Motivic Galois theory for algebraic Mellin transforms

Clément Dupont (Université de Montpellier)
(work in progress with Francis Brown, Javier Fresán, Matija Tapušković)

Online seminar on periods and motives
8 December 2023

1. Algebraic Mellin transforms
2. Twisted cohomology
3. Application to Feynman integrals

Algebraic Mellin transforms

Algebraic Mellin transforms

(Not in this talk) The classical Mellin transform (Mellin, 1897)

$$
\varphi:(0, \infty) \rightarrow \mathbb{C} \quad \rightsquigarrow \quad(\mathcal{M} \varphi)(s)=\int_{0}^{\infty} x^{s} \varphi(x) \frac{d x}{x}
$$

Algebraic Mellin transforms (Aomoto, 1974)

$$
I(s)=\int_{\sigma} f^{s} \omega
$$

- X an (affine, smooth) algebraic variety over a field $k \subset \mathbb{C}$.
- $f: X \rightarrow \mathbb{G}_{m}$ an invertible function on X.
- ω an algebraic differential form on X, σ a topological cycle on X.
(Bloch-Vlasenko call them "motivic Mellin transforms" or "motivic Γ-functions".)
More generally, for $f=\left(f_{1}, \ldots, f_{N}\right): X \rightarrow \mathbb{G}_{m}^{N}$, consider multivariate versions:

$$
I\left(s_{1}, \ldots, s_{N}\right)=\int_{\sigma} f_{1}^{s_{1}} \cdots f_{N}^{s_{N}} \omega
$$

Examples of algebraic Mellin transforms

- The beta function:

$$
\mathrm{B}(\mathrm{~s}, \mathrm{t})=\frac{\Gamma(\mathrm{s}) \Gamma(t)}{\Gamma(s+t)}=\int_{0}^{1} x^{s}(1-x)^{t} \frac{d x}{x(1-x)} .
$$

Corresponds to $(x, 1-x): \mathbb{P}^{1} \backslash\{\infty, 0,1\} \longrightarrow \mathbb{G}_{m}^{2}$.

Examples of algebraic Mellin transforms

- The beta function:

$$
\mathrm{B}(\mathrm{~s}, t)=\frac{\Gamma(\mathrm{s}) \Gamma(t)}{\Gamma(s+t)}=\int_{0}^{1} x^{s}(1-x)^{t} \frac{d x}{x(1-x)}
$$

Corresponds to $(x, 1-x): \mathbb{P}^{1} \backslash\{\infty, 0,1\} \longrightarrow \mathbb{G}_{m}^{2}$.

- The classical hypergeometric function:

$$
\begin{aligned}
& { }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \quad \text { where }(t)_{n}=t(t+1) \cdots(t+n-1) . \\
& \qquad B(b, c-b){ }_{2} F_{1}(a, b, c ; z)=\int_{0}^{1} x^{b}(1-x)^{c-b}(1-z x)^{-a} \frac{d x}{x(1-x)} . \\
& \text { Corresponds to }(x, 1-x, 1-z x): \mathbb{P}^{1} \backslash\left\{\infty, 0,1, z^{-1}\right\} \longrightarrow \mathbb{G}_{m}^{3} .
\end{aligned}
$$

Examples of algebraic Mellin transforms

- The beta function:

$$
\mathrm{B}(s, t)=\frac{\Gamma(s) \Gamma(t)}{\Gamma(s+t)}=\int_{0}^{1} x^{s}(1-x)^{t} \frac{d x}{x(1-x)}
$$

Corresponds to $(x, 1-x): \mathbb{P}^{1} \backslash\{\infty, 0,1\} \longrightarrow \mathbb{G}_{m}^{2}$.

- The classical hypergeometric function:

$$
\begin{aligned}
& { }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \quad \text { where }(t)_{n}=t(t+1) \cdots(t+n-1) . \\
& \qquad B(b, c-b){ }_{2} F_{1}(a, b, c ; z)=\int_{0}^{1} x^{b}(1-x)^{c-b}(1-z x)^{-a} \frac{d x}{x(1-x)} . \\
& \text { Corresponds to }(x, 1-x, 1-z x): \mathbb{P}^{1} \backslash\left\{\infty, 0,1, z^{-1}\right\} \longrightarrow \mathbb{G}_{m}^{3} .
\end{aligned}
$$

- Feynman integrals in dimensional regularization:

$$
I_{\Gamma}(\varepsilon)=\int_{\sigma_{\Gamma}}\left(\frac{\Psi_{\Gamma}^{h+1}}{\bar{\Xi}_{\Gamma}^{h}}\right)^{\varepsilon} \omega_{\Gamma}
$$

Corresponds to $\mathbb{P}^{n-1} \backslash\left\{\Psi_{\Gamma} \bar{\Xi}_{\Gamma}=0\right\} \longrightarrow \mathbb{G}_{m}$.

