i}$ is a function of Z_{i} and U_{i}
- Observed strata and compliance behavior:

$$
Z_{i}=1 \quad Z_{i}=0
$$

	$S_{i}=1$	Complier/Always-taker
Defier/Always-taker		
	Defier/Never-taker	Complier/Never-taker

- $\operatorname{CACE}=\mathrm{ACE}_{c}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=c\right\}$

Assumptions

- Randomization: $\left.\left\{Y_{i}(z), S_{i}(1), S_{i}(0)\right)\right\} \Perp Z_{i} \rightsquigarrow$ Identification of $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y)$

Assumptions

- Randomization: $\left.\left\{Y_{i}(z), S_{i}(1), S_{i}(0)\right)\right\} \Perp Z_{i} \rightsquigarrow$ Identification of $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y)$
- Monotonicity: $S_{i}(1) \geq S_{i}(0) \rightsquigarrow$ no defiers

Assumptions

- Randomization: $\left.\left\{Y_{i}(z), S_{i}(1), S_{i}(0)\right)\right\} \Perp Z_{i} \rightsquigarrow$ Identification of $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y)$
- Monotonicity: $S_{i}(1) \geq S_{i}(0) \rightsquigarrow$ no defiers
- Exclusion restriction: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}=0$ for $u=a$, n

Assumptions

- Randomization: $\left.\left\{Y_{i}(z), S_{i}(1), S_{i}(0)\right)\right\} \Perp Z_{i} \rightsquigarrow$ Identification of $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y)$
- Monotonicity: $S_{i}(1) \geq S_{i}(0) \rightsquigarrow$ no defiers
- Exclusion restriction: $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=u\right\}=0$ for $u=a$, n
- $\operatorname{ACE}(Z \rightarrow S)=\mathbb{E}\left\{S_{i}(1)-S_{i}(0)\right\}>0 \rightsquigarrow$ there exists compliers
- $\mathbb{E}\left\{S_{i}(1)-S_{i}(0)\right\}=\mathbb{P}\left\{S_{i}(1)=1\right\}-\mathbb{P}\left\{S_{i}(0)=1\right\}=\mathbb{P}\left\{S_{i}(1)=\right.$ $\left.1, S_{i}(0)=0\right\}$

Monotonicity: implications

- Observed strata and compliance behavior under monotonicity

$Z_{i}=1$	$Z_{i}=0$	
	Complier/Always-taker	Always-taker
	Never-taker	Complier/Never-taker

- $\mathbb{P}($ Never-taker $)=\mathbb{P}\left\{S_{i}(1)=0\right\}=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1\right)$
$\mathbb{P}($ always-taker $)=\mathbb{P}\left\{S_{i}(0)=1\right\}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right)$
$\mathbb{P}($ complier $)=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right)$

Exclusion restriction: implications

- Exclusion restriction means outcome depends on the treatment assignment only through treatment receipt \rightsquigarrow
$\mathrm{ACE}_{a}=\mathrm{ACE}_{n}=0$

Exclusion restriction: implications

- Exclusion restriction means outcome depends on the treatment assignment only through treatment receipt \rightsquigarrow
$\mathrm{ACE}_{a}=\mathrm{ACE}_{n}=0$
- An alternative definition of exclusion restriction: $Y_{i}(z, s)=Y_{i}(s)$

Exclusion restriction: implications

- Exclusion restriction means outcome depends on the treatment assignment only through treatment receipt \rightsquigarrow $\mathrm{ACE}_{a}=\mathrm{ACE}_{n}=0$
- An alternative definition of exclusion restriction: $Y_{i}(z, s)=Y_{i}(s)$
- always-taker and never-taker:

$$
\begin{aligned}
Y_{i}(1) & =Y_{i}\left(1, S_{i}(1)\right)=Y_{i}\left(1, S_{i}(0)\right)=Y_{i}\left(0, S_{i}(0)\right)=Y_{i}(0) \\
\mathrm{ACE}_{a} & =\mathrm{ACE}_{n}=0
\end{aligned}
$$

- compliers: $\mathrm{ACE}_{c}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}=c\right\}, Z_{i}=S_{i}$

Identification

- ITT effect decomposition:
$\mathrm{ACE}=\mathrm{ACE}_{c} \times \operatorname{Pr}$ (compliers) $+\mathrm{ACE}_{a} \times \operatorname{Pr}$ (always - takers $)$ $+\mathrm{ACE}_{n} \times \operatorname{Pr}($ never - takers $)+\mathrm{ACE}_{d} \times \operatorname{Pr}($ defiers $)$
$=A C E_{c} \times \operatorname{Pr}$ (compliers)

Identification

- ITT effect decomposition:

$$
\begin{aligned}
\mathrm{ACE}= & \mathrm{ACE}_{c} \times \operatorname{Pr}(\text { compliers })+\mathrm{ACE}_{a} \times \operatorname{Pr}(\text { always }- \text { takers }) \\
& +\mathrm{ACE}_{n} \times \operatorname{Pr}(\text { never }- \text { takers })+\mathrm{ACE}_{d} \times \operatorname{Pr}(\text { defiers }) \\
= & \mathrm{ACE}_{c} \times \operatorname{Pr}(\text { compliers })
\end{aligned}
$$

- Identification:

$$
\begin{aligned}
\mathrm{ACE}_{c} & =\frac{\operatorname{ACE}(Z \rightarrow Y)}{\mathbb{P}(\text { compliers })} \\
& =\frac{\operatorname{ACE}(Z \rightarrow Y)}{\operatorname{ACE}(Z \rightarrow S)} \\
& =\frac{\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)}{\mathbb{E}\left(S_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(S_{i} \mid Z_{i}=0\right)}
\end{aligned}
$$

Complier average causal effect

- CACE is identified by the ratio of two ITT effects
- average treatment effect for compliers $\left(Z_{i}=S_{i}\right)$
- always have the same sign as $\operatorname{ACE}(Z \rightarrow Y)$
- more transferrable than $\operatorname{ACE}(Z \rightarrow Y)$

Complier average causal effect

- CACE is identified by the ratio of two ITT effects
- average treatment effect for compliers $\left(Z_{i}=S_{i}\right)$
- always have the same sign as $\operatorname{ACE}(Z \rightarrow Y)$
- more transferrable than $\operatorname{ACE}(Z \rightarrow Y)$
- Encouragement design: randomly encourage people to take the treatment
- CACE is the effect of people who would take the treatment only if encouraged

Complier average causal effect

- CACE is identified by the ratio of two ITT effects
- average treatment effect for compliers $\left(Z_{i}=S_{i}\right)$
- always have the same sign as $\operatorname{ACE}(Z \rightarrow Y)$
- more transferrable than $\operatorname{ACE}(Z \rightarrow Y)$
- Encouragement design: randomly encourage people to take the treatment
- CACE is the effect of people who would take the treatment only if encouraged
- different encouragement yields different compliers

Estimation and inference

- Wald estimator: $\widehat{\mathrm{CACE}}=\frac{\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0\right)}{\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=0\right)}$

Estimation and inference

- Wald estimator: $\widehat{\mathrm{CACE}}=\frac{\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0\right)}{\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=0\right)}$
- Variance estimation and confidence interval: delta method

Estimation and inference

- Wald estimator: $\widehat{\mathrm{CACE}}=\frac{\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0\right)}{\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=0\right)}$
- Variance estimation and confidence interval: delta method
- Weak instrument: $\widehat{\mathrm{CACE}}$ has poor properties when $\operatorname{ACE}(Z \rightarrow S)$ is close to 0

