# Lecture notes 2020.10.26 and 10.28 

Jianzhang Mei

October 28, 2020

## 1 Convergence of percolation interface

Let $(D ; x, c)$ be a Dobrushin domain, i.e. $D \subset \mathbb{C}$ is a non-empty bounded simply connected domain with two boundary points $x, c$ such that $\partial D$ is a simple closed curve. Denote by $\overline{x c}$ the boundary arc from $x$ to $c$ in counterclockwise order. We will consider the convergence of percolation interface curves in this note. The metric on the curves is the following:

$$
\begin{equation*}
\mathrm{d}\left(\gamma_{1}, \gamma_{2}\right):=\inf \sup _{t \in[0,1]}\left|\gamma_{1}(t)-\gamma_{2}(t)\right|_{\mathbb{R}^{2}}, \tag{1.1}
\end{equation*}
$$

where the infimum is taken over all parametrizations $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \mathbb{C}$. Suppose $\left\{\left(D^{\delta_{n}} ; x^{\delta_{n}}, c^{\delta_{n}}\right)\right\}_{n=1}^{\infty}$ is a sequence of discrete Dobrushin domains on hexagonal lattice with mesh-size $\delta_{n}$. Suppose it converges to $(D ; x, c)$ in the following sense:

- $x^{\delta_{n}} \rightarrow x$ and $c^{\delta_{n}} \rightarrow c$ as $\delta_{n} \rightarrow 0 ;$
- $\overline{x^{\delta_{n}} c^{\delta_{n}}} \rightarrow \overline{x c}$ and $\overline{c^{\delta_{n}} x^{\delta_{n}}} \rightarrow \overline{c x}$ as $\delta_{n} \rightarrow 0$ as curves in metric (1.1).

In $D^{\delta_{n}}$, we perform critical percolation on faces such that the faces near $\overline{c^{\delta_{n}} x^{\delta_{n}}}$ are colored black and those near $\overline{x^{\delta_{n}} c^{\delta_{n}}}$ are colored white. We define the exploration process $\gamma^{\delta_{n}}$ from $x^{\delta_{n}}$ to $c^{\delta_{n}}$ as follows: it starts from $x^{\delta_{n}}$ and is targeted at $c^{\delta_{n}}$, and it makes turns so that its left side is black face. The path is uniquely determined by this rule. Our main conclusion is the following.

Theorem 1.1. The exploration process $\gamma^{\delta_{n}}$ converges to $\mathrm{SLE}_{6}$ in $D$ from $x$ to $c$ in law in metric (1.1).

The strategy of the proof is as follows (we follow [4]):

1. Prove tightness to extract convergent subsequence by Prohorov's theorem (not today);
2. Define/parameterize the hull and identify its driving function.

We Assume Item 1 is done, i.e., we have extracted a convergent subsequence $\left\{\gamma^{\delta_{n}}\right\}$ that for some random continuous curve $\gamma$, we have $\gamma^{\delta_{n}} \rightarrow \gamma$ in law. By Skorohod's representation theorem, we can further assume $\gamma^{\delta_{n}} \rightarrow \gamma$ almost surely. We will prove $\gamma$ is distributed like $\mathrm{SLE}_{6}$ in $D$ from $x$ to $c$.

To avoid some technical difficulties, hereafter we assume $D=\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, the unit disk. We parameterize $\gamma:[0, \infty) \rightarrow \bar{D}$ so that $\gamma(0)=x$ and $\lim _{t \rightarrow \infty} \gamma(t)=c$, and that it
is not constant in any interval. We denote by $K_{t}$ the hull formed by $\gamma[0, t]$ in $\bar{D}$ (i.e., closure in $\bar{D}$ of set of points disconnected by $\gamma[0, t]$ from $c$ ), and by $D_{t}$ the connected component of $D \backslash \gamma[0, t]$ that has $c$ on its boundary. Clearly, we have $K_{t}=\overline{D \backslash D_{t}}$. In order to relate $\gamma$ with $\mathrm{SLE}_{6}$, we have to map it onto upper half plane $\mathbb{H}:=\{x+i y: y>0\}$ and measure it in upper half plane capacity. We fix a conformal map $\Phi: D \rightarrow \mathbb{H}$ that sends $(x, c)$ to $(0, \infty)$.