Structure of algebraic Mellin transforms

(Not in this talk) Systems of finite difference equations

$$
I_{i}(s+1)=\sum_{i=1}^{N} f_{i, j}(s) I_{j}(s) \quad \text { with } f_{i, j}(s) \in k(s) .
$$

- Example: $\mathrm{B}(\mathrm{s}+1, t)=\frac{s}{s+t} \mathrm{~B}(\mathrm{~s}, \mathrm{t}), \mathrm{B}(\mathrm{s}, \mathrm{t}+1)=\frac{t}{s+t} \mathrm{~B}(\mathrm{~s}, \mathrm{t})$.
- Corresponds to a rank 1 "finite difference module" (Loeser-Sabbah).
(Not in this talk) Systems of differential equations

$$
\frac{\mathrm{d}}{\mathrm{~d} z} l_{i}(\mathrm{~s} ; z)=\sum_{j=1}^{N} g_{i, j}(\mathrm{~s} ; z) l_{j}(\mathrm{~s} ; z) \quad \text { with } g_{i, j}(\mathrm{~s} ; z) \in k(\mathrm{~s}, \mathrm{z}) .
$$

- Example: differential equation for $F(z)={ }_{2} F_{1}(a, b, c ; z)$

$$
z(1-z) F^{\prime \prime}(z)+(c-(a+b+1) z) F^{\prime}(z)-a b F(z)=0 .
$$

Periods from algebraic Mellin transforms

(Not in this talk) Values at $s \in \mathbb{Q}$
For $s \in \mathbb{Q}, I(s)$ is a period of a cyclic cover of X.

- Example: $\mathrm{B}\left(\frac{k}{d}, \frac{l}{d}\right)$ is a period of an open Fermat curve $\left\{x^{d}+y^{d}=1\right\}$.
(In this talk) Laurent expansion at $s=0$

$$
I(s)=\sum_{n \gg-\infty} \alpha_{n} s^{n} \quad \text { where the } \alpha_{n} \text { are periods. }
$$

- Example: $\mathrm{B}(\mathrm{s}, \mathrm{t})=\frac{\mathrm{s}+\mathrm{t}}{\mathrm{st}}(1-\sum_{m, n \geqslant 1}(-s)^{m}(-t)^{n} \zeta(\underbrace{1, \ldots, 1}_{n-1}, m+1))$.

What this talk is about...

- We are interested in the motivic Galois theory / coaction of the α_{n}.
- It is controlled by a twisted cohomology group.

Galois theory for periods (André)

The slogan

Galois theory of algebraic numbers should extend to a Galois theory for periods, where the Galois groups are algebraic groups over \mathbb{Q}.

- Periods arise as coefficients of the perfect pairing

$$
\int: H_{n}^{\mathrm{B}}(X) \times H_{\mathrm{dR}}^{\mathrm{n}}(X) \longrightarrow \mathbb{C}, \quad(\sigma, \omega) \mapsto \int_{\sigma} \omega
$$

for algebraic varieties X, or pairs (X, Y), defined over \mathbb{Q}.

- A tannakian formalism for motives gives rise to a motivic Galois group that acts linearly on all $\mathrm{H}_{\mathrm{dR}}^{n}(X)$ and $\mathrm{H}_{\mathrm{dR}}^{n}(X, Y)$.
- This gives rise to a Galois theory for periods:

$$
\text { " } g \cdot \int_{\sigma} \omega:=\int_{\sigma} g \cdot \omega "
$$

- Grothendieck's period conjecture says that this formula is well-defined.
- Unconditional: Galois theory for motivic periods.
- Computable: Galois coaction.

$$
\mathrm{B}(s, t)=\frac{s+t}{s t} \exp \left(\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \zeta(n)\left(s^{n}+t^{n}-(s+t)^{n}\right)\right) .
$$