Estimation and inference

- Wald estimator: $\widehat{\mathrm{CACE}}=\frac{\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0\right)}{\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=0\right)}$
- Variance estimation and confidence interval: delta method
- Weak instrument: $\widehat{\mathrm{CACE}}$ has poor properties when $\operatorname{ACE}(Z \rightarrow S)$ is close to 0
- $\widehat{\text { CACE }}$ has finite sample bias and non-normal asymptotic distribution
- confidence interval has poor coverage rate
- when $\mathrm{ACE}_{D}=0, \widehat{\mathrm{CACE}}$ has no first moment

Estimation and inference

- Wald estimator: $\widehat{\mathrm{CACE}}=\frac{\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0\right)}{\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=1\right)-\widehat{\mathbb{E}}\left(S_{i} \mid Z_{i}=0\right)}$
- Variance estimation and confidence interval: delta method
- Weak instrument: $\widehat{\operatorname{CACE}}$ has poor properties when $\operatorname{ACE}(Z \rightarrow S)$ is close to 0
- $\widehat{\text { CACE }}$ has finite sample bias and non-normal asymptotic distribution
- confidence interval has poor coverage rate
- when $\mathrm{ACE}_{D}=0$, $\widehat{\mathrm{CACE}}$ has no first moment
- Observational studies: Abadies' Kappa

Evaluation of job training program

- A randomized field experiment investigating the efficacy of a job training intervention on unemployed workers
- Encouragement: Z_{i}; participation: S_{i}; job-search self-efficacy: Y_{i}

Evaluation of job training program

- A randomized field experiment investigating the efficacy of a job training intervention on unemployed workers
- Encouragement: Z_{i}; participation: S_{i}; job-search self-efficacy: Y_{i}
- Assumptions:
- monotonicity: being encouraged would never discourage anyone from participating
- exclusion restriction: being encouraged has no effect on other than through participation in the program

Evaluation of job training program

- A randomized field experiment investigating the efficacy of a job training intervention on unemployed workers
- Encouragement: Z_{i}; participation: S_{i}; job-search self-efficacy: Y_{i}
- Assumptions:
- monotonicity: being encouraged would never discourage anyone from participating
- exclusion restriction: being encouraged has no effect on other than through participation in the program
- CACE: effect of participation on job-search self-efficacy for people who would participate if and only if they are encouraged

Evaluation of job training program

- A randomized field experiment investigating the efficacy of a job training intervention on unemployed workers
- Encouragement: Z_{i}; participation: S_{i}; job-search self-efficacy: Y_{i}
- Assumptions:
- monotonicity: being encouraged would never discourage anyone from participating
- exclusion restriction: being encouraged has no effect on other than through participation in the program
- CACE: effect of participation on job-search self-efficacy for people who would participate if and only if they are encouraged
- $\operatorname{ACE}(Z \rightarrow Y):$ est. $=0.067$, s.e. $=0.050,95 \% \mathrm{Cl}=[-0.031,0.166]$
- CACE: est. $=0.109$, s.e. $=0.081,95 \% \mathrm{CI}=[-0.050,0.268]$

Effect of veteran status on earnings (Angrist, 1990, AER)

- There were five draft lotteries during the Vietnam War period. In each lottery, priority for induction was determined by a Random Sequence Number (RSN) from 1-365 that was assigned to birthdates in the cohort being drafted
- Men were called for induction by RSN up to a ceiling determined by the Defense Department, and only men with lottery numbers below the ceiling could have been drafted

Effect of veteran status on earnings (Angrist, 1990, AER)

- There were five draft lotteries during the Vietnam War period. In each lottery, priority for induction was determined by a Random Sequence Number (RSN) from 1-365 that was assigned to birthdates in the cohort being drafted
- Men were called for induction by RSN up to a ceiling determined by the Defense Department, and only men with lottery numbers below the ceiling could have been drafted
- Draft lottery RSNs were randomly assigned in a televised drawing held a few months before men reaching draft age were to be called
- Draft-eligibility ceilings were announced later in the year, once Defense Department manpower needs were known

Effect of veteran status on earnings (Angrist, 1990, AER)

- There were five draft lotteries during the Vietnam War period. In each lottery, priority for induction was determined by a Random Sequence Number (RSN) from 1-365 that was assigned to birthdates in the cohort being drafted
- Men were called for induction by RSN up to a ceiling determined by the Defense Department, and only men with lottery numbers below the ceiling could have been drafted
- Draft lottery RSNs were randomly assigned in a televised drawing held a few months before men reaching draft age were to be called
- Draft-eligibility ceilings were announced later in the year, once Defense Department manpower needs were known
- Subsequent selection from the draft-eligible pool was based on a number of criteria: physical examination and a mental aptitude test

Setup

- Z_{i} : draft-eligibility; S_{i} : veteran status; outcome Y_{i} earnings in 1981-1984

Setup

- Z_{i} : draft-eligibility; S_{i} : veteran status; outcome Y_{i} earnings in 1981-1984
- Assumptions hold?

Setup

- Z_{i} : draft-eligibility; S_{i} : veteran status; outcome Y_{i} earnings in 1981-1984
- Assumptions hold?

$$
\begin{array}{rlll}
\text { COHORT } & & \text { BORN } 1950 \\
------ & & \text { BORN } 1951 \\
- & \\
---- & \text { BORN } 1952 \\
\text {---- } & \text { BORN } 1953
\end{array}
$$

Notes: The figure plots the difference in FICA taxable earnings by draft-eligibility status for the four cohorts born 1950-53. Each tick on the vertical axis represents $\$ 500$ real (1978) dollars.

Figure 2. The Difference in Earnings by Draft-Eligibility Status

Wald estimates

Table 3-Wald Estimates

Cohort	Year	Draft-Eligibility Effects in Current \$			$\hat{p}^{e}-\hat{p}^{n}$ (4)	Service Effect in $1978 \$$ (5)
		FICA Earnings (1)	Adjusted FICA Earnings (2)	Total W-2 Earnings (3)		
1950	1981	-435.8	-487.8	-589.6	$\begin{gathered} 0.159 \\ (0.040) \end{gathered}$	-2,195.8
		(210.5)	(237.6)	(299.4)		$(1,069.5)$
	1982	-320.2	-396.1	-305.5		-1,678.3
		(235.8)	(281.7)	(345.4)		$(1,193.6)$
	1983	-349.5	-450.1	-512.9		-1,795.6
		(261.6)	(302.0)	(441.2)		$(1,204.8)$
	1984	-484.3	-638.7	-1,143.3		-2,517.7
		(286.8)	(336.5)	(492.2)		$(1,326.5)$
1951	1981	-358.3	-428.7	-71.6	0.136	-2,261.3
		(203.6)	(224.5)	(423.4)	(0.043)	$(1,184.2)$
	1982	-117.3	-278.5	-72.7		-1,386.6
		(229.1)	(264.1)	(372.1)		$(1,312.1)$
	1983	-314.0	-452.2	-896.5		-2,181.8
		(253.2)	(289.2)	(426.3)		$(1,395.3)$
	1984	-398.4	-573.3	-809.1		-2,647.9
		(279.2)	(331.1)	(380.9)		$(1,529.2)$
1952	1981	-342.8	-392.6	-440.5	0.105	-2,502.3
		(206.8)	(228.6)	(265.0)	(0.050)	$(1,556.7)$
	1982	-235.1	-255.2	-514.7		-1,626.5
		(232.3)	(264.5)	(296.5)		$(1,685.8)$
	1983	-437.7	-500.0	-915.7		-3,103.5
		(257.5)	(294.7)	(395.2)		$(1,829.2)$
	1984	-436.0	-560.0	-767.2		-3,323.8
		(281.9)	(330.1)	(376.0)		$(1,959.3)$