### 1.1 Parameterize $\gamma$

For every $z \in D$, let $\sigma_{z}$ (resp. $\sigma_{z}^{\delta_{n}}$ ) be the first time at which $z$ is disconnected from $c$ by $\gamma$ in $D$ (resp. from $c^{\delta_{n}}$ by $\gamma^{\delta_{n}}$ in $D^{\delta_{n}}$ ).
Lemma 1.2. Along some subsequence (still denoted by $\left\{\delta_{n}\right\}$ ), we have almost surely $\sigma_{z}^{\delta_{n}} \rightarrow \sigma_{z}$ for all $z \in D \cap \mathbb{Q}^{2}$.

Proof. [1, Lemma 6.1, Lemma 6.2].
Hereafter, we consider the subsequence in Lemma 1.2 in place of the original one.
Lemma 1.3. For all $u^{\prime}<u$, there almost surely exists $v \in\left(u, u^{\prime}\right]$ such that $\gamma(v) \notin \gamma[0, u] \cup \partial D$.
Proof. Suppose $\left\{x_{j}\right\}$ is a countable dense subset of in $\gamma[0, u] \cup \partial D$. By RSW estimate, we may argue that none of them are visited by $\gamma\left(u, u^{\prime}\right]$ almost surely. But $\gamma$ is not constant in any interval. Therefore, the segment $\gamma\left(u, u^{\prime}\right]$ cannot always stay in $\gamma[0, u] \cup \partial D$.

Lemma 1.4. The process $t \mapsto K_{t}$ is strictly increasing almost surely.
Proof. For $u^{\prime}>t$, by Lemma 1.3, there exists $v \in\left(t, u^{\prime}\right)$ that $\gamma(v)$ is in one of the c.c.'s of $D \backslash \gamma[0, t]$. Suppose $\gamma(v)$ is not in $D_{t}$. Then by Lemma 1.2, there exists $z$ (coordinantes are rational) that is in the same c.c. as $\gamma(v)$, and a.s. $\sigma_{z}^{\delta_{n}} \rightarrow \sigma_{z}$. Since $v>u \geqslant \sigma_{z}$ and $\gamma^{\delta_{n}} \rightarrow \gamma$, we know $\gamma^{\delta_{n}}$ will enter the c.c. it disconnected before. By definition of exploration process, it is not allowed. Therefore, we have $\gamma(v) \in D_{t}$.

From these three lemmas, we may conclude that the capacity of $\left\{\Phi\left(K_{t}\right)\right\}_{t \geqslant 0}$ is strictly increasing and continuous in time. We parameterize $\gamma$ by the capacity of $\left\{\Phi\left(K_{t}\right)\right\}_{t \geqslant 0}$, i.e., the upper half plane capacity of $\Phi\left(K_{t}\right)$ is $t$ for each $t \in[0, \infty)$.

### 1.2 Identify a continuous martingale

Let us add two marked points $a \in \overline{c x}, b \in \overline{x c}$, and let $a^{\delta_{n}} \in \overline{c^{\delta_{n}} x^{\delta_{n}}}, b^{\delta_{n}} \in \overline{x^{\delta_{n}} c^{\delta_{n}}}$ be their approximations. Define two events:

$$
\begin{gathered}
\mathcal{A}^{\delta_{n}}:=\left\{\gamma^{\delta_{n}} \text { hits } \overline{c^{\delta_{n}} a^{\delta_{n}}} \text { before } \overline{b^{\delta_{n}} c^{\delta_{n}}}\right\}, \\
\mathcal{A}:=\{\gamma \text { hits } \overline{c a} \text { before } \overline{b c}\} .
\end{gathered}
$$

Lemma 1.2 tells us $\mathbb{P}\left[\mathcal{A}^{\delta_{n}} \Delta \mathcal{A}\right] \rightarrow 0$, where $\Delta$ means taking symmetric difference. Observe that $\mathcal{A}^{\delta_{n}}$ happens if and only if there exists a white crossing from $\overline{x^{\delta_{n}} b^{\delta_{n}}}$ to $\overline{c^{\delta_{n}} a^{\delta_{n}}}$.

Recall Cardy's formula: If $\left(\Omega_{\delta} ; A_{\delta}, B_{\delta}, C_{\delta}, D_{\delta}\right) \rightarrow(\Omega ; A, B, C, D)$ in the Carathéodory sence (i.e. for some conformal maps $\phi_{\delta}: \mathbb{D}=\{z:|z|<1\} \rightarrow \Omega_{\delta}$ and $\phi: \mathbb{D} \rightarrow \Omega$, we have $\phi_{\delta} \rightarrow \phi$ locally uniformly, and $\phi_{\delta}^{-1}\left(X_{\delta}\right) \rightarrow \phi^{-1}(X)$ for $\left.X \in\{A, B, C, D\}\right)$, then

$$
\mathbb{P}\left[A_{\delta} B_{\delta} \leftrightarrow C_{\delta} D_{\delta}\right] \rightarrow f(\Omega ; A, B, C, D)
$$

where $f$ is conformally invariant and equals $|A B| /|C D|$ when $\Omega$ is an equilateral triangle with $\{A, C, D\}$ as its vertices.

