Lecture notes 2020.10.26 and 10.28

Jianzhang Mei

October 28, 2020

1 Convergence of percolation interface

Let (D; x, c) be a Dobrushin domain, i.e. $D \subset \mathbb{C}$ is a non-empty bounded simply connected domain with two boundary points x, c such that ∂D is a simple closed curve. Denote by \overline{xc} the boundary arc from x to c in counterclockwise order. We will consider the convergence of percolation interface curves in this note. The metric on the curves is the following:

$$d(\gamma_1, \gamma_2) := \inf \sup_{t \in [0,1]} |\gamma_1(t) - \gamma_2(t)|_{\mathbb{R}^2},$$
(1.1)

where the infimum is taken over all parametrizations $\gamma_1, \gamma_2 : [0, 1] \to \mathbb{C}$. Suppose $\{(D^{\delta_n}; x^{\delta_n}, c^{\delta_n})\}_{n=1}^{\infty}$ is a sequence of discrete Dobrushin domains on hexagonal lattice with mesh-size δ_n . Suppose it converges to (D; x, c) in the following sense:

• $x^{\delta_n} \to x$ and $c^{\delta_n} \to c$ as $\delta_n \to 0$;

•
$$\overline{x^{\delta_n}c^{\delta_n}} \to \overline{xc}$$
 and $\overline{c^{\delta_n}x^{\delta_n}} \to \overline{cx}$ as $\delta_n \to 0$ as curves in metric (1.1).

In D^{δ_n} , we perform critical percolation on faces such that the faces near $\overline{c^{\delta_n} x^{\delta_n}}$ are colored black and those near $\overline{x^{\delta_n} c^{\delta_n}}$ are colored white. We define the exploration process γ^{δ_n} from x^{δ_n} to c^{δ_n} as follows: it starts from x^{δ_n} and is targeted at c^{δ_n} , and it makes turns so that its left side is black face. The path is uniquely determined by this rule. Our main conclusion is the following.

Theorem 1.1. The exploration process γ^{δ_n} converges to SLE_6 in D from x to c in law in metric (1.1).

The strategy of the proof is as follows (we follow [4]):

- 1. Prove tightness to extract convergent subsequence by Prohorov's theorem (not today);
- 2. Define/parameterize the hull and identify its driving function.

We Assume Item 1 is done, i.e., we have extracted a convergent subsequence $\{\gamma^{\delta_n}\}$ that for some random continuous curve γ , we have $\gamma^{\delta_n} \to \gamma$ in law. By Skorohod's representation theorem, we can further assume $\gamma^{\delta_n} \to \gamma$ almost surely. We will prove γ is distributed like SLE₆ in *D* from *x* to *c*.

To avoid some technical difficulties, hereafter we assume $D = \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, the unit disk. We parameterize $\gamma : [0, \infty) \to \overline{D}$ so that $\gamma(0) = x$ and $\lim_{t\to\infty} \gamma(t) = c$, and that it

is not constant in any interval. We denote by K_t the hull formed by $\gamma[0,t]$ in \overline{D} (i.e., closure in \overline{D} of set of points disconnected by $\gamma[0,t]$ from c), and by D_t the connected component of $D \setminus \gamma[0,t]$ that has c on its boundary. Clearly, we have $K_t = \overline{D \setminus D_t}$. In order to relate γ with SLE₆, we have to map it onto upper half plane $\mathbb{H} := \{x + iy : y > 0\}$ and measure it in upper half plane capacity. We fix a conformal map $\Phi : D \to \mathbb{H}$ that sends (x, c) to $(0, \infty)$.

1.1 Parameterize γ

For every $z \in D$, let σ_z (resp. $\sigma_z^{\delta_n}$) be the first time at which z is disconnected from c by γ in D (resp. from c^{δ_n} by γ^{δ_n} in D^{δ_n}).

Lemma 1.2. Along some subsequence (still denoted by $\{\delta_n\}$), we have almost surely $\sigma_z^{\delta_n} \to \sigma_z$ for all $z \in D \cap \mathbb{Q}^2$.

Proof. [1, Lemma 6.1, Lemma 6.2].

Hereafter, we consider the subsequence in Lemma 1.2 in place of the original one.

Lemma 1.3. For all u' < u, there almost surely exists $v \in (u, u']$ such that $\gamma(v) \notin \gamma[0, u] \cup \partial D$.

