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1 Convergence of percolation interface

Let pD;x, cq be a Dobrushin domain, i.e. D Ă C is a non-empty bounded simply connected
domain with two boundary points x, c such that BD is a simple closed curve. Denote by xc
the boundary arc from x to c in counterclockwise order. We will consider the convergence of
percolation interface curves in this note. The metric on the curves is the following:

dpγ1, γ2q :“ inf sup
tPr0,1s

|γ1ptq ´ γ2ptq|R2 , (1.1)

where the infimum is taken over all parametrizations γ1, γ2 : r0, 1s Ñ C. Suppose tpDδn ;xδn , cδnqu8n“1
is a sequence of discrete Dobrushin domains on hexagonal lattice with mesh-size δn. Suppose
it converges to pD;x, cq in the following sense:

• xδn Ñ x and cδn Ñ c as δn Ñ 0;

• xδncδn Ñ xc and cδnxδn Ñ cx as δn Ñ 0 as curves in metric (1.1).

In Dδn , we perform critical percolation on faces such that the faces near cδnxδn are colored
black and those near xδncδn are colored white. We define the exploration process γδn from
xδn to cδn as follows: it starts from xδn and is targeted at cδn , and it makes turns so that its
left side is black face. The path is uniquely determined by this rule. Our main conclusion is
the following.

Theorem 1.1. The exploration process γδn converges to SLE6 in D from x to c in law in
metric (1.1).

The strategy of the proof is as follows (we follow [4]):

1. Prove tightness to extract convergent subsequence by Prohorov’s theorem (not today);

2. Define/parameterize the hull and identify its driving function.

We Assume Item 1 is done, i.e., we have extracted a convergent subsequence tγδnu that for
some random continuous curve γ, we have γδn Ñ γ in law. By Skorohod’s representation
theorem, we can further assume γδn Ñ γ almost surely. We will prove γ is distributed like
SLE6 in D from x to c.

To avoid some technical difficulties, hereafter we assume D “ D :“ tz P C : |z| ă 1u, the
unit disk. We parameterize γ : r0,8q Ñ D so that γp0q “ x and limtÑ8 γptq “ c, and that it
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is not constant in any interval. We denote by Kt the hull formed by γr0, ts in D (i.e., closure
in D of set of points disconnected by γr0, ts from c), and by Dt the connected component of
Dzγr0, ts that has c on its boundary. Clearly, we have Kt “ DzDt. In order to relate γ with
SLE6, we have to map it onto upper half plane H :“ tx` iy : y ą 0u and measure it in upper
half plane capacity. We fix a conformal map Φ : D Ñ H that sends px, cq to p0,8q.

1.1 Parameterize γ

For every z P D, let σz (resp. σδnz ) be the first time at which z is disconnected from c by γ in
D (resp. from cδn by γδn in Dδn).

Lemma 1.2. Along some subsequence (still denoted by tδnu), we have almost surely σδnz Ñ σz
for all z P D X Q2.

Proof. [1, Lemma 6.1, Lemma 6.2].

Hereafter, we consider the subsequence in Lemma 1.2 in place of the original one.

Lemma 1.3. For all u1 ă u, there almost surely exists v P pu, u1s such that γpvq R γr0, usYBD.

Proof. Suppose txju is a countable dense subset of in γr0, us Y BD. By RSW estimate, we
may argue that none of them are visited by γpu, u1s almost surely. But γ is not constant in
any interval. Therefore, the segment γpu, u1s cannot always stay in γr0, us Y BD.

Lemma 1.4. The process t ÞÑ Kt is strictly increasing almost surely.

Proof. For u1 ą t, by Lemma 1.3, there exists v P pt, u1q that γpvq is in one of the c.c.’s of
Dzγr0, ts. Suppose γpvq is not in Dt. Then by Lemma 1.2, there exists z (coordinantes are
rational) that is in the same c.c. as γpvq, and a.s. σδnz Ñ σz. Since v ą u ě σz and γδn Ñ γ,
we know γδn will enter the c.c. it disconnected before. By definition of exploration process,
it is not allowed. Therefore, we have γpvq P Dt.

From these three lemmas, we may conclude that the capacity of tΦpKtqutě0 is strictly
increasing and continuous in time. We parameterize γ by the capacity of tΦpKtqutě0, i.e., the
upper half plane capacity of ΦpKtq is t for each t P r0,8q.