Let us come back to our model. For all $t \geqslant 0$, on the one hand, if $\gamma[0, t] \cap(\overline{c a} \cup \overline{b c})=\varnothing$, then there exists $N>0$ ( $N$ may depend on $\gamma$ ) such that for all $n \geqslant N$, we have $\gamma^{\delta_{n}} \cap$ $\left(\overline{c^{\delta_{n}} a^{\delta_{n}}} \cup \overline{b^{\delta_{n}} c^{\delta_{n}}}\right)=\varnothing$. Observe that now $\mathcal{A}^{\delta_{n}}$ happens if and only if there exists a white crossing from $\overline{\gamma^{\delta_{n}}(t), b^{\delta_{n}}}$ to $\overline{c^{\delta_{n}} a^{\delta_{n}}}$ in $D^{\delta_{n}} \backslash \gamma^{\delta_{n}}[0, t]$. By Cardy's formula, we have as $n \rightarrow \infty$,

$$
\mathbb{E}\left[\mathbb{1}_{\mathcal{A}^{\delta_{n}}} \mid \gamma^{\delta_{n}}[0, t]\right] \rightarrow f\left(D_{t} ; \gamma(t), b, c, a\right) .
$$

On the other hand, if $\gamma[0, t] \cap(\overline{c a} \cup \overline{b c}) \neq \varnothing$, then by Lemma 1.2, we have

$$
\mathbb{E}\left[\mathbb{1}_{\mathcal{A}^{\delta_{n}}} \mid \gamma^{\delta_{n}}[0, t]\right] \rightarrow \mathbb{1}_{\mathcal{A}}
$$

whose right hand side does not depend on $t$. Define

$$
X_{t}:= \begin{cases}f\left(D_{t} ; \gamma(t), b, c, a\right) & \text { if } \gamma[0, t] \cap(\overline{c a} \cup \overline{b c})=\varnothing \\ \mathbb{1}_{\mathcal{A}} & \text { otherwise }\end{cases}
$$

Then, we have $\mathbb{E}\left[\mathbb{1}_{\mathcal{A}^{\delta_{n}}} \mid \gamma^{\delta_{n}}[0, t]\right] \rightarrow X_{t}$. We claim that $X_{t}$ is a continuous martingale:

$$
X_{t}=\mathbb{E}\left[\mathbb{1}_{\mathcal{A}} \mid \gamma[0, t]\right] .
$$

Indeed, for all bounded continuous function $f$ on set of bounded curves (equipped with metric (1.1)), by Dominated Convergence Theorem and the fact $\mathbb{P}\left[\mathcal{A}^{\delta_{n}} \Delta \mathcal{A}\right] \rightarrow 0$, we have

$$
\begin{aligned}
\mathbb{E}\left[f(\gamma[0, t]) \mathbb{1}_{\mathcal{A}}\right] & =\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{1}_{\mathcal{A}^{\delta_{n}}} f\left(\gamma^{\delta_{n}}[0, t]\right)\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\mathcal{A}^{\delta_{n}}} \mid \gamma^{\delta_{n}}[0, t]\right] f\left(\gamma^{\delta_{n}}[0, t]\right)\right] \\
& =\mathbb{E}\left[X_{t} f(\gamma[0, t])\right] .
\end{aligned}
$$

By definition of $X_{t}$, we know $X_{t}$ is adapted to filtration $\{\sigma(\gamma[0, t])\}_{t \geqslant 0}$ so we prove the claim by verifying the definition of conditional expectation. Hence $X_{t}$ is a continuous martingale adapted to filtration of $\gamma$ (although depends on $a$ and $b$ ).

### 1.3 Derive the driving function

Recall that $\Phi: D \rightarrow \mathbb{H}$ is a fixed conformal map that sends $(x, c)$ to $(0, \infty)$. For the two additional marked points $a$ and $b$, we denote the their images by $a^{\prime}:=\Phi(a)$ and $b^{\prime}:=\Phi(b)$. Let $\left\{w_{t}\right\}_{t \geqslant 0}$ be the driving function of $\left\{\Phi\left(K_{t}\right)\right\}_{t \geqslant 0}$, and $\left\{g_{t}\right\}_{t \geqslant 0}$ be the solution of the following ODE:

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-w_{t}}, \quad g_{0}(z)=z
$$

By the definition of driving function, we see that each $g_{t}$ is a conformal map from $\mathbb{H} \backslash \Phi\left(K_{t}\right)$ onto $\mathbb{H}$ with the property that $\lim _{z \rightarrow \infty}\left|g_{t}(z)-z\right|=0$.