Proof. Suppose $\{x_j\}$ is a countable dense subset of in $\gamma[0, u] \cup \partial D$. By RSW estimate, we may argue that none of them are visited by $\gamma(u, u']$ almost surely. But γ is not constant in any interval. Therefore, the segment $\gamma(u, u']$ cannot always stay in $\gamma[0, u] \cup \partial D$.

Lemma 1.4. The process $t \mapsto K_t$ is strictly increasing almost surely.

Proof. For u' > t, by Lemma 1.3, there exists $v \in (t, u')$ that $\gamma(v)$ is in one of the c.c.'s of $D \setminus \gamma[0, t]$. Suppose $\gamma(v)$ is not in D_t . Then by Lemma 1.2, there exists z (coordinantes are rational) that is in the same c.c. as $\gamma(v)$, and a.s. $\sigma_z^{\delta_n} \to \sigma_z$. Since $v > u \ge \sigma_z$ and $\gamma^{\delta_n} \to \gamma$, we know γ^{δ_n} will enter the c.c. it disconnected before. By definition of exploration process, it is not allowed. Therefore, we have $\gamma(v) \in D_t$.

From these three lemmas, we may conclude that the capacity of $\{\Phi(K_t)\}_{t\geq 0}$ is strictly increasing and continuous in time. We parameterize γ by the capacity of $\{\Phi(K_t)\}_{t\geq 0}$, i.e., the upper half plane capacity of $\Phi(K_t)$ is t for each $t \in [0, \infty)$.

1.2 Identify a continuous martingale

Let us add two marked points $a \in \overline{cx}$, $b \in \overline{xc}$, and let $a^{\delta_n} \in \overline{c^{\delta_n} x^{\delta_n}}$, $b^{\delta_n} \in \overline{x^{\delta_n} c^{\delta_n}}$ be their approximations. Define two events:

$$\mathcal{A}^{\delta_n} := \left\{ \gamma^{\delta_n} \text{ hits } \overline{c^{\delta_n} a^{\delta_n}} \text{ before } \overline{b^{\delta_n} c^{\delta_n}} \right\},$$
$$\mathcal{A} := \left\{ \gamma \text{ hits } \overline{ca} \text{ before } \overline{bc} \right\}.$$

Lemma 1.2 tells us $\mathbb{P}[\mathcal{A}^{\delta_n} \Delta \mathcal{A}] \to 0$, where Δ means taking symmetric difference. Observe that \mathcal{A}^{δ_n} happens if and only if there exists a white crossing from $\overline{x^{\delta_n} b^{\delta_n}}$ to $\overline{c^{\delta_n} a^{\delta_n}}$.

Recall Cardy's formula: If $(\Omega_{\delta}; A_{\delta}, B_{\delta}, C_{\delta}, D_{\delta}) \to (\Omega; A, B, C, D)$ in the Carathéodory sence (i.e. for some conformal maps $\phi_{\delta} : \mathbb{D} = \{z : |z| < 1\} \to \Omega_{\delta}$ and $\phi : \mathbb{D} \to \Omega$, we have $\phi_{\delta} \to \phi$ locally uniformly, and $\phi_{\delta}^{-1}(X_{\delta}) \to \phi^{-1}(X)$ for $X \in \{A, B, C, D\}$), then

$$\mathbb{P}[A_{\delta}B_{\delta} \leftrightarrow C_{\delta}D_{\delta}] \to f(\Omega; A, B, C, D)$$

where f is conformally invariant and equals |AB|/|CD| when Ω is an equilateral triangle with $\{A, C, D\}$ as its vertices.

Let us come back to our model. For all $t \ge 0$, on the one hand, if $\gamma[0,t] \cap (\overline{ca} \cup \overline{bc}) = \emptyset$, then there exists N > 0 (N may depend on γ) such that for all $n \ge N$, we have $\gamma^{\delta_n} \cap (\overline{c^{\delta_n}a^{\delta_n}} \cup \overline{b^{\delta_n}c^{\delta_n}}) = \emptyset$. Observe that now \mathcal{A}^{δ_n} happens if and only if there exists a white crossing from $\overline{\gamma^{\delta_n}(t), b^{\delta_n}}$ to $\overline{c^{\delta_n}a^{\delta_n}}$ in $D^{\delta_n} \setminus \gamma^{\delta_n}[0, t]$. By Cardy's formula, we have as $n \to \infty$,

$$\mathbb{E}[\mathbb{1}_{\mathcal{A}^{\delta_n}}|\gamma^{\delta_n}[0,t]] \to f(D_t;\gamma(t),b,c,a).$$