1.2 Identify a continuous martingale

Let us add two marked points a P cx, b P xc, and let aδn P cδnxδn , bδn P xδncδn be their
approximations. Define two events:

Aδn :“
!

γδn hits cδnaδn before bδncδn
)

,

A :“
 

γ hits ca before bc
(

.

Lemma 1.2 tells us PrAδn∆As Ñ 0, where ∆ means taking symmetric difference. Observe

that Aδn happens if and only if there exists a white crossing from xδnbδn to cδnaδn .
Recall Cardy’s formula: If pΩδ;Aδ, Bδ, Cδ, Dδq Ñ pΩ;A,B,C,Dq in the Carathéodory

sence (i.e. for some conformal maps φδ : D “ tz : |z| ă 1u Ñ Ωδ and φ : D Ñ Ω, we have
φδ Ñ φ locally uniformly, and φ´1δ pXδq Ñ φ´1pXq for X P tA,B,C,Du), then

PrAδBδ Ø CδDδs Ñ fpΩ;A,B,C,Dq
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where f is conformally invariant and equals |AB|{|CD| when Ω is an equilateral triangle with
tA,C,Du as its vertices.

Let us come back to our model. For all t ě 0, on the one hand, if γr0, ts X
`

caY bc
˘

“ H,
then there exists N ą 0 (N may depend on γ) such that for all n ě N , we have γδn X
´

cδnaδn Y bδncδn
¯

“ H. Observe that now Aδn happens if and only if there exists a white

crossing from γδnptq, bδn to cδnaδn in Dδnzγδnr0, ts. By Cardy’s formula, we have as nÑ8,

Er1Aδn |γ
δnr0, tss Ñ fpDt; γptq, b, c, aq.

On the other hand, if γr0, ts X
`

caY bc
˘

‰ H, then by Lemma 1.2, we have

Er1Aδn |γ
δnr0, tss Ñ 1A

whose right hand side does not depend on t. Define

Xt :“

#

fpDt; γptq, b, c, aq if γr0, ts X
`

caY bc
˘

“ H,

1A otherwise.

Then, we have Er1Aδn |γ
δnr0, tss Ñ Xt. We claim that Xt is a continuous martingale:

Xt “ Er1A|γr0, tss.

Indeed, for all bounded continuous function f on set of bounded curves (equipped with met-
ric (1.1)), by Dominated Convergence Theorem and the fact PrAδn∆As Ñ 0, we have

Erfpγr0, tsq1As “ lim
nÑ8

Er1Aδnfpγ
δnr0, tsqs

“ lim
nÑ8

E
”

Er1Aδn |γ
δnr0, tssfpγδnr0, tsq

ı

“ E rXtfpγr0, tsqs .

By definition of Xt, we know Xt is adapted to filtration tσpγr0, tsqutě0 so we prove the claim
by verifying the definition of conditional expectation. Hence Xt is a continuous martingale
adapted to filtration of γ (although depends on a and b).

1.3 Derive the driving function

Recall that Φ : D Ñ H is a fixed conformal map that sends px, cq to p0,8q. For the two
additional marked points a and b, we denote the their images by a1 :“ Φpaq and b1 :“ Φpbq.
Let twtutě0 be the driving function of tΦpKtqutě0, and tgtutě0 be the solution of the following
ODE:

Btgtpzq “
2

gtpzq ´ wt
, g0pzq “ z.

By the definition of driving function, we see that each gt is a conformal map from HzΦpKtq

onto H with the property that limzÑ8 |gtpzq ´ z| “ 0.
Define

Ψpzq :“

şz
0

du
u2{3p1´uq2{3

ş1
0

du
u2{3p1´uq2{3

.
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From Schwarz-Christoffle mapping theorem, we see that Ψ is the conformal map from the

equilateral triangle ∆̃ with vertices
´

0, 1, 12 ` i
?
3
2

¯

onto H sending
´

0, 1, 12 ` i
?
3
2

¯

to p0, 1,8q.

Define

Rpzq :“
z ´ gtpa

1q

gtpb1q ´ gtpa1q
,

then the composition Ψ˝R˝gt ˝Φ is the conformal map from Dt onto ∆̃ sending pa, γptq, b, cq
to pã,ΦpRpwtqq, b̃, c̃q. Combining with Cardy’s formula, we have

Xt “ 1´ΨpRpwtqq.