Define

$$
\Psi(z):=\frac{\int_{0}^{z} \frac{d u}{u^{2 / 3}(1-u)^{2 / 3}}}{\int_{0}^{1} \frac{d u}{u^{2 / 3}(1-u)^{2 / 3}}} .
$$

From Schwarz-Christoffle mapping theorem, we see that $\Psi$ is the conformal map from the equilateral triangle $\tilde{\Delta}$ with vertices $\left(0,1, \frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$ onto $\mathbb{H}$ sending $\left(0,1, \frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$ to $(0,1, \infty)$. Define

$$
R(z):=\frac{z-g_{t}\left(a^{\prime}\right)}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)},
$$

then the composition $\Psi \circ R \circ g_{t} \circ \Phi$ is the conformal map from $D_{t}$ onto $\tilde{\Delta}$ sending $(a, \gamma(t), b, c)$ to $\left(\tilde{a}, \Phi\left(R\left(w_{t}\right)\right), \tilde{b}, \tilde{c}\right)$. Combining with Cardy's formula, we have

$$
X_{t}=1-\Psi\left(R\left(w_{t}\right)\right)
$$

Note that the processes

$$
\left\{w_{t}=\Psi^{-1}\left(1-X_{t}\right)\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)+g_{t}\left(a^{\prime}\right)\right\}_{t \geqslant 0}, \quad\left\{g_{t}\left(a^{\prime}\right)\right\}_{t \geqslant 0}, \quad\left\{g_{t}\left(b^{\prime}\right)\right\}_{t \geqslant 0}
$$

are all adapted to filtration of $\gamma$. We write $w_{t}=M_{t}+V_{t}$ where $V_{t}$ is of bounded variation and $M_{t}$ is a local martingale. Denote by

$$
Z_{t}:=R\left(w_{t}\right)=\frac{w_{t}-g_{t}\left(a^{\prime}\right)}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)} .
$$

Then

$$
\begin{aligned}
d\left(1-X_{t}\right)= & d \Psi\left(Z_{t}\right)=d\left(\Psi\left(\frac{w_{t}-g_{t}\left(a^{\prime}\right)}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}\right)\right) \\
= & \Psi^{\prime}\left(Z_{t}\right)\left(\frac{d w_{t}}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}+\frac{-\left(w_{t}-g_{t}\left(a^{\prime}\right)\right)}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}} \frac{2 d t}{g_{t}\left(b^{\prime}\right)-w_{t}}+\frac{w_{t}-g_{t}\left(b^{\prime}\right)}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}} \frac{2 d t}{g_{t}\left(a^{\prime}\right)-w_{t}}\right) \\
& +\frac{1}{2} \Psi^{\prime \prime}\left(Z_{t}\right) \frac{d\langle M, M\rangle_{t}}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}} \\
= & \Psi^{\prime}\left(Z_{t}\right) \frac{d w_{t}}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}+\Psi^{\prime}\left(Z_{t}\right)\left(\frac{1}{1-Z_{t}}-\frac{1}{Z_{t}}\right) \frac{-d t}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}}+\frac{1}{2} \Psi^{\prime \prime}\left(Z_{t}\right) \frac{d\langle M, M\rangle_{t}}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}} \\
= & \text { local martingale }+\Psi^{\prime}\left(Z_{t}\right) \frac{d V_{t}}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}+\frac{1}{2} \Psi^{\prime \prime}\left(Z_{t}\right) \frac{1}{\left(g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)\right)^{2}}\left(d\langle M, M\rangle_{t}-6 d t\right)
\end{aligned}
$$

where in the last equality we use $\Psi^{\prime \prime}(z)=\frac{2}{3}\left(\frac{1}{1-z}-\frac{1}{z}\right) \Psi^{\prime}(z)$ for all $z \in \tilde{\Delta}$. Since $X_{t}$ is a martingale, we get

$$
\begin{equation*}
\Psi^{\prime}\left(Z_{t}\right) d V_{t}+\frac{1}{2} \Psi^{\prime \prime}\left(Z_{t}\right) \frac{d\langle M, M\rangle_{t}-6 d t}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}=0 . \tag{1.2}
\end{equation*}
$$