On the other hand, if $\gamma[0,t] \cap (\overline{ca} \cup \overline{bc}) \neq \emptyset$, then by Lemma 1.2, we have

$$\mathbb{E}[\mathbb{1}_{\mathcal{A}^{\delta_n}}|\gamma^{\delta_n}[0,t]] \to \mathbb{1}_{\mathcal{A}}$$

whose right hand side does not depend on t. Define

$$X_t := \begin{cases} f(D_t; \gamma(t), b, c, a) & \text{if } \gamma[0, t] \cap \left(\overline{ca} \cup \overline{bc}\right) = \emptyset, \\ \mathbb{1}_{\mathcal{A}} & \text{otherwise.} \end{cases}$$

Then, we have $\mathbb{E}[\mathbb{1}_{\mathcal{A}^{\delta_n}}|\gamma^{\delta_n}[0,t]] \to X_t$. We claim that X_t is a continuous martingale:

$$X_t = \mathbb{E}[\mathbb{1}_{\mathcal{A}}|\gamma[0,t]].$$

Indeed, for all bounded continuous function f on set of bounded curves (equipped with metric (1.1)), by Dominated Convergence Theorem and the fact $\mathbb{P}[\mathcal{A}^{\delta_n}\Delta\mathcal{A}] \to 0$, we have

$$\mathbb{E}[f(\gamma[0,t])\mathbb{1}_{\mathcal{A}}] = \lim_{n \to \infty} \mathbb{E}[\mathbb{1}_{\mathcal{A}^{\delta_n}} f(\gamma^{\delta_n}[0,t])]$$
$$= \lim_{n \to \infty} \mathbb{E}\left[\mathbb{E}[\mathbb{1}_{\mathcal{A}^{\delta_n}} | \gamma^{\delta_n}[0,t]] f(\gamma^{\delta_n}[0,t])\right]$$
$$= \mathbb{E}\left[X_t f(\gamma[0,t])\right].$$

By definition of X_t , we know X_t is adapted to filtration $\{\sigma(\gamma[0, t])\}_{t\geq 0}$ so we prove the claim by verifying the definition of conditional expectation. Hence X_t is a continuous martingale adapted to filtration of γ (although depends on a and b).

1.3 Derive the driving function

Recall that $\Phi : D \to \mathbb{H}$ is a fixed conformal map that sends (x, c) to $(0, \infty)$. For the two additional marked points a and b, we denote the their images by $a' := \Phi(a)$ and $b' := \Phi(b)$. Let $\{w_t\}_{t\geq 0}$ be the driving function of $\{\Phi(K_t)\}_{t\geq 0}$, and $\{g_t\}_{t\geq 0}$ be the solution of the following ODE:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - w_t}, \quad g_0(z) = z.$$

By the definition of driving function, we see that each g_t is a conformal map from $\mathbb{H}\setminus\Phi(K_t)$ onto \mathbb{H} with the property that $\lim_{z\to\infty} |g_t(z) - z| = 0$.

Define

$$\Psi(z) := \frac{\int_0^z \frac{du}{u^{2/3}(1-u)^{2/3}}}{\int_0^1 \frac{du}{u^{2/3}(1-u)^{2/3}}}.$$

From Schwarz-Christoffle mapping theorem, we see that Ψ is the conformal map from the equilateral triangle $\tilde{\Delta}$ with vertices $\left(0, 1, \frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ onto \mathbb{H} sending $\left(0, 1, \frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ to $(0, 1, \infty)$. Define

$$R(z) := \frac{z - g_t(a')}{g_t(b') - g_t(a')}$$

then the composition $\Psi \circ R \circ g_t \circ \Phi$ is the conformal map from D_t onto $\tilde{\Delta}$ sending $(a, \gamma(t), b, c)$ to $(\tilde{a}, \Phi(R(w_t)), \tilde{b}, \tilde{c})$. Combining with Cardy's formula, we have

$$X_t = 1 - \Psi(R(w_t)).$$

Note that the processes

$$\{w_t = \Psi^{-1}(1 - X_t)(g_t(b') - g_t(a')) + g_t(a')\}_{t \ge 0}, \quad \{g_t(a')\}_{t \ge 0}, \quad \{g_t(b')\}_{t \ge 0}\}$$