Physical activity and weight after buying a car

Physical activity and weight following car ownership in Beijing, China: quasi-experimental cross sectional study

Michael L Anderson, ${ }^{1}$ Fangwen Lu, ${ }^{2}$ Jun Yang ${ }^{3}$

- In January 2011, to deal with the problem of congestion, Beijing capped the number of new vehicles allowed at 240000 each year and introduced a vehicle permit (license plate) lottery
- After that date, only residents who entered and won the lottery were entitled to a license plate.
- The lottery was drawn monthly, and winners had to purchase a car within six months of winning. By mid-2012 the probability of winning fell below 2% a month

Effect of winning the lottery

- Z_{i} : winning the lottery; S_{i} : buying a car; Y_{i} : weekly transit rides, minute daily walking/bicycling, weight

Effect of winning the lottery

- Z_{i} : winning the lottery; S_{i} : buying a car; Y_{i} : weekly transit rides, minute daily walking/bicycling, weight
- Assumptions satisfied?

Effect of winning the lottery

- Z_{i} : winning the lottery; S_{i} : buying a car; Y_{i} : weekly transit rides, minute daily walking/bicycling, weight
- Assumptions satisfied?

Table 3 | Age stratified associations between winning the lottery and transit use, activity, and weight

	Time since winning (95\% CI)		
Dependent variables	$\mathbf{0 . 1}$ years (minimum)	$\mathbf{2 . 6}$ years (average)	$\mathbf{5 . 1}$ years (maximum)
Individuals aged $\geq \mathbf{4 0}$			
Weekly transit rides	$-2.18(-4.13$ to -0.24$)$	$-2.1(-3.35$ to -0.85$)$	$-2.02(-5.16$ to 1.12)
Minutes daily walking/bicycling	$12.1(-4.66$ to 28.86$)$	$-2.59(-12.12$ to 6.94$)$	$-17.29(-36.52$ to 1.95$)$
Weight (kg)	$1.29(-5.07$ to 7.65$)$	$3.24(-0.31$ to 6.8$)$	$5.2(-2.59$ to 12.99$)$
Individuals aged $\geq \mathbf{5 0}$			
Weekly transit rides	$-2.88(-5.57$ to -0.19$)$	$-1.9(-3.61$ to -0.18$)$	$-0.91(-5.45$ to 3.63)
Minutes daily walking/bicycling	$27.4(-0.28$ to 55.08$)$	$-1.19(-13.76$ to 11.38$)$	$-29.78(-54.08$ to -5.49$)$
Weight $(k g)$	$-1(-8.4$ to 6.4$)$	$4.67(0.04$ to 9.31$)$	$10.34(0.49$ to 20.19$)$

Effect of car ownership

- Ratio estimation for the effect of buying a car
- High compliance rate: $0.91(0.89,0.94) \rightsquigarrow$ effect of winning the lottery \approx effect of buying a car

Effect of car ownership

- Ratio estimation for the effect of buying a car
- High compliance rate: $0.91(0.89,0.94) \rightsquigarrow$ effect of winning the lottery \approx effect of buying a car
- Limitation
- weight is self-reported

Effect of car ownership

- Ratio estimation for the effect of buying a car
- High compliance rate: $0.91(0.89,0.94) \rightsquigarrow$ effect of winning the lottery \approx effect of buying a car
- Limitation
- weight is self-reported
- target population: people who want to and are able to buy a car

Outline

- Recap: potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model
- partial identification

Recent applications of principal stratification

Partial identification for truncation-by-death problem

- Treatment Z; survival status S_{i}; outcome Y_{i}

Partial identification for truncation-by-death problem

- Treatment Z; survival status S_{i}; outcome Y_{i}
- SACE: $\operatorname{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$

Partial identification for truncation-by-death problem

- Treatment Z; survival status $S_{i} ;$ outcome Y_{i}
- SACE: $\operatorname{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$
- Exclusion restriction implies SACE $=0 \rightsquigarrow$ cannot be invoked

Partial identification for truncation-by-death problem

- Treatment Z; survival status $S_{i} ;$ outcome Y_{i}
- SACE: $\operatorname{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$
- Exclusion restriction implies SACE $=0 \rightsquigarrow$ cannot be invoked
- without exclusion restriction, SACE is not identifiable

Partial identification for truncation-by-death problem

- Treatment Z; survival status S_{i}; outcome Y_{i}
- SACE: $\operatorname{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$
- Exclusion restriction implies SACE $=0 \rightsquigarrow$ cannot be invoked
- without exclusion restriction, SACE is not identifiable
- alternative identification assumptions?

Partial identification for truncation-by-death problem

- Treatment Z; survival status S_{i}; outcome Y_{i}
- SACE: $\operatorname{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$
- Exclusion restriction implies SACE $=0 \rightsquigarrow$ cannot be invoked
- without exclusion restriction, SACE is not identifiable
- alternative identification assumptions?
- Partial identification \rightsquigarrow bounds on SACE

Partial identification for truncation-by-death problem

- Treatment Z; survival status S_{i}; outcome Y_{i}
- SACE: $\mathrm{ACE}_{11}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$
- Exclusion restriction implies SACE $=0 \rightsquigarrow$ cannot be invoked
- without exclusion restriction, SACE is not identifiable
- alternative identification assumptions?
- Partial identification \rightsquigarrow bounds on SACE
- find all the possible values of SACE that are compatible with the observed data

Bounds for survivor average causal effect

- Randomization and monotonicity hold
- Proportions of principal strata:

$$
\begin{aligned}
& \pi_{00}=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1\right), \pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right), \text { and } \\
& \pi_{10}=1-\pi_{00}-\pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right)
\end{aligned}
$$

Bounds for survivor average causal effect

- Randomization and monotonicity hold
- Proportions of principal strata:

$$
\begin{aligned}
& \pi_{00}=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1\right), \pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right), \text { and } \\
& \pi_{10}=1-\pi_{00}-\pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right)
\end{aligned}
$$

- $S_{i}(1)=1, S_{i}(0)=1 \longleftrightarrow S_{i}(0)=1$
$\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}=\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(0)=1\right\}=\mathbb{E}\left(Y_{i} \mid Z_{i}=\right.$ $\left.0, S_{i}=1\right)$

Bounds for survivor average causal effect

- Randomization and monotonicity hold
- Proportions of principal strata:

$$
\begin{aligned}
& \pi_{00}=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1\right), \pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right), \text { and } \\
& \pi_{10}=1-\pi_{00}-\pi_{11}=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0\right)
\end{aligned}
$$

- $S_{i}(1)=1, S_{i}(0)=1 \longleftrightarrow S_{i}(0)=1$
$\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(1)=1, S_{i}(0)=1\right\}=\mathbb{E}\left\{Y_{i}(0) \mid S_{i}(0)=1\right\}=\mathbb{E}\left(Y_{i} \mid Z_{i}=\right.$ $\left.0, S_{i}=1\right)$
- Key: bounds on $\mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$

Bounds on survivor average causal effect

- The observed stratum $\left(Z_{i}=1, S_{i}=1\right)$ is a mixture of two strata $U_{i}=11$ and $U_{i}=10$

$$
\begin{aligned}
& \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(1)=1 \mid U=11 / 10\right\} \\
= & \mathbb{E}\left\{Y_{i}(1) \mid U=11\right\} \mathbb{P}(U=11 \mid U=11 / 10) \\
= & +\mathbb{E}\left\{Y_{i}(1) \mid U=10\right\} \mathbb{P}(U=10 \mid U=11 / 10) \\
= & \frac{\pi_{11}}{\pi_{11}+\pi_{10}} \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\} \\
& +\frac{\pi_{10}}{\pi_{11}+\pi_{10}} \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=0\right\}
\end{aligned}
$$