We choose a sequence $\left\{\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right\}$ so that $a_{n}^{\prime} \rightarrow-\infty$ and $b_{n}^{\prime} \rightarrow+\infty$, and that $Z_{t}^{(n)}:=$ $\frac{w_{t}-g_{t}\left(a_{n}^{\prime}\right)}{g_{t}\left(b_{n}^{\prime}\right)-g_{t}\left(a_{n}^{\prime}\right)} \in\left(\frac{5}{8}, \frac{3}{4}\right)$. From Schwarz's Symmetric Principle, we have

$$
\Psi^{\prime}\left(Z_{t}^{(n)}\right)=\Theta(1), \quad \Psi^{\prime \prime}\left(Z_{t}^{(n)}\right)=\Theta(1)
$$

Replacing $a^{\prime}, b^{\prime}$ by $a_{n}^{\prime}, b_{n}^{\prime}$ in (1.2) and taking $n \rightarrow \infty$, we have

$$
\begin{equation*}
d V_{t}=0 \tag{1.3}
\end{equation*}
$$

Plugging into (1.2), we have

$$
\begin{equation*}
\Psi^{\prime \prime}\left(Z_{t}\right) \frac{d\langle M, M\rangle_{t}-6 d t}{g_{t}\left(b^{\prime}\right)-g_{t}\left(a^{\prime}\right)}=0 . \tag{1.4}
\end{equation*}
$$

Replacing $a^{\prime}, b^{\prime}$ by $a_{n}^{\prime}, b_{n}^{\prime}$ in (1.4), we have

$$
\begin{equation*}
d\langle M, M\rangle_{t}=6 d t . \tag{1.5}
\end{equation*}
$$

Equations (1.3) and (1.5) imply that $w_{t}$ is $\sqrt{6}$ times a standard Brownian motion (and is started at $\Phi(x)=0$ ), hence $\gamma$ is distributed like $\operatorname{SLE}_{6}$. This finishes the proof.

## 2 Arm exponent: boundary case

We consider the critical percolation on faces of hexagonal lattice with mesh-size one. Define $B_{r, R}:=\left\{x \in \mathbb{C}: x=a e^{i \theta}\right.$ for $\left.r<a<R, 0<\theta<\pi\right\}$. Let $A_{r, R}$ be the set of faces that intersect $B_{r, R}$. Let $p \geqslant 1$ be an integer and $\sigma \in\{\text { black, white }\}^{p}$. We denote by $P_{r, R}^{\sigma}$ the probability that there exist $p$ crossings $\left\{c_{i}\right\}_{i=1}^{p}$ in $A_{r, R}$ from the inner half circle to the outer half circle, arranged in clockwise order, such that $c_{i}$ is in color $\sigma_{i}$.

The value $P_{r, R}^{\sigma}$ depends only on the cardinality of $\sigma$. Indeed, we can explore these crossings, one at a time, by starting exploration processes. By swtiching the colors in unexplored areas, we can switch the colors of these crossings. Denote by $P_{r, R}^{p}$ the value $P_{r, R}^{\sigma}$ where $\# \sigma=p$. Our main conclusion is the following.

Theorem 2.1. As $R \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} P_{n, n R}^{p}=\Theta(1) R^{-\frac{p(p+1)}{6}}
$$

Remark 2.2. We can estimate $P_{r, R}^{p}$ with $r$ fixed: there exists $n_{0}>0$ that

$$
\lim _{R \rightarrow \infty} \frac{\log P_{n_{0}, R}^{p}}{\log R}=-\frac{p(p+1)}{6} .
$$

This follows from Theorem 2.1 and some estimates (such as quasi-multiplicativity and extendability) for discrete model. See [3].

We simply denote the half annulus $B_{1, R}$ by $B_{R}$, whose four vertices are $\left(A_{1}, A_{2}, A_{3}, A_{4}\right):=$ $(1, R,-R,-1)$. Recall a standard result in complex analysis: the $\pi$-extremal distance (i.e., $\pi$ times the extremal distance) from $\overline{A_{4} A_{1}}$ to $\overline{A_{2} A_{3}}$ in $B_{R}$ is $\log R$. We start a $\mathrm{SLE}_{6}$ in $B_{R}$ from $A_{4}$ to $A_{2}$ until it hits $\overline{A_{1} A_{3}}$. We denote by $S$ the compact hull of this process, and by $G$ the c.c. of $B_{R} \backslash S$ that has $A_{1}$ on its boundary, and by $\mathcal{L}$ the $\pi$-extremal distance from $\overline{A_{4} A_{1}}$ to $\overline{A_{2} A_{3}}$ in $G$. Note that if $S$ hits $\overline{A_{1} A_{2}}$, then $\mathcal{L}=\infty$. To prove Theorem 2.1, we need the following theorem:

Theorem 2.3. As $R \rightarrow \infty$, we have

$$
\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}} \exp (-\lambda \mathcal{L})\right]=\Theta(1) R^{-u(\lambda)}
$$

where $\lambda \geqslant 0$ and $u(\lambda)=\frac{6 \lambda+1+\sqrt{24 \lambda+1}}{6}$.

