
Monte Carlo simulation
Basic idea: random walk and diffusion

equivalence

DiffusionL P(x,t) is the probability distribution of a
particle for different positions x at a given time t.
• At the initial time t=0, the particle is localized at the origin. 𝑃 𝑥, 0 =, 𝛿 𝑥 .

•
𝜕𝑃

𝜕𝑡
= 𝐷𝜕2𝑃/𝜕2𝑥,.

• 𝑃 𝑥, 𝑡 = 𝑒−
𝑥2

4𝐷𝑡/ 4𝜋𝐷𝑡,

• 𝜕𝑡𝑃 𝑥, 𝑡 = (
𝑥2

4𝐷𝑡2
−

1

2𝑡
)𝑒−

𝑥2

4𝐷𝑡/ 4𝜋𝐷𝑡

• 𝜕𝑥𝑃 𝑥, 𝑡 = −
𝑥

2𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡/ 4𝜋𝐷𝑡

• 𝜕𝑥
2𝑃 𝑥, 𝑡 = [−

1

2𝐷𝑡
+ (

𝑥

2𝐷𝑡
)2]𝑒−

𝑥2

4𝐷𝑡/ 4𝜋𝐷𝑡

• 𝑑𝑥 𝑃 𝑥, 𝑡 = 𝑑𝑢 𝑒−𝑢
2
/ 𝜋=1

Diffusion

• P(x,t) is the probability distribution of a particle for different positions x at
a given time t.

•
𝜕𝑃

𝜕𝑡
= 𝐷𝜕2𝑃/𝜕2𝑥, D is the diffusion coefficient.

• At the initial time t=0, 𝑃 𝑥 = 𝛿 𝑥 . The particle is localized at the origin.

• 𝑃 𝑥, 𝑡 = 𝑒−
𝑥2

4𝐷𝑡/ 4𝜋𝐷𝑡,

• < 𝑥2 𝑡 > = 𝑑𝑢 𝑢2𝑃(𝑢,t)=4Dt

• .

Random Walk: the Langevin equation

•
𝑑𝑥

𝑑𝑡
= 𝜉, 𝜉 is random, < 𝜉 > = 0,< 𝜉 t 𝜉 t′ ≻= δ 𝑡 − 𝑡′ 4𝐷

• 𝑥 𝑡 = 0
𝑡
𝑑𝑢 𝜉(u),

• < 𝑥2 𝑡 > = 0
𝑡
𝑑𝑢 0

𝑡
𝑑𝑢′ < 𝜉(u’) 𝜉 𝑢 > = 4𝐷𝑡

• Random walk and diffusion are equivalent.

• We shall use the random walk approach to calculate averages.

Random walk and diffusion are
equivalent.

We shall use the random walk
approach to calculate averages.

Instead of the diffusion equation we have the
master equation for the time dependence of the
probability distribution P
• dP/dt = OP

• Many possible forms for O. P is specified by its components 𝑃𝑗, the
probability of finding configuration {𝑥}𝑗. In component form we have

•
𝑑𝑃𝑖

𝑑𝑡
= (𝑂𝑃)𝑖 = σ𝑗 𝑃𝑗(−𝑝𝑖,𝑗 + 𝑝𝑗,𝑖), 𝑝𝑗,𝑖 is the conditional probability

to go from j to i.

• What is p? For the equilibrium distribution
𝑑𝑷0

𝑑𝑡
= 0.

• Thus 𝑶𝑷𝟎 = 0. A sufficient condition is that
𝑝𝑖,𝑗

𝑝𝑗,𝑖
= exp[−𝛽(𝐸𝑗 − 𝐸𝑖)].

This is called detailed balance. This also determines the condition on
the random force in the corresponding Langevin equation

Efficient importance sampling

• For the equilibrium distribution 𝑷0 the average of a physical quantity
Q in equilibrium is

• < 𝑄 >= 𝑑𝑥 𝑄 𝑥 𝑃0 𝑥 .