Bounds on survivor average causal effect

- The observed stratum $\left(Z_{i}=1, S_{i}=1\right)$ is a mixture of two strata $U_{i}=11$ and $U_{i}=10$

$$
\begin{array}{rl}
& \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(1)=1 \mid U=11 / 10\right\} \\
= & \mathbb{E}\left\{Y_{i}(1) \mid U=11\right\} \mathbb{P}(U=11 \mid U=11 / 10) \\
= & +\mathbb{E}\left\{Y_{i}(1) \mid U=10\right\} \mathbb{P}(U=10 \mid U=11 / 10) \\
\pi_{11}+\pi_{10} & \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\} \\
& +\frac{\pi_{10}}{\pi_{11}+\pi_{10}} \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=0\right\}
\end{array}
$$

- Y is bounded in $[I, u] \rightsquigarrow$ bounds on $\mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$

$$
\begin{aligned}
& \text { Upper }=\frac{\left(\pi_{11}+\pi_{10}\right) \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)-I \cdot \pi_{10}}{\pi_{11}} \\
& \text { Lower }=\frac{\left(\pi_{11}+\pi_{10}\right) \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)-u \cdot \pi_{10}}{\pi_{11}}
\end{aligned}
$$

Bounds on survivor average causal effect

- The observed stratum $\left(Z_{i}=1, S_{i}=1\right)$ is a mixture of two strata $U_{i}=11$ and $U_{i}=10$

$$
\begin{aligned}
& \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)=\mathbb{E}\left\{Y_{i}(1)=1 \mid U=11 / 10\right\} \\
= & \mathbb{E}\left\{Y_{i}(1) \mid U=11\right\} \mathbb{P}(U=11 \mid U=11 / 10) \\
= & +\mathbb{E}\left\{Y_{i}(1) \mid U=10\right\} \mathbb{P}(U=10 \mid U=11 / 10) \\
= & \frac{\pi_{11}}{\pi_{11}+\pi_{10}} \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\} \\
& +\frac{\pi_{10}}{\pi_{11}+\pi_{10}} \mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=0\right\}
\end{aligned}
$$

- Y is bounded in $[I, u] \rightsquigarrow$ bounds on $\mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\}$

$$
\begin{aligned}
\text { Upper } & =\frac{\left(\pi_{11}+\pi_{10}\right) \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)-I \cdot \pi_{10}}{\pi_{11}} \\
\text { Lower } & =\frac{\left(\pi_{11}+\pi_{10}\right) \mathbb{E}\left(Y_{i}=1 \mid Z_{i}=1, S_{i}=1\right)-u \cdot \pi_{10}}{\pi_{11}}
\end{aligned}
$$

- Statistical inference is hard; even harder without monotonicity

Acute respiratory distress syndrome network study

$Z=1$				$Z=0$			
	$Y=1$	$Y=0$	total		$Y=1$	$Y=0$	total
$S=1$	54	268	302	$S=1$	59	218	277
$S=0$	*	*	109	$S=0$	*	*	152

- 861 patients with lung injury and acute respiratory distress syndrome were randomized to receive mechanical ventilation with either lower tidal volumes $\left(Z_{i}=1\right)$ or traditional tidal volumes $\left(Z_{i}=0\right)$
- Outcome: breathe without assistance by day 28 (1 for not)

Acute respiratory distress syndrome network study

$Z=1$						$Z=0$				
	$Y=1$	$Y=0$	total		$Y=1$	$Y=0$	total			
$S=1$	54	268	302		$S=1$	59	218	277		
$S=0$	$*$	$*$	109		$S=0$	$*$	$*$	152		

- Proportions of principal strata

$$
\widehat{\pi}_{11}=\frac{277}{277+152}=0.646, \quad \widehat{\pi}_{00}=\frac{109}{109+302}=0.265, \quad \widehat{\pi}_{10}=0.089
$$

Acute respiratory distress syndrome network study

$Z=1$				$Z=0$			
	$Y=1$	$Y=0$	total		$Y=1$	$Y=0$	total
$S=1$	54	268	302	$S=1$	59	218	277
$S=0$	*	*	109	$S=0$	*	*	152

- Proportions of principal strata

$$
\widehat{\pi}_{11}=\frac{277}{277+152}=0.646, \quad \widehat{\pi}_{00}=\frac{109}{109+302}=0.265, \quad \widehat{\pi}_{10}=0.089
$$

- Sample means of the outcome for survived patients

$$
\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1, M_{i}=1\right)=\frac{54}{302}=0.179, \quad \widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0, M_{i}=1\right)=\frac{59}{277}=0.213
$$

Acute respiratory distress syndrome network study

$Z=1$				$Z=0$			
	$Y=1$	$Y=0$	total		$Y=1$	$Y=0$	total
$S=1$	54	268	302	$S=1$	59	218	277
$S=0$	*	*	109	$S=0$	*	*	152

- Proportions of principal strata

$$
\widehat{\pi}_{11}=\frac{277}{277+152}=0.646, \quad \widehat{\pi}_{00}=\frac{109}{109+302}=0.265, \quad \widehat{\pi}_{10}=0.089
$$

- Sample means of the outcome for survived patients

$$
\widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=1, M_{i}=1\right)=\frac{54}{302}=0.179, \quad \widehat{\mathbb{E}}\left(Y_{i} \mid Z_{i}=0, M_{i}=1\right)=\frac{59}{277}=0.213
$$

- Bounds on $\mathbb{E}\left\{Y_{i}(1) \mid S_{i}(1)=1, S_{i}(0)=1\right\}:[0.065,0.203]$
- Bounds on SACE: [-0.147, -0.010]

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model
- partial identification
- principal ignorability

Recent applications of principal stratification

Principal ignorability

- An alternative set of identification assumptions without assuming exclusion restriction

Principal ignorability

- An alternative set of identification assumptions without assuming exclusion restriction
- truncation by death, surrogate evaluation, and etc.
- similar idea as the treatment ignorability assumption for identifying ACE in observational studies

Principal ignorability

- An alternative set of identification assumptions without assuming exclusion restriction
- truncation by death, surrogate evaluation, and etc.
- similar idea as the treatment ignorability assumption for identifying ACE in observational studies
- Treatment ignorability $\left(Z_{i} \Perp Y_{i}(z) \mid X_{i}\right) \rightsquigarrow$ $\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=0, \mathbf{X}_{i}\right\}$

Principal ignorability

- An alternative set of identification assumptions without assuming exclusion restriction
- truncation by death, surrogate evaluation, and etc.
- similar idea as the treatment ignorability assumption for identifying ACE in observational studies
- Treatment ignorability $\left(Z_{i} \Perp Y_{i}(z) \mid X_{i}\right) \rightsquigarrow$

$$
\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=0, \mathbf{X}_{i}\right\}
$$

- Principal ignorability $Y_{i}(z) \Perp U_{i} \mid\left(Z_{i}=z, S_{i}=s, \mathbf{X}_{i}\right)$