are all adapted to filtration of γ . We write $w_t = M_t + V_t$ where V_t is of bounded variation and M_t is a local martingale. Denote by

$$Z_t := R(w_t) = \frac{w_t - g_t(a')}{g_t(b') - g_t(a')}.$$

Then

$$\begin{split} d(1-X_t) &= d\Psi(Z_t) = d\left(\Psi\left(\frac{w_t - g_t(a')}{g_t(b') - g_t(a')}\right)\right) \\ &= \Psi'(Z_t) \left(\frac{dw_t}{g_t(b') - g_t(a')} + \frac{-(w_t - g_t(a'))}{(g_t(b') - g_t(a'))^2} \frac{2dt}{g_t(b') - w_t} + \frac{w_t - g_t(b')}{(g_t(b') - g_t(a'))^2} \frac{2dt}{g_t(a') - w_t}\right) \\ &\quad + \frac{1}{2} \Psi''(Z_t) \frac{d\langle M, M \rangle_t}{(g_t(b') - g_t(a'))^2} \\ &= \Psi'(Z_t) \frac{dw_t}{g_t(b') - g_t(a')} + \Psi'(Z_t) \left(\frac{1}{1 - Z_t} - \frac{1}{Z_t}\right) \frac{-dt}{(g_t(b') - g_t(a'))^2} + \frac{1}{2} \Psi''(Z_t) \frac{d\langle M, M \rangle_t}{(g_t(b') - g_t(a'))^2} \\ &= \log (a \ martingale + \Psi'(Z_t) \frac{dV_t}{g_t(b') - g_t(a')} + \frac{1}{2} \Psi''(Z_t) \frac{1}{(g_t(b') - g_t(a'))^2} (d\langle M, M \rangle_t - 6dt) \end{split}$$

where in the last equality we use $\Psi''(z) = \frac{2}{3} \left(\frac{1}{1-z} - \frac{1}{z}\right) \Psi'(z)$ for all $z \in \tilde{\Delta}$. Since X_t is a martingale, we get

$$\Psi'(Z_t)dV_t + \frac{1}{2}\Psi''(Z_t)\frac{d\langle M, M \rangle_t - 6dt}{g_t(b') - g_t(a')} = 0.$$
(1.2)

We choose a sequence $\{(a'_n, b'_n)\}$ so that $a'_n \to -\infty$ and $b'_n \to +\infty$, and that $Z_t^{(n)} := \frac{w_t - g_t(a'_n)}{g_t(b'_n) - g_t(a'_n)} \in (\frac{5}{8}, \frac{3}{4})$. From Schwarz's Symmetric Principle, we have

$$\Psi'\left(Z_t^{(n)}\right) = \Theta(1), \quad \Psi''\left(Z_t^{(n)}\right) = \Theta(1).$$

Replacing a', b' by a'_n, b'_n in (1.2) and taking $n \to \infty$, we have

$$dV_t = 0. (1.3)$$

Plugging into (1.2), we have

$$\Psi''(Z_t)\frac{d\langle M, M \rangle_t - 6dt}{g_t(b') - g_t(a')} = 0.$$
(1.4)

Replacing a', b' by a'_n, b'_n in (1.4), we have

$$d\langle M, M \rangle_t = 6dt. \tag{1.5}$$

Equations (1.3) and (1.5) imply that w_t is $\sqrt{6}$ times a standard Brownian motion (and is started at $\Phi(x) = 0$), hence γ is distributed like SLE₆. This finishes the proof.

2 Arm exponent: boundary case

We consider the critical percolation on faces of hexagonal lattice with mesh-size one. Define $B_{r,R} := \{x \in \mathbb{C} : x = ae^{i\theta} \text{ for } r < a < R, 0 < \theta < \pi\}$. Let $A_{r,R}$ be the set of faces that intersect $B_{r,R}$. Let $p \ge 1$ be an integer and $\sigma \in \{\text{black}, \text{white}\}^p$. We denote by $P_{r,R}^{\sigma}$ the probability that there exist p crossings $\{c_i\}_{i=1}^p$ in $A_{r,R}$ from the inner half circle to the outer half circle, arranged in clockwise order, such that c_i is in color σ_i .