• In a Monte Carlo simulation we have a random walk and generate a
series of configurations 𝑥𝑖 such that the probability of this is given
by 𝑃0 𝑥𝑖 and calculate the average as

• < 𝑄 >= σ𝑖𝑄 𝑥𝑖

Metropolis scheme

• Transition probability between configuration i and j is given by:

•
𝑝𝑖,𝑗

𝑝𝑗,𝑖
= exp[−𝛽(𝐸𝑗 − 𝐸𝑖)]

• From configuration {𝑥}𝑖 we generate a configuration { 𝑥}𝑗 with the
probability proportional to exp[−𝛽(𝐸𝑗 − 𝐸𝑖)].

Metropolis scheme in more detail

• Start with some initial configuration and keep generating more
configuration.

• For example, for spins, starts with some initial configuriation such as
that all spins aligned. Change the spin configuration by some random
amount. For example, for spins that are vectors, choose a spin and
rotate the spin by some random amount by changing the angles
𝜃, 𝜑 by a random amount with a maxmum magnitude calld the step
size. The spin components are 𝑆𝑧 = cos 𝜃, 𝑆𝑥 = sin 𝜃 cos𝜑, 𝑆𝑦 =
sin 𝜃 sin𝜑

• Call this configuration j’

Metropolis scheme in more detail

• Calculate the Boltzmann factor p = exp[−𝛽(𝐸𝑗′ − 𝐸𝑖)].

• For our example for real systems, the energy is a sum of three terms: The
exchange energy 𝐸𝑒𝑥 = −𝐽/2σ𝑖,𝛿

Ԧ𝑆𝑖 ∙ Ԧ𝑆𝑖+𝛿 that aligns each spin and its
neighbours, the anisotropy anergy 𝐸𝑎= -σ𝑖,[𝐾(Ԧ𝑆𝑖 ∙∙ 𝑛)

2 + 𝐾′(Ԧ𝑆𝑖 ∙ 𝑛)
4]

that alingns each spin along a direction n, and the coupling energy with the
external field B, 𝐸𝑒𝑥𝑡 = −𝑔𝜇𝐵 σ𝑖,𝛿

Ԧ𝑆𝑖 ∙ 𝑩

• If p>1, then accept the move call this the new configuration j. Otherwise
generate a random number x. If p>x, then we accept the move, otherwise
the moe is rejected.

• If the step size is large, the acceptance ratio (rate of acceptance) is low.
Usually one choose a step size so that the acceptance ratio is 30%

Practical matter:

• To access the convergence to equilibrium, we calculate the averages
at different instances in time over some small sample size and see
how this changes. In your program, we divide the number of MC
steps into blocks and look at the average of each block.

• After the system has approached equilibrium, averages can be taken.

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Simulations of 2D Ising model

Figure: Lattice spin
model with nearest
neighbor interaction. The
red site interacts only
with the 4 adjacent
yellow sites.

We use the Ising model to demonstrate the
studies of phase transitions.

The Ising model considers the interaction of
elementary objects called spins which are
located at sites in a simple, 2-dimensional
lattice,

Ĥ = −J
NX

i,j=nn(i)

Ŝi Ŝj − µ0B
NX

i=1

Ŝi .

Magnetic ordering:

J > 0: lowest energy state is
ferromagnetic,
J < 0: lowest energy state is
antiferromagnetic.

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Equibrium properties

Mean energy 〈E〉 = Tr Ĥ ρ̂,

Heat capacity C =
∂ 〈E〉
∂T

=
1

kBT 2

“
〈E 2〉 − 〈E〉2

”
,

Mean magnetization 〈M〉 =

*˛̨̨̨
˛

NX
i=1

Si

˛̨̨̨
˛
+
,

Linear magnetic susceptibility χ =
1

kBT

“
〈M2〉 − 〈M〉2

”
,

where 〈M〉 and 〈M2〉 are evaluated at zero magnetic field (B = 0).

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.0

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.30

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.55

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=3.90

Monte Carlo simulation
Program that you will get

Homework

• Determine <M(T)> and step sizes for a few T

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Metropolis sampling method (1953)

1 Start from initial (random) configuration R0.

2 Randomly displace one (or more) of the particles.

3 Compute energy difference between two states:
∆E = V (Ri+1)− V (Ri).

4 Evaluate the transition probability which satisfies the
detailed balance:

υ(Ri ,Ri+1) =
pB (Ri+1)

pB (Ri)
= min

h
1, e−β∆E

i

∆E ≤ 0 : always accept new configuration.
∆E > 0 : accept with prob. p = e−β∆E

5 Repeat steps (2)–(4) to obtain a final estimation:
Ā = 〈A〉 ± δA, with the error: δA =

p
τAσ2

A/M.