### 2.1 Proof of Theorem 2.1

We will first construct a series of $\operatorname{SLE}_{6}$ 's, and then use Theorem 2.3 together with convergence of exploration processes to derive the desired result. We construct these SLE $_{6}$ as follows.

- Let $Q^{(1)}:=A_{4}$ and $D_{1}:=B_{R}$. We start a $\operatorname{SLE}_{6}$ in $D_{1}$ from $Q^{(1)}$ to $A_{2}$ until it hits $\overline{A_{1} A_{3}}$. Denote by $S_{1}$ the hull of this SLE. If $S_{1} \cap \overline{A_{1} A_{2}} \neq \varnothing$ then we stop the construction; otherwise, we let $Q^{(2)}$ be the point in $S_{1} \cap \overline{A_{4} A_{1}}$ with least argument, and $D_{2}$ be the c.c. of $D_{1} \backslash S_{1}$ that has $A_{1}$ on its boundary.
- Suppose for some $p \geqslant 2$, we have constructed $p-1$ SLE's and obtained starting point $Q^{(p)}$, domain $D_{p}$, and compact hull $S_{p-1}$ that does not intersect $\overline{A_{1} A_{2}}$. We start a $\mathrm{SLE}_{6}$ in $D_{p}$ from $Q^{(p)}$ to $A_{2}$ until it hits $\overline{A_{1} A_{3}}$. Denote by $S_{p}$ the hull of this SLE. If $S_{p} \cap \overline{A_{1} A_{2}} \neq \varnothing$ then we stop the construction; otherwise, we let $Q^{(p+1)}$ be the point in $S_{p} \cap \overline{A_{4} A_{1}}$ with least argument, and $D_{p+1}$ be the c.c. of $D_{p} \backslash S_{p}$ that has $A_{1}$ on its boundary. We repeat this procedure until we stop somewhere.

Denote by $f_{p}(R)$ the probability that we can start at least $(p+1)$ SLE $_{6}$ 's in the above procedure. On the one hand, by convergence of exploration process to $\mathrm{SLE}_{6}$ in Dobrushin domain, we have

$$
\lim _{n \rightarrow \infty} P_{n, n R}^{p}=f_{p}(R) .
$$

On the other hand, by induction, we have

$$
f_{p}(R)=\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}} f_{p-1}(\exp (\mathcal{L}))\right] .
$$

Theorem 2.3 with $\lambda=0$ tells us that $f_{1}(R)=\mathbb{P}[\mathcal{L}<\infty]=\Theta(1) R^{-\frac{1}{3}}$. We will prove by induction that, for each $p \geqslant 1$, we have

$$
\begin{equation*}
f_{p}(R)=\Theta(1) R^{-\frac{p(p+1)}{6}} \tag{2.1}
\end{equation*}
$$

Suppose we have derived (2.1) for some $p \geqslant 1$. Then

$$
\begin{align*}
f_{p+1}(R) & =\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}} f_{p}(\exp (\mathcal{L}))\right] \\
& =\Theta(1) \mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}} \exp \left(\frac{-p(p+1)}{6} \mathcal{L}\right)\right] \\
& =\Theta(1) R^{-u\left(\frac{p(p+1)}{6}\right)}  \tag{UseTheorem2.3}\\
& =\Theta(1) R^{-\frac{(p+1)(p+2)}{6}} .
\end{align*}
$$

This finishes the induction. Therefore, we obtain that for $p \geqslant 1$,

$$
\lim _{n \rightarrow \infty} P_{n, n R}^{p}=\Theta(1) R^{-\frac{p(p+1)}{6}} .
$$