Note that the processes

twt “ Ψ´1p1´Xtqpgtpb
1q ´ gtpa

1qq ` gtpa
1qutě0, tgtpa

1qutě0, tgtpb
1qutě0

are all adapted to filtration of γ. We write wt “ Mt ` Vt where Vt is of bounded variation
and Mt is a local martingale. Denote by

Zt :“ Rpwtq “
wt ´ gtpa

1q

gtpb1q ´ gtpa1q
.

Then

dp1´Xtq “ dΨpZtq “ d

ˆ

Ψ

ˆ

wt ´ gtpa
1q

gtpb1q ´ gtpa1q

˙˙

“ Ψ1pZtq

ˆ

dwt
gtpb1q ´ gtpa1q

`
´pwt ´ gtpa

1qq

pgtpb1q ´ gtpa1qq2
2dt

gtpb1q ´ wt
`

wt ´ gtpb
1q

pgtpb1q ´ gtpa1qq2
2dt

gtpa1q ´ wt

˙

`
1

2
Ψ2pZtq

dxM,Myt
pgtpb1q ´ gtpa1qq2

“ Ψ1pZtq
dwt

gtpb1q ´ gtpa1q
`Ψ1pZtq

ˆ

1

1´ Zt
´

1

Zt

˙

´dt

pgtpb1q ´ gtpa1qq2
`

1

2
Ψ2pZtq

dxM,Myt
pgtpb1q ´ gtpa1qq2

“ local martingale`Ψ1pZtq
dVt

gtpb1q ´ gtpa1q
`

1

2
Ψ2pZtq

1

pgtpb1q ´ gtpa1qq2
pdxM,Myt ´ 6dtq

where in the last equality we use Ψ2pzq “ 2
3

´

1
1´z ´

1
z

¯

Ψ1pzq for all z P ∆̃. Since Xt is a

martingale, we get

Ψ1pZtqdVt `
1

2
Ψ2pZtq

dxM,Myt ´ 6dt

gtpb1q ´ gtpa1q
“ 0. (1.2)

We choose a sequence tpa1n, b
1
nqu so that a1n Ñ ´8 and b1n Ñ `8, and that Z

pnq
t :“

wt´gtpa1nq
gtpb1nq´gtpa

1
nq
P
`

5
8 ,

3
4

˘

. From Schwarz’s Symmetric Principle, we have

Ψ1
´

Z
pnq
t

¯

“ Θp1q, Ψ2
´

Z
pnq
t

¯

“ Θp1q.

Replacing a1, b1 by a1n, b
1
n in (1.2) and taking nÑ8, we have

dVt “ 0. (1.3)
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Plugging into (1.2), we have

Ψ2pZtq
dxM,Myt ´ 6dt

gtpb1q ´ gtpa1q
“ 0. (1.4)

Replacing a1, b1 by a1n, b
1
n in (1.4), we have

dxM,Myt “ 6dt. (1.5)

Equations (1.3) and (1.5) imply that wt is
?

6 times a standard Brownian motion (and is
started at Φpxq “ 0), hence γ is distributed like SLE6. This finishes the proof.

2 Arm exponent: boundary case

We consider the critical percolation on faces of hexagonal lattice with mesh-size one. Define
Br,R :“ tx P C : x “ aeiθ for r ă a ă R, 0 ă θ ă πu. Let Ar,R be the set of faces that intersect
Br,R. Let p ě 1 be an integer and σ P tblack,whiteup. We denote by P σr,R the probability
that there exist p crossings tciu

p
i“1 in Ar,R from the inner half circle to the outer half circle,

arranged in clockwise order, such that ci is in color σi.
The value P σr,R depends only on the cardinality of σ. Indeed, we can explore these crossings,

one at a time, by starting exploration processes. By swtiching the colors in unexplored areas,
we can switch the colors of these crossings. Denote by P pr,R the value P σr,R where #σ “ p.
Our main conclusion is the following.

Theorem 2.1. As RÑ8, we have

lim
nÑ8

P pn,nR “ Θp1qR´
ppp`1q

6 .

Remark 2.2. We can estimate P pr,R with r fixed: there exists n0 ą 0 that

lim
RÑ8

logP pn0,R

logR
“ ´

ppp` 1q

6
.

This follows from Theorem 2.1 and some estimates (such as quasi-multiplicativity and extend-
ability) for discrete model. See [3].