Principal ignorability

- An alternative set of identification assumptions without assuming exclusion restriction
- truncation by death, surrogate evaluation, and etc.
- similar idea as the treatment ignorability assumption for identifying ACE in observational studies
- Treatment ignorability $\left(Z_{i} \Perp Y_{i}(z) \mid X_{i}\right) \rightsquigarrow$

$$
\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(z) \mid Z_{i}=0, \mathbf{X}_{i}\right\}
$$

- Principal ignorability $Y_{i}(z) \Perp U_{i} \mid\left(Z_{i}=z, S_{i}=s, \mathbf{X}_{i}\right)$
- expected potential outcome is the same across different principal strata within each observed stratum
- implies $\mathbb{E}\left\{Y_{i}(1) \mid U_{i}=11, Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(1) \mid U_{i}=\right.$ $\left.10, Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}$

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$
- Monotonicity: $S_{i}(1) \geq S_{i}(0)$
- principal score

$$
\begin{aligned}
& \mathbb{P}\left(U_{i}=11 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0, \mathbf{X}_{i}\right), \\
& \mathbb{P}\left(U_{i}=00 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1, \mathbf{X}_{i}\right) \\
& \mathbb{P}\left(U_{i}=10 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1, \mathbf{X}_{i}\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0, \mathbf{X}_{i}\right)
\end{aligned}
$$

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$
- Monotonicity: $S_{i}(1) \geq S_{i}(0)$
- principal score

$$
\begin{aligned}
& \mathbb{P}\left(U_{i}=11 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0, \mathbf{X}_{i}\right), \\
& \mathbb{P}\left(U_{i}=00 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=0 \mid Z_{i}=1, \mathbf{X}_{i}\right) \\
& \mathbb{P}\left(U_{i}=10 \mid \mathbf{X}_{i}\right)=\mathbb{P}\left(S_{i}=1 \mid Z_{i}=1, \mathbf{X}_{i}\right)-\mathbb{P}\left(S_{i}=1 \mid Z_{i}=0, \mathbf{X}_{i}\right)
\end{aligned}
$$

- Principal ignorability: $Y_{i}(z) \Perp U_{i} \mid\left(Z_{i}=z, S_{i}=s, \mathbf{X}_{i}\right)$
- $\mathbb{E}\left\{Y_{i}(1) \mid U_{i}=11, Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(1) \mid Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}$
- $\mathbb{E}\left\{Y_{i}(1) \mid U_{i}=10, Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}=\mathbb{E}\left\{Y_{i}(1) \mid Z_{i}=1, S_{i}=1, \mathbf{X}_{i}\right\}$

Weighting method

Theorem

$$
\begin{aligned}
\mathrm{ACE}_{10} & =\mathbb{E}\left\{w_{1,10}(\mathbf{X}) Y \mid Z=1, S=1\right\}-\mathbb{E}\left\{w_{0,10}(\mathbf{X}) Y \mid Z=0, S=0\right\} \\
\mathrm{ACE}_{00} & =\mathbb{E}\{Y \mid Z=1, S=0\}-\mathbb{E}\left\{w_{0,00}(\mathbf{X}) Y \mid Z=0, S=0\right\} \\
\mathrm{ACE}_{11} & =\mathbb{E}\left\{w_{1,11}(\mathbf{X}) Y \mid Z=1, S=1\right\}-\mathbb{E}\{Y \mid Z=0, S=1\}
\end{aligned}
$$

$$
\begin{aligned}
e_{u}(\mathbf{X}) & =\mathbb{P}\left(U_{i}=u \mid \mathbf{X}\right) \quad e_{u}=\mathbb{E}\left\{e_{u}(\mathbf{X})\right\} \\
w_{1,10} & =\frac{e_{10}(\mathbf{X})}{e_{10}(\mathbf{X})+e_{11}(\mathbf{X})} / \frac{e_{10}}{e_{10}+e_{11}} \quad w_{0,11}=\frac{e_{10}(\mathbf{X})}{e_{10}(\mathbf{X})+e_{00}(\mathbf{X})} / \frac{e_{10}}{e_{10}+e_{00}} \\
w_{0,00} & =\frac{e_{00}(\mathbf{X})}{e_{10}(\mathbf{X})+e_{00}(\mathbf{X})} / \frac{e_{00}}{e_{10}+e_{00}} \quad w_{1,11}=\frac{e_{11}(\mathbf{X})}{e_{10}(\mathbf{X})+e_{11}(\mathbf{X})} / \frac{e_{11}}{e_{10}+e_{11}}
\end{aligned}
$$

Estimation and inference

- Estimation steps
(1) estimate the principal score $\mathbb{P}\left(U_{i} \mid \mathbf{X}_{i}\right)$, e.g., logistic model
(2) plug the estimated principal score in the weighting formula

Estimation and inference

- Estimation steps
(1) estimate the principal score $\mathbb{P}\left(U_{i} \mid \mathbf{X}_{i}\right)$, e.g., logistic model
(2) plug the estimated principal score in the weighting formula
- Variance and confidence interval: bootstrap

Estimation and inference

- Estimation steps
(1) estimate the principal score $\mathbb{P}\left(U_{i} \mid \mathbf{X}_{i}\right)$, e.g., logistic model
(2) plug the estimated principal score in the weighting formula
- Variance and confidence interval: bootstrap
- A unification in observational studies (Jiang et al., 2022)
- treatment ignorability, principal ignorability, monotonicity
- triple robustness: propensity score, principal score, outcome model

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$; A2: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} ;$ A2: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability
- $\mathrm{A} 1+\mathrm{B} 1$: non-compliance in randomized trials, model free

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$; A2: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability
- A1+ B1: non-compliance in randomized trials, model free
- A2+ B1: non-compliance in observational studies, model for S_{i} or Y_{i}

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} ;$ $\mathrm{A} 2: Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability
- A1+ B1: non-compliance in randomized trials, model free
- A2+ B1: non-compliance in observational studies, model for S_{i} or Y_{i}
- A1+B2: randomized trials without exclusion restriction, model for S_{i}

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\}$; A2: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability
- A1+B1: non-compliance in randomized trials, model free
- A2+ B1: non-compliance in observational studies, model for S_{i} or Y_{i}
- A1+B2: randomized trials without exclusion restriction, model for S_{i}
- A2+B2: observational studies without exclusion restriction, model for two of Z_{i}, S_{i}, and Y_{i}

Comparison of different identification strategies

- A1: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} ;$ A2: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid \mathbf{X}_{i}$
- B1: monotonicity and exclusion restriction; B2: monotonicity and principal ignorability
- A1+B1: non-compliance in randomized trials, model free
- A2+ B1: non-compliance in observational studies, model for S_{i} or Y_{i}
- A1+B2: randomized trials without exclusion restriction, model for S_{i}
- A2+B2: observational studies without exclusion restriction, model for two of Z_{i}, S_{i}, and Y_{i}
- Other strategies: additional information (e.g., auxiliary independence), likelihood based inference, Bayesian analysis

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model
- partial identification
- principal ignorability
- auxiliary independence

Recent applications of principal stratification

Auxiliary variables

- Auxiliary independence: $Y_{i}(z) \Perp W_{i} \mid U_{i}$

Auxiliary variables

- Auxiliary independence: $Y_{i}(z) \Perp W_{i} \mid U_{i}$
- Augmented design in Follmann (2006)
- HIV vaccine injection Z_{i}; immune response S_{i}; infection indicator Y_{i}
- immune responses to rabies vaccine W_{i} : potential HIV infection status should not depend on a irrelevant vaccine