We reduce a number sampled configurations to M ∼ 106 . . . 108.

We account only for configurations with non-vanishing weights: e−βV (Ri).

Five minute lesson on Fortran

• Do loop: repeat the tasks indicated by the statements between the
beginning and the end of the do loop, For the example, after the do
loop x=a+(a+1)+(a+2)+…b

• x=0

• Do 123 i=a,b
x=x+i

• 123 continue

From a spin configuration, change the orientation of a spin
by some random amount, call this configuration j’ .P(k):
angle 𝜑, T(k): angle 𝜃 of spin k

Start with some initial configuration and keep generating more configuration.

do ib=1,nblock0

To access the convergence to equilibrium, we calculate the averages at different instances in
time over some small sample size and see how this changes. In your program, we divide the
number of MC steps into blocks and look at the average of each block.

• DO 1 I=1,nstep

• change the orientation of one spin by some random amount

• DO 3 k=1,natoms

• From a spin configuration, rotate a spin by some random amount, 𝜑’ pp=, 𝜃′ = Pt

• df, dt : size of the change, decided by you at the beginning; TP= 2 pi , dmod= modulo, duni()
random number between 0 and 1

• PP(2)=dmod(P(k)+(duni()-0.5d0)*df,TP)

• Pt(2)=dmod(t(k)+(duni()-0.5d0)*dt,TP)

• convert from angle into xyz (123) componets sn (1,2,3)

• sn(3)=dcos(pt(2))

• sn(1)=dsin(pt(2))

• ens=dabs(sn(1))

• sn(2)=sn(1)*dsin(pp(2))

• sn(1)=sn(1)*dcos(pp(2))

Calculate E=E(anisotropy)+E.H+E (exchage) for the
orginal and rotated spins.

• PP(1)=P(k)

• Pt(1)=t(k)

• eos=dabs(dsin(t(k)))

• so(1)=s(k,1)

• so(2)=s(k,2)

• so(3)=s(k,3)

• c anisotropy energy change along direction lad, xa1, xa2 are constants put in at
the beginning of the program

• eoa=(xa1+xa2*so(lad)*so(lad))*so(lad)*so(lad)

• ena=(xa1+xa2*sn(lad)*sn(lad))*sn(lad)*sn(lad)

• C coupling energy to the external magnetic field

• enh=sn(lhd)*yh

• eoh=so(lhd)*yh

calculate the factor p = exp[−𝛽(𝐸𝑗′ − 𝐸𝑖)].
• c exchange energy
• enx=0.d0
• eox=0.d0
• dex=0.
• C sum over nearest neughbouts, nn labels nearest neighbor
• do ln=1,nnn

• ll=nn(k,ln)

• dso=0.
• dsn=0.
• do l=1,3
• dso=dso+s(ll,l)*so(l)
• dsn=dsn+s(ll,l)*sn(l)
• enddo
•

calculate the factor p = exp[−𝛽(𝐸𝑗′ − 𝐸𝑖)].

dex=dex+dsn-dso

• enx=enx+dsn*xj

• eox=eox+dso*xj

• enddo

• C 𝐸𝑗′ − 𝐸𝑖=de

• DE=enp*2.+ena+enh-eoh-(eop*2.+eoa)+dex*xj*2.

