Monte Carlo simulation

Basic idea: random walk and diffusion
equivalence



DiffusionL P(x,t) is the probability distribution of a
narticle for different positions x at a given time t.

* At the initial time t=0, the particle is localized at the origin. P(x,0) =, 6 (x).
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Diffusion

* P(x,t) is the probability distribution of a particle for different positions x at

a given time t.
. Z—IZ = D0?%P/0%x, D is the diffusion coefficient.

At the initial time t=0, P(x) = §(x). The particle is localized at the origin.
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Random Walk: the Langevin equation

. % = ¢, &israndom, < ¢ >=0,<&(D)E(t') >=6(t —t')4D

+ x() = [ duf(u)
e <x2(t) >= [ du [ du' < &) &) >= 4Dt

 Random walk and diffusion are equivalent.
* We shall use the random walk approach to calculate averages.



Random walk and diffusion are
equivalent.

We shall use the random walk

approach to calculate averages.



nstead of the diffusion equation we have the
master equation for the time dependence of the

orobability distribution P
» dP/dt = OP

* Many possible forms for O. P is specified by its components P;, the
probability of finding configuration {x};. In component form we have
o i (OP); = 2; Pi(—pij + pj i), pj,i is the conditional probability

dt A
to go fromjtoi.

* What is p? For the equilibrium distribution % = 0.

* Thus OPy = 0. A sufficient condition is that % = exp[—F(E; — E;)].
This is called detailed balance. This also determines the condition on
the random force in the corresponding Langevin equation



Efficient importance sampling

* For the equilibrium distribution P, the average of a physical quantity
Q in equilibrium is

< Q>= [dxQ(x)Py(x).

* In a Monte Carlo simulation we have a random walk and generate a

series of configurations x; such that the probability of this is given
by P,(x;) and calculate the average as

*<Q>= 2;Q00x)



Metropolis scheme

* Transition probability between configuration i and j is given by:

Di,j
o = exp[~B(E; ~ E0)]

* From configuration {x}; we generate a configuration { x}; with the
probability proportional to exp[—£ (E; — E;)].



Metropolis scheme in more detail

e Start with some initial configuration and keep generating more
configuration.

* For example, for spins, starts with some initial configuriation such as
that all spins alighed. Change the spin configuration by some random
amount. For example, for spins that are vectors, choose a spin and
rotate the spin by some random amount by changing the angles
8, @ by a random amount with a maxmum magnitude calld the step
size. The spin components are S, = cos 6, S, =sinf cos g, S, =
sin @ sin @

* Call this configuration j’



Metropolis scheme in more detail

* Calculate the Boltzmann factor p = exp[—f(Ej, — E;)].

* For our example for real systems, the energy is a sum of three terms: The
exchange energy E,,, = —J/2),; 55 Sl+5 that allgns each spin and its

neighbours, the anisotropy anergy E,= - }; [K(S -1)? +K' (S 1)*]
that alingns each spin along a direction n, and the coupling energy with the

external field B, E.,; = —glug X 55; - B

* |f p>1, then accept the move call this the new configuration j. Otherwise
generate a random number x. If p>x, then we accept the move, otherwise

the moe is rejected.

* |f the step size is large, the acceptance ratio (rate of acceptance) is low.
Usually one choose a step size so that the acceptance ratio is 30%



Practical matter:

* To access the convergence to equilibrium, we calculate the averages
at different instances in time over some small sample size and see
how this changes. In your program, we divide the number of MC
steps into blocks and look at the average of each block.

» After the system has approached equilibrium, averages can be taken.



Ising model
©00000000

‘ * ‘ * @ We use the Ising model to demonstrate the

studies of phase transitions.

* * ‘ @ The Ising model considers the interaction of
elementary objects called spins which are

located at sites in a simple, 2-dimensional
* lattice,
N N
¢ ¢ ¢ =0 Y 55 -mBY S
i,j=nn(i) i=1

@ Magnetic ordering:

I

Lattice spin
model with nearest o J > 0: lowest energy state is
neighbor interaction. The ferromagnetic,
red site interacts only o J < 0: lowest energy state is
with the 4 adjacent antiferromagnetic.

yellow sites.



Ising model
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Mean energy (E) = Tr Hp,
) o (E) 1 2 2
A=) - E%) — (E ) ,

Heat capacity C 5T T2 (( ) — (E)

N
Mean magnetization (M) = < ZS; > ,

i=1
Linear magnetic susceptibility X = 1 (<M2) — (M>2>

ke T ’

where (M) and (M?) are evaluated at zero magnetic field (B = 0).
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Monte Carlo simulation

Program that you will get



Homework

* Determine <M(T)> and step sizes for a few T



Markov chains and the Metropolis algorithm
oooe

O Start from initial (random) configuration Ry.
Q Randomly displace one (or more) of the particles.