Auxiliary variables

- Auxiliary independence: $Y_{i}(z) \Perp W_{i} \mid U_{i}$
- Augmented design in Follmann (2006)
- HIV vaccine injection Z_{i}; immune response S_{i}; infection indicator Y_{i}
- immune responses to rabies vaccine W_{i} : potential HIV infection status should not depend on a irrelevant vaccine
- Identification with multiple trials in Jiang et al. (2016)
- treatment Z_{i}; three-year cancer reoccurrence S_{i}; five-year survival Y_{i}
- trial number W_{i} : potential survival status does not depend on the trial number given physical status

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid W_{i}$

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid W_{i}$
- Monotonicity: $S_{i}(1) \geq S_{i}(0)$

Identification assumptions

- Randomization: $Z_{i} \Perp\left\{Y_{i}(1), Y_{i}(0), S_{i}(1), S_{i}(0)\right\} \mid W_{i}$
- Monotonicity: $S_{i}(1) \geq S_{i}(0)$
- Auxiliary independence: $Y_{i}(z) \Perp W_{i} \mid U_{i}$
- $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid U_{i}, W_{i}\right\}=\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0) \mid W_{i}\right\}$

Identification with discrete S_{i}

- $S \in\left\{s_{1}, \ldots, s_{K}\right\}$ and $W \in\left\{w_{1}, \ldots, w_{L}\right\}$
- $M_{s_{0}}: K \times L$ matrix with (k, l)-th element $\mathbb{P}\left(S_{1}=s_{k} \mid S_{0}=s_{0}, W=w_{l}\right)$
- $M_{s_{1}}: K \times L$ matrix with (k, l)-th element $\mathbb{P}\left(S_{0}=s_{k} \mid S_{1}=s_{1}, W=w_{l}\right)$

Identification with discrete S_{i}

- $S \in\left\{s_{1}, \ldots, s_{K}\right\}$ and $W \in\left\{w_{1}, \ldots, w_{L}\right\}$
- $M_{s_{0}}: K \times L$ matrix with (k, l)-th element $\mathbb{P}\left(S_{1}=s_{k} \mid S_{0}=s_{0}, W=w_{l}\right)$
- $M_{s_{1}}: K \times L$ matrix with (k, l)-th element $\mathbb{P}\left(S_{0}=s_{k} \mid S_{1}=s_{1}, W=w_{l}\right)$
- $\mathbb{P}\left(Y_{0} \mid S_{1}, S_{0}=s_{0}\right)$ is identifiable if $\operatorname{rank}\left(M_{s_{0}}^{\top} M_{s_{0}}\right)=K$
- $\mathbb{P}\left(Y_{1} \mid S_{1}=s_{1}, S_{0}\right)$ is identifiable if $\operatorname{rank}\left(M_{s_{1}}^{\top} M_{s_{1}}\right)=K$

Special case

- Strong monotonicity holds $S_{i}(0)=0$
- Binary S_{i} and W_{i}

Special case

- Strong monotonicity holds $S_{i}(0)=0$
- Binary S_{i} and W_{i}
- Rank condition is equivalent to $S_{i} \not \Perp W_{i} \mid Z_{i}=1$

Special case

- Strong monotonicity holds $S_{i}(0)=0$
- Binary S_{i} and W_{i}
- Rank condition is equivalent to $S_{i} \not \subset \perp W_{i} \mid Z_{i}=1$
- Solve $\mathbb{E}\left(Y_{0} \mid S_{1}\right)$ from equations

$$
\begin{aligned}
\delta_{1} & =\mathbb{E}\left(Y_{0} \mid S_{1}=1\right) \theta_{11}+\mathbb{E}\left(Y_{0} \mid S_{1}=0\right) \theta_{01} \\
\delta_{0} & =\mathbb{E}\left(Y_{0} \mid S_{1}=1\right) \theta_{10}+\mathbb{E}\left(Y_{0} \mid S_{1}=0\right) \theta_{00}
\end{aligned}
$$

- $\theta_{s w}=\mathbb{P}(S=s \mid Z=1, W=w)$ and $\delta_{w}=\mathbb{E}(Y \mid Z=0, W=w)$

Special case

- Strong monotonicity holds $S_{i}(0)=0$
- Binary S_{i} and W_{i}
- Rank condition is equivalent to $S_{i} \not \subset \perp W_{i} \mid Z_{i}=1$
- Solve $\mathbb{E}\left(Y_{0} \mid S_{1}\right)$ from equations

$$
\begin{aligned}
& \delta_{1}=\mathbb{E}\left(Y_{0} \mid S_{1}=1\right) \theta_{11}+\mathbb{E}\left(Y_{0} \mid S_{1}=0\right) \theta_{01} \\
& \delta_{0}=\mathbb{E}\left(Y_{0} \mid S_{1}=1\right) \theta_{10}+\mathbb{E}\left(Y_{0} \mid S_{1}=0\right) \theta_{00} \\
& \text { - } \theta_{s w}=\mathbb{P}(S=s \mid Z=1, W=w) \text { and } \delta_{w}=\mathbb{E}(Y \mid Z=0, W=w)
\end{aligned}
$$

- General case in Jiang and Ding (2021)

Outline

- Potential outcomes and ACE
- Post-treatment variable
- Principal stratification
- noncompliance
- truncation by death
- surrogate evaluation
- Identification and statistical inference
- binary instrumental variable model
- partial identification
- principal ignorability
- auxiliary independence
- Recent applications of principal stratification

Principal stratification based on outcomes

- Principal stratification does not require S to be on the causal pathway from Z to Y

Principal stratification based on outcomes

- Principal stratification does not require S to be on the causal pathway from Z to Y
- Examples of principal stratification based on outcomes
- proportion of units benefit from treatment: $\mathbb{P}\{Y(1)>Y(0)\}$
- probability of necessity: $\mathbb{P}\{Y(0)=0 \mid Z=1, Y=1\}$; probability of sufficiency: $\mathbb{P}\{Y(1)=1 \mid Z=0, Y=0\}$

Principal stratification based on outcomes

- Principal stratification does not require S to be on the causal pathway from Z to Y
- Examples of principal stratification based on outcomes
- proportion of units benefit from treatment: $\mathbb{P}\{Y(1)>Y(0)\}$
- probability of necessity: $\mathbb{P}\{Y(0)=0 \mid Z=1, Y=1\}$; probability of sufficiency: $\mathbb{P}\{Y(1)=1 \mid Z=0, Y=0\}$
- Evaluation of algorithm-assisted human decision making
- consequential decisions made by judges, doctors, etc.
- pre-trial risk assessment instrument

First appearance hearings

FTA, NCA, NVCA

Arrest
First appearance hearing
Court for trial

- Judges decide pre-trial release conditions
- bail and monitoring
- many cases in one day

First appearance hearings

FTA, NCA, NVCA

Arrest
First appearance hearing
Court for trial

- Judges decide pre-trial release conditions
- bail and monitoring
- many cases in one day
- Presumption of innocence: judges balance between

First appearance hearings

FTA, NCA, NVCA

Arrest
First appearance hearing
Court for trial

- Judges decide pre-trial release conditions
- bail and monitoring
- many cases in one day
- Presumption of innocence: judges balance between
- cost of pre-trial detention
- risk of arrestee

First appearance hearings

FTA, NCA, NVCA

Arrest
First appearance hearing

- Judges decide pre-trial release conditions
- bail and monitoring
- many cases in one day
- Presumption of innocence: judges balance between
- cost of pre-trial detention
- risk of arrestee
- Judges are required to consider three negative outcomes
(1) arrestee may fail to appear in trial court (FTA)
(2) arrestee may engage in new criminal activity (NCA)
(3) arrestee may engage in new violent criminal activity (NVCA)

Pretrial Public Safety Assessment (PSA)