• C p=pdr , ens, eos are from the Jacobian of the spkerical coordinate

• pdr=dexp(-de)*ens/eos

If p>1, then accept the move by updating the
orginalangles with the new ones and call this the
new configuration j.
• IF(pDr.gE.1.d0) THEN
• c updating angles
• P(k)=PP(2)
• t(k)=Pt(2)
• C we have looked at E/kT , tm is T
• c updating energies
• ex=ex+2.*(enx-eox)*tm
• ep=ep+2.*(enp-eop)*tm
• ea=ea+(ena-eoa)*tm
• eh=eh+(enh-eoh)*tm

If p>1, then accept the move by updating the
orginalangles with the new ones and call this the
new configuration j.
• c updating components of the spins

• do l=1,3

• s(k,l)=sn(l)

• sm(l)=sm(l)-so(l)+sn(l)

• enddo

Otherwise generate a random number x. If p>x,
then we accept the move, otherwise the move is
rejected.
• ELSE

• XX=duni()

• IF(XX.le.prob) THEN

• C accepts the move, updsateing the information

• P(k)=PP(2)

• t(k)=Pt(2)

• do l=1,3

• s(k,l)=sn(l)

• sm(l)=sm(l)-so(l)+sn(l)

• enddo

• ex=ex+2.*(enx-eox)*tm

• ep=ep+2.*(enp-eop)*tm

• ea=ea+(ena-eoa)*tm

• eh=eh+(enh-eoh)*tm

Typical output from my program

• computing3600 lattice sites dimensionality 2

• number density 0.11547E+01

• hexagonal close packed lattice q displs 0.00000 0.00000 0.50000
q displs 0.50000 test 1.31607401295249 3600
1.15470053837925 1800 0.759835660457611
1.31607396931524 1.24080643766120 60 30 0
npuc 2 nvacancies 0

• box size 0.60000E+02 0.51962E+02

• nearest and next nearest neighbor distance 0.10000E+01
0.17321E+01

Beginning output
• 1 Sx+y 0.67746ܩ E+00 0.72000E+06 0.68645E+00 0.36000E+07 0.48081E-02

• 2 S 0.18253ܩ E-01 0.72000E+06 0.22730E-01 0.36000E+07 0.35834E-02

• 3 Sz 0.16315ܩ E-01 0.72000E+06 0.19596E-01 0.36000E+07 0.24062E-02

• 4 sx+y2 0.45904ܩ E+00 0.72000E+06 0.47198E+00 0.36000E+07 0.71687E-02

• 5 s 2 0.43555ܩ E-03 0.72000E+06 0.73160E-03 0.36000E+07 0.19822E-03

• 6 sz2 0.40368ܩ E-03 0.72000E+06 0.56662E-03 0.36000E+07 0.12823E-03

• 7 edip 0.00000ܩ E+00 0.72000E+06 0.00000E+00 0.36000E+07 0.00000E+00

• 8 exc 0.19394-ܩ E+01 0.72000E+06-0.19531E+01 0.36000E+07 0.91277E-02

• 9 eanis 0.13816-ܩ E+00 0.72000E+06-0.14037E+00 0.36000E+07 0.12595E-02

• 10 acrat 0.35598ܩ E+00 0.72000E+06 0.35322E+00 0.36000E+07 0.19200E-02

• 11 eh 0.00000ܩ E+00 0.72000E+06 0.00000E+00 0.36000E+07 0.00000E+00

Output at the end:

• 1 Sx+y 0.68181ܩ E+00 0.72000E+06 0.68326E+00 0.14400E+08 0.14625E-02

• 2 S 0.12820ܩ E-01 0.72000E+06 0.22834E-01 0.14400E+08 0.16745E-02

• 3 Sz 0.26563ܩ E-01 0.72000E+06 0.22343E-01 0.14400E+08 0.18442E-02

• 4 sx+y2 0.46494ܩ E+00 0.72000E+06 0.46712E+00 0.14400E+08 0.21214E-02

• 5 s 2 0.23026ܩ E-03 0.72000E+06 0.79088E-03 0.14400E+08 0.11139E-03

• 6 sz2 0.10399ܩ E-02 0.72000E+06 0.75116E-03 0.14400E+08 0.10449E-03

• 7 edip 0.00000ܩ E+00 0.72000E+06 0.00000E+00 0.14400E+08 0.00000E+00

• 8 exc 0.19445-ܩ E+01 0.72000E+06-0.19471E+01 0.14400E+08 0.24222E-02

• 9 eanis 0.13935-ܩ E+00 0.72000E+06-0.13959E+00 0.14400E+08 0.35645E-03

• 10 acrat 0.35536ܩ E+00 0.72000E+06 0.35447E+00 0.14400E+08 0.50297E-03

• 11 eh 0.00000ܩ E+00 0.72000E+06 0.00000E+00 0.14400E+08 0.00000E+00

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Simulations of 2D Ising model

Figure: Lattice spin
model with nearest
neighbor interaction. The
red site interacts only
with the 4 adjacent
yellow sites.