### 2.2 Proof of Theorem 2.3

We follow [2] in this subsection. Let $\Phi$ be a conformal map from $B_{R}$ onto upper half plane $\mathbb{H}$ that sends $\left(A_{1}, A_{2}, A_{3}\right)$ to $(1, \infty, 0)$. Let $\tilde{x}=\Phi\left(A_{4}\right)$. A standard estimate in complex analysis tells us that, as $R \rightarrow \infty$, we have

$$
R=\Theta(1)(1-\tilde{x})^{-1} .
$$

We start a $\mathrm{SLE}_{6}$ in $\mathbb{H}$ from $\tilde{x}$ to $\infty$. We denote by $\left\{K_{t}\right\}_{t \geqslant 0}$ the collection of its compact hulls, and by $\left\{W_{t}\right\}_{t \geqslant 0}$ its driving function (a Brownian motion started at $\tilde{x}$ with quadratic variation $6 d t)$. Let $\left\{g_{t}\right\}_{t \geqslant 0}$ be the solution of the following ODE:

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}}, \quad g_{t}(z)=z .
$$

Then, each $g_{t}$ is the conformal map from $\mathbb{H} \backslash K_{t}$ onto $\mathbb{H}$ with the property that $\lim _{z \rightarrow \infty}\left|g_{t}(z)-z\right|=$ 0 . Define

$$
T_{0}:=\inf \left\{t: K_{t} \cap(-\infty, 0] \neq \varnothing\right\}, \quad T_{1}:=\inf \left\{t: K_{t} \cap[1, \infty) \neq \varnothing\right\}, \quad T=T_{0} \wedge T_{1}
$$

and

$$
f_{t}(z):=\frac{g_{t}(z)-g_{t}(0)}{g_{t}(1)-g_{t}(0)}
$$

Note that $f_{t}$ is a renormalization of $g_{t}$ that fixes points $(0,1, \infty)$. We can prove that $f_{T}^{\prime}(1)>0$ if and only if $T_{0}<T_{1}$, and that $T<\infty$ almost surely. See [2]. For $b \geqslant 0$ and $0<x<1$, we define

$$
\begin{gathered}
\Lambda(x, b):=\mathbb{E}_{1-x}\left[\mathbb{1}_{\left\{T_{0}<T_{1}\right\}} f_{T}^{\prime}(1)^{b}\right], \\
\Omega(x, b):=\mathbb{E}_{1-x}\left[\mathbb{1}_{\left\{T_{0}<T_{1}\right\}}\left(1-N_{T}\right)^{b}\right]
\end{gathered}
$$

where $N_{T}=f_{T}\left(\max \left(K_{T} \cap \mathbb{R}\right)\right)$, and $\mathbb{P}_{y}$ is the probability measure of $\operatorname{SLE}_{6}$ in $\mathbb{H}$ that starts at $y$.

Recall that the hypergeometric function with index $(\alpha, \beta, \gamma)$ is defined as

$$
{ }_{2} F_{1}(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}} \frac{z^{n}}{n!},
$$

where $(u)_{0}:=1$ and $(u)_{n}:=u(u+1) \ldots(u+n-1)$ for $n \geqslant 1$. The function ${ }_{2} F_{1}(\alpha, \beta, \gamma ; \cdot)$ solves

$$
(x-1) x F^{\prime \prime}(x)+(\gamma-(\alpha+\beta+1) x) F^{\prime}(x)-\alpha \beta F(x)=0 .
$$

To prove Theorem 2.3, we need the following two lemmas.
Lemma 2.4. We have

$$
\Lambda(x, b)=\frac{\sqrt{\pi} 2^{-2 \hat{b}} \Gamma(5 / 6+\hat{b})}{\Gamma(1 / 3) \Gamma(1+\hat{b})} x^{1 / 6+\hat{b}}{ }_{2} F_{1}(1 / 6+\hat{b}, 1 / 2+\hat{b}, 1+2 \hat{b} ; x)
$$

where $\hat{b}=\frac{\sqrt{24 b+1}}{6}$, and ${ }_{2} F_{1}$ is the hypergeometric function.
Lemma 2.5. For all $x \in(0,1)$, we have

$$
\left(\frac{x}{2}\right)^{b} \Lambda(x / 2, b) \leqslant \Omega(x, b) \leqslant x^{b} \Lambda(x, b) .
$$

Proof of Theorem 2.3 (assuming these two lemmas). Denote by $\mathcal{L}^{*}$ the $\pi$-extremal distance from $(-\infty, 0]$ to $\left(N_{T}, 1\right)$. Conformal invariance of SLE gives that $\mathcal{L} \stackrel{(d)}{=} \mathcal{L}^{*}$. We have a standard estimate in complex analysis:

$$
\mathcal{L}^{*}=-\log \left(1-N_{T}\right)+O(1)
$$

where $O(1)$ is a quantity with bound that does not depend on $N_{T}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{\{\mathcal{L}<\infty\}} \exp (-\lambda \mathcal{L})\right] & =\mathbb{E}_{\tilde{x}}\left[\mathbb{1}_{\left\{\mathcal{L}^{*}<\infty\right\}} \exp \left(-\lambda \mathcal{L}^{*}\right)\right] \\
& =\Theta(1) \mathbb{E}_{\tilde{x}}\left[\mathbb{1}_{\left\{T_{0}<T_{1}\right\}}\left(1-N_{T}\right)^{\lambda}\right] \\
& =\Theta(1) \Omega(1-\tilde{x}, \lambda) \\
& =\Theta(1)(1-\tilde{x})^{\lambda}(1-\tilde{x})^{\frac{1+\sqrt{1+24 \lambda}}{6}} \\
& =\Theta(1)(1-\tilde{x})^{u(\lambda)} \\
& =\Theta(1) R^{-u(\lambda)} .
\end{aligned}
$$

(By Lemma 2.4 and Lemma 2.5)

This finishes the proof.
We now prove Lemma 2.4.
Proof of Lemma 2.4. Recall that $f_{t}(z)=\frac{g_{t}(z)-g_{t}(0)}{g_{t}(1)-g_{t}(0)}$. We define

$$
Z_{t}=\frac{W_{t}-g_{t}(0)}{g_{t}(1)-g_{t}(0)}
$$

and time-change

$$
s=s(t)=\int_{0}^{t} \frac{d u}{\left(g_{u}(1)-g_{u}(0)\right)^{2}}, \quad \text { for } t<T
$$

Since $T<\infty$ almost surely, we have $s_{0}:=\lim _{t \rightarrow T-} s(t)<\infty$ almost surely. Define

$$
\tilde{Z}(s):=Z(t(s)), \quad \tilde{f}_{s}(z):=f_{t(s)}(z), \quad \alpha(s):=\log \tilde{f}_{s}^{\prime}(1) .
$$

Then, by using Ito's formula, we can derive

$$
\begin{gathered}
d \tilde{Z}_{s}=d X_{s}+\left(\frac{2}{\tilde{Z}(s)}-\frac{2}{1-\tilde{Z}(s)}\right) d s, \\
\partial_{s}(\alpha(s))=\frac{-2}{(\tilde{Z}(s)-1)^{2}}-\frac{2}{\tilde{Z}(s)}-\frac{2}{1-\tilde{Z}(s)}
\end{gathered}
$$

where $X$ is a Brownian motion with quadratic variation $6 d s$. Hence $(\tilde{Z}(s), \alpha(s))$ is a continuous Markov process. Define

$$
y(x, v)=\mathbb{E}\left[\exp \left(b \alpha\left(s_{0}\right)\right) \mid \tilde{Z}(0)=x, \alpha(0)=v\right] .
$$

Then we have the following facts:

- The process $Y_{s}:=y(\tilde{Z}(s), \alpha(s))$ is a local martingale (by the Strong Markov Property). The drift term in Ito's formula of $d Y$ vanishes, which gives

$$
\left(\frac{2}{x}-\frac{2}{1-x}\right) \partial_{x} y+3 \partial_{x x} y+\left(\frac{-2}{(x-1)^{2}}+\frac{-2}{x}+\frac{-2}{1-x}\right) \partial_{v} y=0
$$

- We have that $y(x, v)=\exp (b v) y(x, 0)$ and that $y(1-x, 0)=\Lambda(x, b)=: h(x)$. Therefore,

$$
y(x, v)=\exp (b v) h(1-x) .
$$

Combining these two facts, we have

$$
\begin{equation*}
-2 b h(x)+2 x(1-2 x) h^{\prime}(x)+3 x^{2}(1-x) h^{\prime \prime}(x)=0 . \tag{2.2}
\end{equation*}
$$

We solve (2.2) by looking for solutions of type

$$
h(x)=x^{c} z(x)
$$

where $c$ is some constant. After discarding a solution that blows up at 0 , we know $\Lambda(x, b)=$ $h(x)$ is of the desired form.

Proof of Lemma 2.5. [2, Lemma 3.3].

## References

[1] Federico Camia and Charles M Newman. Critical percolation exploration path and SLE $_{6}$ : a proof of convergence. Probability theory and related fields, 139(3-4):473-519, 2007.
[2] Gregory Lawler, Oded Schramm, and Wendelin Werner. Values of brownian intersection exponents i: Half-plane exponents. Acta Mathematica, 187, 112000.
[3] Pierre Nolin. Near-critical percolation in two dimensions. Electronic Journal of Probability, 13, 122007.
[4] Wendelin Werner. Lectures on two-dimensional critical percolation. 112007.