The value $P_{r,R}^{\sigma}$ depends only on the cardinality of σ . Indeed, we can explore these crossings, one at a time, by starting exploration processes. By switching the colors in unexplored areas, we can switch the colors of these crossings. Denote by $P_{r,R}^{p}$ the value $P_{r,R}^{\sigma}$ where $\#\sigma = p$. Our main conclusion is the following.

Theorem 2.1. As $R \to \infty$, we have

$$\lim_{n \to \infty} P_{n,nR}^p = \Theta(1) R^{-\frac{p(p+1)}{6}}.$$

Remark 2.2. We can estimate $P_{r,R}^p$ with r fixed: there exists $n_0 > 0$ that

$$\lim_{R \to \infty} \frac{\log P_{n_0,R}^p}{\log R} = -\frac{p(p+1)}{6}.$$

This follows from Theorem 2.1 and some estimates (such as quasi-multiplicativity and extendability) for discrete model. See [3].

We simply denote the half annulus $B_{1,R}$ by B_R , whose four vertices are $(A_1, A_2, A_3, A_4) := (1, R, -R, -1)$. Recall a standard result in complex analysis: the π -extremal distance (i.e., π times the extremal distance) from $\overline{A_4A_1}$ to $\overline{A_2A_3}$ in B_R is log R. We start a SLE₆ in B_R from A_4 to A_2 until it hits $\overline{A_1A_3}$. We denote by S the compact hull of this process, and by G the c.c. of $B_R \setminus S$ that has A_1 on its boundary, and by \mathcal{L} the π -extremal distance from $\overline{A_4A_1}$ to $\overline{A_2A_3}$ in G. Note that if S hits $\overline{A_1A_2}$, then $\mathcal{L} = \infty$. To prove Theorem 2.1, we need the following theorem:

Theorem 2.3. As $R \to \infty$, we have

$$\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}}\exp(-\lambda\mathcal{L})\right] = \Theta(1)R^{-u(\lambda)}$$

where $\lambda \ge 0$ and $u(\lambda) = \frac{6\lambda + 1 + \sqrt{24\lambda + 1}}{6}$.

2.1 Proof of Theorem 2.1

We will first construct a series of SLE_6 's, and then use Theorem 2.3 together with convergence of exploration processes to derive the desired result. We construct these SLE_6 as follows.

- Let $Q^{(1)} := A_4$ and $D_1 := B_R$. We start a SLE₆ in D_1 from $Q^{(1)}$ to A_2 until it hits $\overline{A_1A_3}$. Denote by S_1 the hull of this SLE. If $S_1 \cap \overline{A_1A_2} \neq \emptyset$ then we stop the construction; otherwise, we let $Q^{(2)}$ be the point in $S_1 \cap \overline{A_4A_1}$ with least argument, and D_2 be the c.c. of $D_1 \setminus S_1$ that has A_1 on its boundary.
- Suppose for some $p \ge 2$, we have constructed p-1 SLE's and obtained starting point $Q^{(p)}$, domain D_p , and compact hull S_{p-1} that does not intersect $\overline{A_1A_2}$. We start a SLE₆ in D_p from $Q^{(p)}$ to A_2 until it hits $\overline{A_1A_3}$. Denote by S_p the hull of this SLE. If $S_p \cap \overline{A_1A_2} \ne \emptyset$ then we stop the construction; otherwise, we let $Q^{(p+1)}$ be the point in $S_p \cap \overline{A_4A_1}$ with least argument, and D_{p+1} be the c.c. of $D_p \setminus S_p$ that has A_1 on its boundary. We repeat this procedure until we stop somewhere.

Denote by $f_p(R)$ the probability that we can start at least (p + 1) SLE₆'s in the above procedure. On the one hand, by convergence of exploration process to SLE₆ in Dobrushin domain, we have

$$\lim_{n \to \infty} P^p_{n,nR} = f_p(R).$$

On the other hand, by induction, we have

$$f_p(R) = \mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}}f_{p-1}(\exp(\mathcal{L}))\right].$$

Theorem 2.3 with $\lambda = 0$ tells us that $f_1(R) = \mathbb{P}[\mathcal{L} < \infty] = \Theta(1)R^{-\frac{1}{3}}$. We will prove by induction that, for each $p \ge 1$, we have

$$f_p(R) = \Theta(1)R^{-\frac{p(p+1)}{6}}.$$
(2.1)

Suppose we have derived (2.1) for some $p \ge 1$. Then

$$f_{p+1}(R) = \mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}}f_p(\exp(\mathcal{L}))\right]$$