- PSA as an algorithmic recommendation

- PSA scores
(1) calculated based on nine factors
(2) two 6-point scores for FTA and NCA
(3) one binary score for NVCA

Pending charge at the time of the arrest	No	0
	Yes	1
Prior conviction (misdemeanor or felony)	No	0
	Yes	1
Prior failure to appear in the past 2 years	No	0
	Yes, just 1	2
	Yes, 2 or more	4
Prior failure to appear older than 2 years	No	0
	Yes	1

Pretrial Public Safety Assessment (PSA)

- PSA as an algorithmic recommendation

- Decision Making Framework (DMF)
- combines scores for bail recommendation:
cash bail or signature bond

Recommendations:
Release Recommendation - Signature bond
Conditions - Report to and comply with pretrial supervision

A field experiment for evaluating the PSA

- A field experiment in Dane county, Wisconsin
- PSA is generated for each case using a computer system
- randomly make PSA reports available to judges
- mid-2017 - 2019 (randomization), 2-year follow-up

A field experiment for evaluating the PSA

- A field experiment in Dane county, Wisconsin
- PSA is generated for each case using a computer system
- randomly make PSA reports available to judges
- mid-2017 - 2019 (randomization), 2-year follow-up
- Trichotomized ordinal decisions of bail amount
(1) signature bond
(2) $\leq \$ 1,000$ cash bond (small)
(3) $>\$ 1,000$ cash bond (large)

A field experiment for evaluating the PSA

- A field experiment in Dane county, Wisconsin
- PSA is generated for each case using a computer system
- randomly make PSA reports available to judges
- mid-2017-2019 (randomization), 2-year follow-up
- Trichotomized ordinal decisions of bail amount
(1) signature bond
(2) $\leq \$ 1,000$ cash bond (small)
(3) $>\$ 1,000$ cash bond (large)
- Z_{i} : PSA provision indicator
S_{i} : judge's decision (0 for signature bond, 1 for small cash, and 2 for large cash)
Y_{i} : FTA, NCA, or NVCA

Intention-to-treat analysis of PSA provision

- $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y) \rightsquigarrow$ overall effects of PSA provision

Intention-to-treat analysis of PSA provision

- $\operatorname{ACE}(Z \rightarrow S)$ and $\operatorname{ACE}(Z \rightarrow Y) \rightsquigarrow$ overall effects of PSA provision
- insignificant effects on judges' decisions
- possible effect on NVCA for females

Issue of ITT analysis

- ITT effect on the negative outcomes
- answers whether PSA provision helps prevent FTA, NCA, and NVCA

Issue of ITT analysis

- ITT effect on the negative outcomes
- answers whether PSA provision helps prevent FTA, NCA, and NVCA
- not enough for evaluating PSA

Issue of ITT analysis

- ITT effect on the negative outcomes
- answers whether PSA provision helps prevent FTA, NCA, and NVCA
- not enough for evaluating PSA
- ITT effect on the judge's decision
- answers whether PSA provision makes decision harsher or more lenient

Issue of ITT analysis

- ITT effect on the negative outcomes
- answers whether PSA provision helps prevent FTA, NCA, and NVCA
- not enough for evaluating PSA
- ITT effect on the judge's decision
- answers whether PSA provision makes decision harsher or more lenient
- does not answer whether PSA provision helps make better decisions

Issue of ITT analysis

- ITT effect on the negative outcomes
- answers whether PSA provision helps prevent FTA, NCA, and NVCA
- not enough for evaluating PSA
- ITT effect on the judge's decision
- answers whether PSA provision makes decision harsher or more lenient
- does not answer whether PSA provision helps make better decisions
- Good decisions: detain risky arrestees and release safe arrestees

The meaning of a "good" decision varies

- A toy example

	if released	if detained				
Arrestee A	NCA	no NCA		without PSA	with PSA	
Arrestee B	no NCA	no NCA		Judge 1	release all	detain A,C
Arrestee C	NCA	NCA			Judge 2	release all
detain B,C						

The meaning of a "good" decision varies

- A toy example

	if released	if detained			
Arrestee A	NCA	no NCA		without PSA	with PSA
Arrestee B	no NCA	no NCA		Judge 1	release all
Arrestee C	NCA	NCA		Judge 2	release all

- ITT effects of PSA are the same

The meaning of a "good" decision varies

- A toy example

	if released	if detained				
	Arrestee A	NCA	no NCA			
	without PSA	with PSA				
Arrestee B	no NCA	no NCA		Judge 1	release all	detain A,C
Arrestee C	NCA	NCA		release all	detain B,C	

- ITT effects of PSA are the same
- Risk level: $\mathrm{C}>\mathrm{A}>\mathrm{B}$
- detaining A prevents an NCA
- detaining B is unnecessary
- detaining C does not help

The meaning of a "good" decision varies

- A toy example

	if released	if detained			
Arrestee A	NCA	no NCA		without PSA	with PSA
Arrestee B	no NCA	no NCA		Judge 1	release all
Arrestee C	NCA	NCA		Judge 2	release all
Aretain B,C					

- ITT effects of PSA are the same
- Risk level: $\mathrm{C}>\mathrm{A}>\mathrm{B}$
- detaining A prevents an NCA
- detaining B is unnecessary
- detaining C does not help
- Risk levels depend on $\left\{\begin{array}{l}\text { (potential) outcome if released } \\ (\text { potential }) \text { outcome if detained }\end{array}\right.$

Setup

- Notation
- Z_{i} : PSA provision indicator
- $S_{i}: 1$ for detention, 0 for release
- Y_{i} : binary outcome (e.g., NCA)
- X_{i} : observed covariates
- U_{i} : unobserved covariates

Setup

- Notation
- Z_{i} : PSA provision indicator
- $S_{i}: 1$ for detention, 0 for release
- Y_{i} : binary outcome (e.g., NCA)
- X_{i} : observed covariates
- U_{i} : unobserved covariates
- Potential outcomes
- $D_{i}(z)$: potential value of the decision when $Z_{i}=z$
- $Y_{i}(z, s)$: potential outcome when $Z_{i}=z$ and $S_{i}=s$
- No interference across cases: first arrests only

Assumptions

- Randomized treatment assignment: $\left\{S_{i}(z), Y_{i}(z, s), X_{i}, U_{i}\right\} \Perp Z_{i}$

Assumptions

- Randomized treatment assignment: $\left\{S_{i}(z), Y_{i}(z, s), X_{i}, U_{i}\right\} \Perp Z_{i}$
- Exclusion restriction: $Y_{i}(z, s)=Y_{i}(s)$

Assumptions

- Randomized treatment assignment: $\left\{S_{i}(z), Y_{i}(z, s), X_{i}, U_{i}\right\} \Perp Z_{i}$
- Exclusion restriction: $Y_{i}(z, s)=Y_{i}(s)$
- Monotonicity: $Y_{i}(0) \geq Y_{i}(1)$

Defining risk levels based on principal stratification

- Principal stratification
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,1)$: preventable cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,1)$: risky cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,0)$: safe cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,0):$ eliminated by monotonicity

Defining risk levels based on principal stratification

- Principal stratification
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,1)$: preventable cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,1)$: risky cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,0)$: safe cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,0):$ eliminated by monotonicity
- Average principal causal effects of PSA on judges' decisions:

$$
\begin{aligned}
\text { APCEp } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=0, Y_{i}(0)=1\right\} \\
\text { APCEr } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=1, Y_{i}(0)=1\right\}, \\
\text { APCEs } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=0, Y_{i}(0)=0\right\}
\end{aligned}
$$

Defining risk levels based on principal stratification

- Principal stratification
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,1)$: preventable cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,1)$: risky cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(0,0)$: safe cases
- $\left(Y_{i}(1), Y_{i}(0)\right)=(1,0):$ eliminated by monotonicity
- Average principal causal effects of PSA on judges' decisions:

$$
\begin{aligned}
\text { APCEp } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=0, Y_{i}(0)=1\right\} \\
\text { APCEr } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=1, Y_{i}(0)=1\right\}, \\
\text { APCEs } & =\mathbb{E}\left\{S_{i}(1)-S_{i}(0) \mid Y_{i}(1)=0, Y_{i}(0)=0\right\}
\end{aligned}
$$

- If PSA is helpful, we should have APCEp >0 and APCEs <0.
- The desirable sign of APCEr depends on various factors.