We simply denote the half annulus B1,R by BR, whose four vertices are pA1, A2, A3, A4q :“
p1, R,´R,´1q. Recall a standard result in complex analysis: the π-extremal distance (i.e.,
π times the extremal distance) from A4A1 to A2A3 in BR is logR. We start a SLE6 in BR
from A4 to A2 until it hits A1A3. We denote by S the compact hull of this process, and by G
the c.c. of BRzS that has A1 on its boundary, and by L the π-extremal distance from A4A1

to A2A3 in G. Note that if S hits A1A2, then L “ 8. To prove Theorem 2.1, we need the
following theorem:

Theorem 2.3. As RÑ8, we have

E
“

1tLă8u expp´λLq
‰

“ Θp1qR´upλq

where λ ě 0 and upλq “ 6λ`1`
?
24λ`1

6 .
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2.1 Proof of Theorem 2.1

We will first construct a series of SLE6’s, and then use Theorem 2.3 together with convergence
of exploration processes to derive the desired result. We construct these SLE6 as follows.

• Let Qp1q :“ A4 and D1 :“ BR. We start a SLE6 in D1 from Qp1q to A2 until it hits A1A3.
Denote by S1 the hull of this SLE. If S1 X A1A2 ‰ H then we stop the construction;
otherwise, we let Qp2q be the point in S1 X A4A1 with least argument, and D2 be the
c.c. of D1zS1 that has A1 on its boundary.

• Suppose for some p ě 2, we have constructed p ´ 1 SLE’s and obtained starting point
Qppq, domain Dp, and compact hull Sp´1 that does not intersect A1A2. We start a
SLE6 in Dp from Qppq to A2 until it hits A1A3. Denote by Sp the hull of this SLE. If
Sp X A1A2 ‰ H then we stop the construction; otherwise, we let Qpp`1q be the point
in Sp X A4A1 with least argument, and Dp`1 be the c.c. of DpzSp that has A1 on its
boundary. We repeat this procedure until we stop somewhere.

Denote by fppRq the probability that we can start at least pp ` 1q SLE6’s in the above
procedure. On the one hand, by convergence of exploration process to SLE6 in Dobrushin
domain, we have

lim
nÑ8

P pn,nR “ fppRq.

On the other hand, by induction, we have

fppRq “ E
“

1tLă8ufp´1pexppLqq
‰

.

Theorem 2.3 with λ “ 0 tells us that f1pRq “ PrL ă 8s “ Θp1qR´
1
3 . We will prove by

induction that, for each p ě 1, we have

fppRq “ Θp1qR´
ppp`1q

6 . (2.1)

Suppose we have derived (2.1) for some p ě 1. Then

fp`1pRq “ E
“

1tLă8ufppexppLqq
‰

“ Θp1qE

„

1tLă8u exp

ˆ

´ppp` 1q

6
L
˙

“ Θp1qR
´u

´

ppp`1q
6

¯

(Use Theorem 2.3)

“ Θp1qR´
pp`1qpp`2q

6 .

This finishes the induction. Therefore, we obtain that for p ě 1,

lim
nÑ8

P pn,nR “ Θp1qR´
ppp`1q

6 .

2.2 Proof of Theorem 2.3

We follow [2] in this subsection. Let Φ be a conformal map from BR onto upper half plane H
that sends pA1, A2, A3q to p1,8, 0q. Let x̃ “ ΦpA4q. A standard estimate in complex analysis
tells us that, as RÑ8, we have

R “ Θp1qp1´ x̃q´1.
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We start a SLE6 in H from x̃ to 8. We denote by tKtutě0 the collection of its compact hulls,
and by tWtutě0 its driving function (a Brownian motion started at x̃ with quadratic variation
6dt). Let tgtutě0 be the solution of the following ODE:

Btgtpzq “
2

gtpzq ´Wt
, gtpzq “ z.

Then, each gt is the conformal map from HzKt onto H with the property that limzÑ8 |gtpzq ´ z| “
0. Define

T0 :“ inftt : Kt X p´8, 0s ‰ H u, T1 :“ inftt : Kt X r1,8q ‰ Hu, T “ T0 ^ T1,

and

ftpzq :“
gtpzq ´ gtp0q

gtp1q ´ gtp0q
.

Note that ft is a renormalization of gt that fixes points p0, 1,8q. We can prove that f 1T p1q ą 0
if and only if T0 ă T1, and that T ă 8 almost surely. See [2]. For b ě 0 and 0 ă x ă 1, we
define

Λpx, bq :“ E1´x

”

1tT0ăT1uf
1
T p1q

b
ı

,

Ωpx, bq :“ E1´x

”

1tT0ăT1up1´NT q
b
ı

where NT “ fT pmaxpKT X Rqq, and Py is the probability measure of SLE6 in H that starts
at y.