= $\Theta(1)\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}}\exp\left(\frac{-p(p+1)}{6}\mathcal{L}\right)\right]$
= $\Theta(1)R^{-u\left(\frac{p(p+1)}{6}\right)}$ (Use Theorem 2.3)
= $\Theta(1)R^{-\frac{(p+1)(p+2)}{6}}.$

This finishes the induction. Therefore, we obtain that for $p \ge 1$,

$$\lim_{n \to \infty} P_{n,nR}^p = \Theta(1) R^{-\frac{p(p+1)}{6}}$$

2.2 Proof of Theorem 2.3

We follow [2] in this subsection. Let Φ be a conformal map from B_R onto upper half plane \mathbb{H} that sends (A_1, A_2, A_3) to $(1, \infty, 0)$. Let $\tilde{x} = \Phi(A_4)$. A standard estimate in complex analysis tells us that, as $R \to \infty$, we have

$$R = \Theta(1)(1 - \tilde{x})^{-1}.$$

We start a SLE₆ in \mathbb{H} from \tilde{x} to ∞ . We denote by $\{K_t\}_{t\geq 0}$ the collection of its compact hulls, and by $\{W_t\}_{t\geq 0}$ its driving function (a Brownian motion started at \tilde{x} with quadratic variation 6dt). Let $\{g_t\}_{t\geq 0}$ be the solution of the following ODE:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \quad g_t(z) = z.$$

Then, each g_t is the conformal map from $\mathbb{H}\setminus K_t$ onto \mathbb{H} with the property that $\lim_{z\to\infty} |g_t(z) - z| = 0$. Define

$$T_0 := \inf\{t : K_t \cap (-\infty, 0] \neq \emptyset\}, \quad T_1 := \inf\{t : K_t \cap [1, \infty) \neq \emptyset\}, \quad T = T_0 \wedge T_1,$$

and

$$f_t(z) := \frac{g_t(z) - g_t(0)}{g_t(1) - g_t(0)}.$$

Note that f_t is a renormalization of g_t that fixes points $(0, 1, \infty)$. We can prove that $f'_T(1) > 0$ if and only if $T_0 < T_1$, and that $T < \infty$ almost surely. See [2]. For $b \ge 0$ and 0 < x < 1, we define

$$\Lambda(x,b) := \mathbb{E}_{1-x} \left[\mathbb{1}_{\{T_0 < T_1\}} f'_T(1)^b \right],$$

$$\Omega(x,b) := \mathbb{E}_{1-x} \left[\mathbb{1}_{\{T_0 < T_1\}} (1 - N_T)^b \right]$$

where $N_T = f_T(\max(K_T \cap \mathbb{R}))$, and \mathbb{P}_y is the probability measure of SLE₆ in \mathbb{H} that starts at y.

Recall that the hypergeometric function with index (α, β, γ) is defined as

$${}_{2}F_{1}(\alpha,\beta,\gamma;z) = \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}} \frac{z^{n}}{n!}$$

where $(u)_0 := 1$ and $(u)_n := u(u+1) \dots (u+n-1)$ for $n \ge 1$. The function ${}_2F_1(\alpha, \beta, \gamma; \cdot)$ solves

$$(x-1)xF''(x) + (\gamma - (\alpha + \beta + 1)x)F'(x) - \alpha\beta F(x) = 0.$$

To prove Theorem 2.3, we need the following two lemmas.

Lemma 2.4. We have

$$\Lambda(x,b) = \frac{\sqrt{\pi}2^{-2b}\Gamma(5/6+\hat{b})}{\Gamma(1/3)\Gamma(1+\hat{b})}x^{1/6+\hat{b}}{}_2F_1(1/6+\hat{b},1/2+\hat{b},1+2\hat{b};x)$$

where $\hat{b} = \frac{\sqrt{24b+1}}{6}$, and $_2F_1$ is the hypergeometric function.