We use the Ising model to demonstrate the
studies of phase transitions.

The Ising model considers the interaction of
elementary objects called spins which are
located at sites in a simple, 2-dimensional
lattice,

Ĥ = −J
NX

i,j=nn(i)

Ŝi Ŝj − µ0B
NX

i=1

Ŝi .

Magnetic ordering:

J > 0: lowest energy state is
ferromagnetic,
J < 0: lowest energy state is
antiferromagnetic.

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Equibrium properties

Mean energy 〈E〉 = Tr Ĥ ρ̂,

Heat capacity C =
∂ 〈E〉
∂T

=
1

kBT 2

“
〈E 2〉 − 〈E〉2

”
,

Mean magnetization 〈M〉 =

*˛̨̨̨
˛

NX
i=1

Si

˛̨̨̨
˛
+
,

Linear magnetic susceptibility χ =
1

kBT

“
〈M2〉 − 〈M〉2

”
,

where 〈M〉 and 〈M2〉 are evaluated at zero magnetic field (B = 0).

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.0

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.30

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=2.55

Monte-Carlo integration Markov chains and the Metropolis algorithm Ising model Conclusion

Magnetization in 2D Ising model (J > 0, L2 = 642)

Magnetization in 2D Ising model: L x L=64x64

T=3.90

Histogram method

• In the averages of physical quantities < 𝑄 >= 𝑄 𝑒𝑥𝑝(−𝛽𝐸) , one
may be interested in averages at more than one temperatures.

• For example,

• < 𝑄 >= 𝑄 𝑒𝑥𝑝(−𝛽′𝐸) = ′𝑄 exp −𝛽E where

• 𝑄′ = 𝑄 𝑒𝑥𝑝[−(𝛽′ − 𝛽)𝐸]

• From the configuration 𝑥𝑖 generated, we can calculate the energy
𝐸 𝑥𝑖 and count the number of configuration (histograms) 𝑁𝑖with
energies within a mesh size ∆𝐸 of this energy. We then get

• < 𝑄𝑓(𝐸) > = σ𝑖𝑄 𝑥𝑖 𝑁𝑖𝑓[𝐸 𝑥𝑖]/σ𝑖 𝑁𝑖

The master equation also provides a way to look at
the approach to equilibrium and not just the
equilibrium properties
• Start with an initial distribution P(t=0). As time develops, P

approaches the equilibrium distribution.

• This can be seen mathematically as follows.

• We represent P(t=0) in terms of the eigenfunction of O:

• 𝑂 𝑛 > = −𝜆𝑛 𝑛 > , 𝜆0 = 0; 𝑃 𝑡 = 0 = σ𝑛𝑃𝑛|𝑛 >.

• ; 𝑃 𝑡 = σ𝑛𝑃𝑛𝑒
−𝜆𝑛𝑡|𝑛 > ; 𝑃 𝑡 = ∞ = 𝑃0|0 >.

• Close to a phase transition some of the eigenvalues are very small.
This is called critical slowing down.

	pkln17_Monte Carlo simualtion.pdf
	MC_pic.pdf
	Monte-Carlo integration
	Introduction
	Monte-Carlo integration

	Markov chains and the Metropolis algorithm
	Markov chains

	Ising model
	Ising model

	Conclusion
	Conclusion

	Appendix
	Appendix

	pkln18_pMC.pdf
	MC_pic.pdf
	Monte-Carlo integration
	Introduction
	Monte-Carlo integration

	Markov chains and the Metropolis algorithm
	Markov chains

	Ising model
	Ising model

	Conclusion
	Conclusion

	Appendix
	Appendix

	pkln17_Monte Carlo simualtion.pdf
	MC_pic.pdf
	Monte-Carlo integration
	Introduction
	Monte-Carlo integration

	Markov chains and the Metropolis algorithm
	Markov chains

	Ising model
	Ising model

	Conclusion
	Conclusion

	Appendix
	Appendix

