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To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias . .
and Butterfly-Bias -

Abstract: “M-Bias,” as it is called in the epidemiologic literature, is the bias introduced by conditioning
on a pretreatment covariate due to a particular “M-Structure” between two latent factors, an observed
treatment, an outcome, and a “collider.” This potential source of bias, which can occur even when the
treatment and the outcome are not confounded, has been a source of considerable controversy. We here
present formulae for identifying under which circumstances biases are inflated or reduced. In particular,
we show that the magnitude of M-Bias in linear structural equation models tends to be relatively small
compared to confounding bias, suggesting that it is generally not a serious concern in many applied
settings. These theoretical results are consistent with recent empirical findings from simulation studies.
We also generalize the M-Bias setting (1) to allow for the correlation between the latent factors to be
nonzero and (2) to allow for the collider to be a confounder between the treatment and the outcome.
These results demonstrate that mild deviations from the M-Structure tend to increase confounding bias
more rapidly than M-Bias, suggesting that choosing fo condition on any given covariate is generally the
superior choice. As an application, we re-examine a controversial example between Professors Donald
Rubin and Judea Pearl.
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Instrumental variables as bias amplifiers with general
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SUMMARY

Drawing causal inference with observational studies is the central pillar of many disciplines.
One sufficient condition for identifying the causal effect is that the treatment-outcome relation-
ship is unconfounded conditional on the observed covariates. It is often believed that the more
covariates we condition on, the more plausible this unconfoundedness assumption is. This belief
has had a huge impact on practical causal inference, suggesting that we should adjust for all
pretreatment covariates. However, when there is unmeasured confounding between the treatment
and outcome, estimators adjusting for some pretreatment covariate might have greater bias than
estimators that do not adjust for this covariate. This kind of covariate is called a bias ampli-
fier, and includes instrumental variables that are independent of the confounder and affect the
outcome only through the treatment. Previously, theoretical results for this phenomenon have
been established only for linear models. We fill this gap in the literature by providing a general
theory, showing that this phenomenon happens under a wide class of models satisfying certain

monotonicity assumptions.
icity; Potential 2

M

Some key words: Causal inference; Directed acyclic graph; I

\Joiuksla <Z V)

) % X st

X
Y

Ez

The treatment assignment is a function of the instrumental variable, the unmeasured confounder

and some other independent random error, which are the three sources of variation of the treatment.
If we adjust for the instrumental variable, the treatment variation is driven more by the unmeasured
confounder, which could result in increased bias due to this confounder. Seemingly paradoxically,
without adjusting for the instrumental variable, the observational study is more like a randomized
experiment, and the bias due to confounding is smaller. Although applied researchers (Myers
et al., 2011; Walker, 2013; Brooks & Ohsfeldt, 2013; Ali et al., 2014) have confirmed through
extensive simulation studies that this bias amplification phenomenon exists in a wide range of
reasonable models, definite theoretical results have been established only for linear models. We
fill this gap in the literature by showing that adjusting for an instrumental variable amplifies
bias for estimating causal effects under a wide class of models satisfying certain monotonicity
assumptions. However, we also show that there exist data-generating processes under which an
instrumental variable is not a bias amplifier.
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SUMMARY

A central question in causal inference with observational studies is the sensitivity of conclusions to
unmeasured confounding. The classical Cornfield condition allows us to assess whether an unmeasured /{ ‘/,4 w
binary confounder can explain away the observed relative risk of the exposure on the outcome. It states @,

that for an unmeasured confounder to explain away an observed relative risk, the association between the
unmeasured confounder and the exposure and the association between the unmeasured confounder and the

outcome must both be larger than the observed relative risk. In this paper, we extend the classical Cornfield + 7[) .
condition in three directions. First, we consider analogous conditions for the risk difference and allow for ) - N é
a categorical, not just a binary, unmeasured confounder. Second, we provide more stringent thresholds
that the maximum of the above-mentioned associations must satisfy, rather than weaker conditions that

both must satisfy. Third, we show that all the earlier results on Cornfield conditions hold under weaker -
assumptions than previously used. We illustrate the potential applications by real examples, where our ?:P
new conditions give more information than the classical ones. (74 j
Some key words: Causal inference; Confounding; Observational study; Sensitivity analysis.
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Lee (2011) obtainedthe above results (3) and (4) under Assumption 3, which can in fact be weakened
to Assumption 2. Furthermore, in the Supplementary Material, we show that under Assumption 1, the
following conditions must hold:

min(Ug, Up) > RRgp, max(Ug, Up) > {Rrp + (RRgp — 1)V/3)2,

where Uj, =max(Up, U}) replaces Up in conditions (3) and (4). ? .
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The claim that our technique is “without assumptions”
requires some clarification. As we will see below, we will,
without any assumptions, be able to make statements of the
form: “For an observed association to be due solely to unmea-
sured confounding, two sensitivity analysis parameters must
satisfy [a specific inequality].” We will also, without assump-
tions, be able to make statements of the form: “For unmea-
sured confounding alone to be able to reduce an observed
association [to a given level], two sensitivity analysis parame-
ters must satisfy [another specific inequality].” We believe the
ability to make statements of this form without imposing any
specific structure on the nature of the unmeasured confounder
or confounders constitutes a major advance in the literature.
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Flexible sensitivity analysis for
causal inference in
observational studies subject to
unmeasured confounding

Sizhu Lu, Peng Ding

Download PDF

Causal inference with observational studies often
suffers from unmeasured confounding, yielding biased
estimators based on the unconfoundedness
assumption. Sensitivity analysis assesses how the
causal conclusions change with respect to different
degrees of unmeasured confounding. Most existing
sensitivity analysis methods work well for specific types
of estimation or testing strategies. We propose a flexible
sensitivity analysis framework that can deal with
commonly-used inverse probability weighting, outcome
regression, and doubly robust estimators
simultaneously. It is based on the well-known
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