Partial identification

$$
\begin{aligned}
& \text { APCEp }=\frac{\mathbb{P}\left(Y_{i}=1 \mid Z_{i}=0\right)-\mathbb{P}\left(Y_{i}=1 \mid Z_{i}=1\right)}{\mathbb{P}\left\{Y_{i}(0)=1\right\}-\mathbb{P}\left\{Y_{i}(1)=1\right\}} \\
& \text { APCEr }=\frac{\mathbb{P}\left(S_{i}=1, Y_{i}=1 \mid Z_{i}=1\right)-\mathbb{P}\left(S_{i}=1, Y_{i}=1 \mid Z_{i}=0\right)}{\mathbb{P}\left\{Y_{i}(1)=1\right\}} \\
& \text { APCEs }=\frac{\mathbb{P}\left(S_{i}=0, Y_{i}=0 \mid Z_{i}=0\right)-\mathbb{P}\left(S_{i}=0, Y_{i}=0 \mid Z_{i}=1\right)}{1-\mathbb{P}\left\{Y_{i}(0)=1\right\}}
\end{aligned}
$$

- The signs of principal causal effects are identifiable under the assumptions of randomization, exclusion restriction, and monotonicity.

Extension to Ordinal Decision

- Judges decisions are typically ordinal (e.g., bail amount)
- $S_{i}=0,1, \ldots, k$: a bail of increasing amount
- Monotonicity: $Y_{i}\left(s_{1}\right) \geq Y_{i}\left(s_{2}\right)$ for $s_{1} \leq s_{2}$

Extension to Ordinal Decision

- Judges decisions are typically ordinal (e.g., bail amount)
- $S_{i}=0,1, \ldots, k$: a bail of increasing amount
- Monotonicity: $Y_{i}\left(s_{1}\right) \geq Y_{i}\left(s_{2}\right)$ for $s_{1} \leq s_{2}$
- Principal strata based on an ordinal measure of risk

$$
R_{i}= \begin{cases}\min \left\{s: Y_{i}(s)=0\right\} & \text { if } Y_{i}(k)=0 \\ k+1 & \text { if } Y_{i}(k)=1\end{cases}
$$

- Least amount of bail that keeps an arrestee from committing NCA

Extension to Ordinal Decision

- Judges decisions are typically ordinal (e.g., bail amount)
- $S_{i}=0,1, \ldots, k$: a bail of increasing amount
- Monotonicity: $Y_{i}\left(s_{1}\right) \geq Y_{i}\left(s_{2}\right)$ for $s_{1} \leq s_{2}$
- Principal strata based on an ordinal measure of risk

$$
R_{i}= \begin{cases}\min \left\{s: Y_{i}(s)=0\right\} & \text { if } Y_{i}(k)=0 \\ k+1 & \text { if } Y_{i}(k)=1\end{cases}
$$

- Least amount of bail that keeps an arrestee from committing NCA
- Example with $k=2$

principal strata	$\left(Y_{i}(0), Y_{i}(1), Y_{i}(2)\right)$	R_{i}
risky cases	$(1,1,1)$	3
preventable cases	$(1,1,0)$	2
easily preventable cases	$(1,0,0)$	1
safe cases	$(0,0,0)$	0

APCE for ordinal decision

- For people with $R_{i}=r$
- judges make decision $S_{i} \geq r \rightsquigarrow$ not commit a crime
- judges make decision $S_{i}<r \rightsquigarrow$ commit a crime
- Causal quantities of interest : reduction in the proportion of NCA attributable to PSA provision

$$
\operatorname{ACEP}(r)=\operatorname{Pr}\left\{S_{i}(1) \geq r \mid R_{i}=r\right\}-\operatorname{Pr}\left\{S_{i}(0) \geq r \mid R_{i}=r\right\}
$$

- Partial identification without unconfoundedness

Point identification

- Unconfoundedness: $Y_{i}(s) \Perp S_{i} \mid \mathbf{X}_{i}, Z_{i}=z$
- Violation of unconfoundedness
- unobserved covariates between decision and outcome
- sensitivity analysis

Point identification

- Unconfoundedness: $Y_{i}(s) \Perp S_{i} \mid \mathbf{X}_{i}, Z_{i}=z$
- Violation of unconfoundedness
- unobserved covariates between decision and outcome
- sensitivity analysis
- Principal score

$$
e_{r}(\mathbf{x})=\operatorname{Pr}\left(R_{i}=r \mid \mathbf{X}_{i}=\mathbf{x}\right)
$$

Point identification

- Unconfoundedness: $Y_{i}(s) \Perp S_{i} \mid \mathbf{X}_{i}, Z_{i}=z$
- Violation of unconfoundedness
- unobserved covariates between decision and outcome
- sensitivity analysis
- Principal score

$$
e_{r}(\mathbf{x})=\operatorname{Pr}\left(R_{i}=r \mid \mathbf{X}_{i}=\mathbf{x}\right)
$$

- Identification formula

$$
\operatorname{ACEP}(r)=\mathbb{E}[\left.\underbrace{\frac{e_{r}(\mathbf{x})}{\mathbb{E}\left\{e_{r}\left(\mathbf{X}_{i}\right)\right\}}}_{\text {weight }} \mathbf{1}\left(S_{i} \geq r\right) \right\rvert\, Z_{i}=1]-\mathbb{E}[\left.\underbrace{\frac{e_{r}(\mathbf{x})}{\mathbb{E}\left\{e_{r}\left(\mathbf{X}_{i}\right)\right\}}}_{\text {weight }} \mathbf{1}\left(S_{i} \geq r\right) \right\rvert\, Z_{i}=0]
$$

Estimated average principal causal effects

$$
\operatorname{Pr}\left\{S_{i}(1)=s \mid R_{i}=r\right\}-\operatorname{Pr}\left\{S_{i}(0)=s \mid R_{i}=r\right\}
$$

Failure to Appear (FTA)

New Criminal Activity (NCA)

New Violent Criminal Activity (NVCA)

Topics not covered

- Principal stratification in observational studies
- identification assumptions
- outcome regression, inverse probability weighting, multiply robust estimation
- Other identification strategies
- parametric modeling
- Bayesian analysis
- using additional information, e.g., secondary outcome
- More complex settings
- interference
- data complications: missing data, selection bias, measurement error

Summary

- Post-treatment variable S_{i} : affected by the treatment
- naive adjustment for the observed variable S_{i} does not yield a valid causal quantity
- principal stratification defined by $S_{i}(1)$ and $S_{i}(0)$
- application to non-compliance, truncation-by-death, and surrogate evaluation problems
- Various identification strategies
- monotonicity and exclusion restriction
- monotonicity and principal ignorability
- Extension
- identification without monotonicity
- discrete and continous S