Q@ Compute energy difference between two states:
AE = V(Riy1) — V(R).

@ Evaluate the transition probability which satisfies the
detailed balance:

PB(R:‘H) . —BAE
v(Rj,Ri+1) = ——=== = min [1,e ]
(Ri,Rixa) ps(R;)
T e o AE <0 : always accept new configuration.
b o AE >0 : accept with prob. p = e #AE
N . \'o . O Repeat steps (2)—(4) to obtain a final estimation:

A = (A) £ §A, with the error: §A = \/Ta03/M.

@ We reduce a number sampled configurations to M ~ 10°...108.

@ We account only for configurations with non-vanishing weights: e~ #V(R).



Five minute lesson on Fortran

* Do loop: repeat the tasks indicated by the statements between the
beginning and the end of the do loop, For the example, after the do
loop x=a+(a+1)+(a+2)+...b

 x=0
. Do 123 i=a,b
X=X+i

e 123 continue



From a spin configuration, change the orientation of a spin
by some random amount, call this configuration |’ .P(k):
angle ¢, T(k): angle 8 of spin k

Start with some initial configuration and keep generating more configuration.
do ib=1,nblockO

To access the conver%ence to equilibrium, we calculate the averages at different instances in
time over some small sample size and see how this changes. In your Erogram, we divide the
number of MC steps into blocks and look at the average of each block.

. DO 1 I=1,nstep

* change the orientation of one spin by some random amount

DO 3 k=1,natoms

* From a spin configuration, rotate a spin by some random amount, @’ pp=, 8' = Pt

df, dt : size of the change, decided by you at the beginning; TP= 2 pi, dmod= modulo, dunif()
random number between 0 and 1

PP(2)=dmod( P(k)+(duni()-0.5d0)*df,TP)
Pt(2)=dmod( t(k)+(duni()-0.5d0)*dt,TP)



e convert from angle into xyz (123) componets sn (1,2,3)
sn(3)=dcos(pt(2))

sn(1)=dsin(pt(2))

ens=dabs(sn(1))

sn(2)=sn(1)*dsin(pp(2))

sn(1)=sn(1)*dcos(pp(2))



Calculate E=E(anisotropy)+E.H+E (exchage) for the
orginal and rotated spins.

PP(1)=P(k)

Pt(1)=t(k)
eos=dabs(dsin(t(k)))
so(1)=s(k,1)
so(2)=s(k,2)
so(3)=s(k,3)

c anisotropy energy change along direction lad, xal, xa2 are constants put in at
the beginning of the program

eoa=(xal+xa2*so(lad)*so(lad))*so(lad)*so(lad)

ena=(xal+xa2*sn(lad)*sn(lad))*sn(lad)*sn(lad)
C coupling energy to the external magnetic field

enh=sn(lhd)*yh

eoh=so(lhd)*yh



calculate the factor p = exp[—B(E;, — E;)].

* c exchange energy

. enx=0.d0
. eox=0.d0
. dex=0.

e C sum over nearest neughbouts, nn labels nearest neighbor
. do In=1,nnn

 ll=nn(k,In)
. dso=0.
. dsn=0.
. do I=1,3

. dso=dso+s(ll,1)*so(l)
. dsn=dsn+s(ll,1)*sn(l)
. enddo



calculate the factor p = exp[—B(E;, — E;)].

dex=dex+dsn-dso
. enx=enx+dsn*xj
. eox=eox+dso*xj
. enddo
* CE;, — E;=de
. DE=enp*2.+ena+enh-eoh-(eop™*2.+eo0a)+dex*xj*2.
* C p=pdr, ens, eos are from the Jacobian of the spkerical coordinate
 pdr=dexp(-de)*ens/eos



If p>1, then accept the move by updating the
orginalangles with the new ones and call this the

new configuration j.
*  IF(pDr.gE.1.d0) THEN

e c updating angles

. P(k)=PP(2)

. t(k)=Pt(2)

 Cwe have looked at E/kT , tmis T
e c updating energies

e ex=ex+2.*(enx-eox)*tm

. ep=ep+2.*(enp-eop)*tm

. ea=ea+(ena-eoa)*tm

. eh=eh+(enh-eoh)*tm



If p>1, then accept the move by updating the
orginalangles with the new ones and call this the

new configuration j.
* ¢ updating components of the spins

do 1=1,3

s(k,I)=sn(l)
sm(l)=sm(l)-so(l)+sn(l)
enddo



Otherwise generate a random number X. It p>X,
then we accept the move, otherwise the move is
rejected.