Lemma 2.5. For all $x \in (0, 1)$, we have

$$\left(\frac{x}{2}\right)^b \Lambda(x/2,b) \le \Omega(x,b) \le x^b \Lambda(x,b).$$

Proof of Theorem 2.3 (assuming these two lemmas). Denote by \mathcal{L}^* the π -extremal distance from $(-\infty, 0]$ to $(N_T, 1)$. Conformal invariance of SLE gives that $\mathcal{L} \stackrel{(d)}{=} \mathcal{L}^*$. We have a standard estimate in complex analysis:

$$\mathcal{L}^* = -\log(1 - N_T) + O(1)$$

where O(1) is a quantity with bound that does not depend on N_T . Then,

$$\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}}\exp(-\lambda\mathcal{L})\right] = \mathbb{E}_{\tilde{x}}\left[\mathbb{1}_{\{\mathcal{L}^*<\infty\}}\exp(-\lambda\mathcal{L}^*)\right]$$
$$= \Theta(1)\mathbb{E}_{\tilde{x}}\left[\mathbb{1}_{\{T_0
$$= \Theta(1)\Omega(1-\tilde{x},\lambda)$$
$$= \Theta(1)(1-\tilde{x})^{\lambda}(1-\tilde{x})^{\frac{1+\sqrt{1+24\lambda}}{6}} \qquad (By \text{ Lemma 2.4 and Lemma 2.5})$$
$$= \Theta(1)(1-\tilde{x})^{u(\lambda)}$$
$$= \Theta(1)R^{-u(\lambda)}.$$$$

This finishes the proof.

We now prove Lemma 2.4.

Proof of Lemma 2.4. Recall that $f_t(z) = \frac{g_t(z) - g_t(0)}{g_t(1) - g_t(0)}$. We define

$$Z_t = \frac{W_t - g_t(0)}{g_t(1) - g_t(0)}$$

and time-change

$$s = s(t) = \int_0^t \frac{du}{(g_u(1) - g_u(0))^2}, \quad \text{for } t < T.$$

Since $T < \infty$ almost surely, we have $s_0 := \lim_{t \to T^-} s(t) < \infty$ almost surely. Define

$$\tilde{Z}(s) := Z(t(s)), \quad \tilde{f}_s(z) := f_{t(s)}(z), \quad \alpha(s) := \log \tilde{f}'_s(1).$$

Then, by using Ito's formula, we can derive

$$d\tilde{Z}_s = dX_s + \left(\frac{2}{\tilde{Z}(s)} - \frac{2}{1 - \tilde{Z}(s)}\right) ds,$$
$$\partial_s \left(\alpha(s)\right) = \frac{-2}{(\tilde{Z}(s) - 1)^2} - \frac{2}{\tilde{Z}(s)} - \frac{2}{1 - \tilde{Z}(s)}$$

where X is a Brownian motion with quadratic variation 6*ds*. Hence $(\tilde{Z}(s), \alpha(s))$ is a continuous Markov process. Define

$$y(x,v) = \mathbb{E}\left[\exp(b\alpha(s_0))|\tilde{Z}(0) = x, \alpha(0) = v\right].$$

Then we have the following facts:

• The process $Y_s := y\left(\tilde{Z}(s), \alpha(s)\right)$ is a local martingale (by the Strong Markov Property). The drift term in Ito's formula of dY vanishes, which gives

$$\left(\frac{2}{x} - \frac{2}{1-x}\right)\partial_x y + 3\partial_{xx}y + \left(\frac{-2}{(x-1)^2} + \frac{-2}{x} + \frac{-2}{1-x}\right)\partial_v y = 0;$$

• We have that $y(x, v) = \exp(bv)y(x, 0)$ and that $y(1-x, 0) = \Lambda(x, b) =: h(x)$. Therefore,

$$y(x,v) = \exp(bv)h(1-x)$$

Combining these two facts, we have

$$-2bh(x) + 2x(1-2x)h'(x) + 3x^2(1-x)h''(x) = 0.$$
(2.2)

We solve (2.2) by looking for solutions of type

$$h(x) = x^c z(x)$$

where c is some constant. After discarding a solution that blows up at 0, we know $\Lambda(x, b) = h(x)$ is of the desired form.

Proof of Lemma 2.5. [2, Lemma 3.3].

References

- [1] Federico Camia and Charles M Newman. Critical percolation exploration path and SLE₆: a proof of convergence. *Probability theory and related fields*, 139(3-4):473–519, 2007.
- [2] Gregory Lawler, Oded Schramm, and Wendelin Werner. Values of brownian intersection exponents i: Half-plane exponents. *Acta Mathematica*, 187, 11 2000.
- [3] Pierre Nolin. Near-critical percolation in two dimensions. *Electronic Journal of Probability*, 13, 12 2007.
- [4] Wendelin Werner. Lectures on two-dimensional critical percolation. 11 2007.