Recall that the hypergeometric function with index pα, β, γq is defined as

2F1pα, β, γ; zq “
8
ÿ

n“0

pαqnpβqn
pγqn

zn

n!
,

where puq0 :“ 1 and puqn :“ upu ` 1q . . . pu ` n ´ 1q for n ě 1. The function 2F1pα, β, γ; ¨q
solves

px´ 1qxF 2pxq ` pγ ´ pα` β ` 1qxqF 1pxq ´ αβF pxq “ 0.

To prove Theorem 2.3, we need the following two lemmas.

Lemma 2.4. We have

Λpx, bq “

?
π2´2b̂Γp5{6` b̂q

Γp1{3qΓp1` b̂q
x1{6`b̂2F1p1{6` b̂, 1{2` b̂, 1` 2b̂;xq

where b̂ “
?
24b`1
6 , and 2F1 is the hypergeometric function.

Lemma 2.5. For all x P p0, 1q, we have

´x

2

¯b
Λpx{2, bq ď Ωpx, bq ď xbΛpx, bq.
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Proof of Theorem 2.3 (assuming these two lemmas). Denote by L˚ the π-extremal distance

from p´8, 0s to pNT , 1q. Conformal invariance of SLE gives that L pdq
“ L˚. We have a

standard estimate in complex analysis:

L˚ “ ´ logp1´NT q `Op1q

where Op1q is a quantity with bound that does not depend on NT . Then,

E
“

1tLă8u expp´λLq
‰

“ Ex̃
“

1tL˚ă8u expp´λL˚q
‰

“ Θp1qEx̃
”

1tT0ăT1up1´NT q
λ
ı

“ Θp1qΩp1´ x̃, λq

“ Θp1qp1´ x̃qλp1´ x̃q
1`
?
1`24λ
6 (By Lemma 2.4 and Lemma 2.5)

“ Θp1qp1´ x̃qupλq

“ Θp1qR´upλq.

This finishes the proof.

We now prove Lemma 2.4.

Proof of Lemma 2.4. Recall that ftpzq “
gtpzq´gtp0q
gtp1q´gtp0q

. We define

Zt “
Wt ´ gtp0q

gtp1q ´ gtp0q

and time-change

s “ sptq “

ż t

0

du

pgup1q ´ gup0qq2
, for t ă T.

Since T ă 8 almost surely, we have s0 :“ limtÑT´ sptq ă 8 almost surely. Define

Z̃psq :“ Zptpsqq, f̃spzq :“ ftpsqpzq, αpsq :“ log f̃ 1sp1q.

Then, by using Ito’s formula, we can derive

dZ̃s “ dXs `

ˆ

2

Z̃psq
´

2

1´ Z̃psq

˙

ds,

Bs pαpsqq “
´2

pZ̃psq ´ 1q2
´

2

Z̃psq
´

2

1´ Z̃psq

whereX is a Brownian motion with quadratic variation 6ds. Hence pZ̃psq, αpsqq is a continuous
Markov process. Define

ypx, vq “ E
”

exppbαps0qq|Z̃p0q “ x, αp0q “ v
ı

.

Then we have the following facts:
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• The process Ys :“ y
´

Z̃psq, αpsq
¯

is a local martingale (by the Strong Markov Property).

The drift term in Ito’s formula of dY vanishes, which gives

ˆ

2

x
´

2

1´ x

˙

Bxy ` 3Bxxy `

ˆ

´2

px´ 1q2
`
´2

x
`

´2

1´ x

˙

Bvy “ 0;

• We have that ypx, vq “ exppbvqypx, 0q and that yp1´x, 0q “ Λpx, bq “: hpxq. Therefore,

ypx, vq “ exppbvqhp1´ xq.

Combining these two facts, we have

´2bhpxq ` 2xp1´ 2xqh1pxq ` 3x2p1´ xqh2pxq “ 0. (2.2)

We solve (2.2) by looking for solutions of type

hpxq “ xczpxq

where c is some constant. After discarding a solution that blows up at 0, we know Λpx, bq “
hpxq is of the desired form.

Proof of Lemma 2.5. [2, Lemma 3.3].
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