* ELSE
XX=duni()
IF(XX.le.prob) THEN

* Caccepts the move, updsateing the information
P(k)=PP(2)
t(k)=Pt(2)
do|=1,3
s(k,1)=sn(l)
sm(l)=sm(l)-so(l)+sn(l)
enddo
ex=ex+2.*(enx-eox)*tm
ep=ep+2.*(enp-eop)*tm
ea=ea+(ena-eoa)*tm
eh=eh+(enh-eoh)*tm



Typical output from my program

 computing3600 l|attice sites dimensionality 2
 number density 0.11547E+01
* hexagonal close packed lattice g displs 0.00000 0.00000 0.50000

q displs 0.50000 test 1.31607401295249 3600
1.15470053837925 1800 0.759835660457611
1.31607396931524 1.24080643766120 60 30

npuc 2 nvacancies 0O
* box size 0.60000E+02 0.51962E+02

* nearest and next nearest neighbor distance 0.10000E+01
0.17321E+01



Beginning output

1 Sx+y B0.67746 <E+00 0.72000E+06 0.68645E+00 0.36000E+07 0.48081E-02
S [0.18253 sE-01 0.72000E+06 0.22730E-01 0.36000E+07 0.35834E-02

Sz [0.16315 sE-01 0.72000E+06 0.19596E-01 0.36000E+07 0.24062E-02
sx+y2 £0.45904 <E+00 0.72000E+06 0.47198E+00 0.36000E+07 0.71687E-02
s2 [0.43555 oE-03 0.72000E+06 0.73160E-03 0.36000E+07 0.19822E-03
sz2 [0.40368 oE-03 0.72000E+06 0.56662E-03 0.36000E+07 0.12823E-03
edip 20.00000 ~E+00 0.72000E+06 0.00000E+00 0.36000E+07 0.00000E+00
exc [0.19394-cE+01 0.72000E+06-0.19531E+01 0.36000E+07 0.91277E-02
eanis 10.13816-<E+00 0.72000E+06-0.14037E+00 0.36000E+07 0.12595E-02
10 acrat@0.35598 ~E+00 0.72000E+06 0.35322E+00 0.36000E+07 0.19200E-02
11 eh ®0.00000 <E+00 0.72000E+06 0.00000E+00 0.36000E+07 0.00000E+00

O 00 N OO U1 B W N



Output at the end:

1 Sx+y [0.68181 <E+00 0.72000E+06 0.68326E+00 0.14400E+08 0.14625E-02
2 S [0.12820 oE-01 0.72000E+06 0.22834E-01 0.14400E+08 0.16745E-02

3 Sz [0.26563 <E-01 0.72000E+06 0.22343E-01 0.14400E+08 0.18442E-02

* 4 sx+y2[0.46494 oE+00 0.72000E+06 0.46712E+00 0.14400E+08 0.21214E-02
5 s2 [0.23026 ~E-03 0.72000E+06 0.79088E-03 0.14400E+08 0.11139E-03

* 6 sz2 [0.10399 oE-02 0.72000E+06 0.75116E-03 0.14400E+08 0.10449E-03

* 7 edip 20.00000 <E+00 0.72000E+06 0.00000E+00 0.14400E+08 0.00000E+00
* 8 exc [0.19445-.E+01 0.72000E+06-0.19471E+01 0.14400E+08 0.24222E-02
* 9 eanis 0.13935--E+00 0.72000E+06-0.13959E+00 0.14400E+08 0.35645E-03
* 10 acrat@0.35536 <E+00 0.72000E+06 0.35447E+00 0.14400E+08 0.50297E-03
11 eh @0.00000 sE+00 0.72000E+06 0.00000E+00 0.14400E+08 0.00000E+00
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‘ * ‘ * @ We use the Ising model to demonstrate the

studies of phase transitions.

* * ‘ @ The Ising model considers the interaction of
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Mean energy (E) = Tr Hp,
) o (E) 1 2 2
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Heat capacity C 5T T2 (( ) — (E)

N
Mean magnetization (M) = < ZS; > ,

i=1
Linear magnetic susceptibility X = 1 (<M2) — (M>2>
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where (M) and (M?) are evaluated at zero magnetic field (B = 0).
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Histogram method

* In the averages of physical quantities < Q > = [ Q exp(— BE), one
may be interested in averages at more than one temperatures.

* For example,
* < Q>=[Qexp(—p'E) = | Q' exp[—BE] where
* Q' =Qexp[—(B — B)E]

* From the configuration x; generated, we can calculate the energy

E (x;) and count the number of configuration (histograms) N;with
energies within a mesh size AE of this energy. We then get

* < Qf(E) >= X; QU)N;f[E(x)]/X; N;



he master equation also provides a way to look at
the approach to equilibrium and not just the

equilibrium properties

e Start with an initial distribution P(t=0). As time develops, P
approaches the equilibrium distribution.

* This can be seen mathematically as follows.

* We represent P(t=0) in terms of the eigenfunction of O:
cOln>=-A,n>,4,=0; P(t=0) =),P,|n>.
«: P(t) =Y, Pe Mt n>; P(t = o) = Py|0 >.

* Close to a phase transition some of the eigenvalues are very small.
This is called critical slowing down.
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