- Galois theory for zeta values: for $g \in G_{\mathrm{dR}}$,

$$
g \cdot \zeta(n)=\zeta(n)+a_{g}^{(n)} \quad \text { with } \quad a_{g}^{(n)} \in \mathbb{Q} .
$$

- We get a Galois theory for the beta function:

$$
g \cdot B(s, t)=A_{g}(s, t) B(s, t) \quad \text { with } \quad A_{g}(s, t) \in \mathbb{Q}((s, t))^{\times} .
$$

- $\mathrm{B}(\mathrm{s}, \mathrm{t})$ corresponds to a rank 1 representation of the motivic Galois group, defined over $\mathbb{Q}((s, t))$.

Theorem (Brown-D.-Fresán-Tapušković)

The motivic Galois group acts on Taylor expansions of algebraic Mellin transforms via power series, i.e., for g in the motivic Galois group G :

$$
g \cdot \int_{\sigma} f^{s} \omega=\sum_{i=1}^{N} A_{g}^{(i)}(s) \int_{\sigma} f^{s} \omega_{i}
$$

where the $A_{g}^{(i)}(s)$ are in $k((s))$.

- This is a finite formula which computes the Galois theory of infinitely many periods.

Proof of concept

- A rank 2 example:

$$
I(a ; s)=\frac{1}{s}\left(2 F_{1}(s, 1, s+1 ; a)-1\right)=\int_{0}^{1} x^{s} \frac{a d x}{1-a x}=\sum_{n=0}^{\infty}(-s)^{n} \operatorname{Li}_{n+1}(a) .
$$

Galois theory (Deligne-Beilinson, Goncharov):

$$
g . I(a ; s)=A_{g}(a ; s) I(a ; s)+B_{g}(a ; s) \quad \text { with } \quad A_{g}(a ; s), B_{g}(a ; s) \in \mathbb{Q}((s)) .
$$

- A family of examples (Brown-D. 2022): Lauricella hypergeometric functions

$$
\int_{0}^{\sigma_{i}} x^{s_{0}}\left(1-x \sigma_{1}^{-1}\right)^{s_{1}} \cdots\left(1-x \sigma_{n}^{-1}\right)^{s_{n}} \frac{d x}{x-\sigma_{j}} .
$$

Twisted cohomology

Twisted cohomology, 1

Twisted cohomology

X an (affine, smooth) algebraic variety over $\mathbb{C}, f: X \rightarrow \mathbb{C}^{*}$.

$$
H^{\bullet}(X, f):=H^{\bullet}\left(X, f^{*}\left(t^{s}\right)\right) .
$$

- Fix $s \in \mathbb{C}$.
- de Rham: $\mathrm{H}_{\mathrm{dR}}^{\mathrm{i}}(X, f):=\mathrm{H}^{i}\left(X,\left(\Omega_{\chi}^{\bullet}, \nabla_{s}\right)\right)$ where

$$
\left.\nabla_{s}: \omega \mapsto d \omega+s \frac{d f}{f} \wedge \omega \quad \text { (so that } d\left(f^{s} \omega\right)=f^{s} \nabla_{s}(\omega)\right) \text {. }
$$

- Betti: $H_{i}^{\mathrm{B}}(X, f):=\mathrm{H}_{i}^{\text {sing }}\left(X, \mathcal{L}_{s}\right)$ where

$$
\mathcal{L}_{s}=\mathbb{C} f^{s} \quad\left(\text { monodromy } e^{2 \pi i s}\right) .
$$

- Algebraic Mellin transforms arise as coefficients of the perfect pairing

$$
\int: \mathrm{H}_{i}^{\mathrm{B}}(X, f) \times \mathrm{H}_{\mathrm{dR}}^{i}(X, f) \longrightarrow \mathbb{C}, \quad(\sigma, \omega) \mapsto \int_{\sigma} f^{\mathrm{s}} \omega .
$$

- Easy to compute for generic values of $s \in \mathbb{C}$. Typical behavior:

$$
\left\{\begin{array}{l}
H^{i}(X, f)=0 \quad \text { for } \quad i \neq n:=\operatorname{dim}(X) \\
\operatorname{dim} H^{n}(X, f)=(-1)^{n} \chi(X)
\end{array}\right.
$$

Twisted cohomology, 2

Is twisted cohomology motivic?

- $\mathrm{H}^{\bullet}(X, f)$ is not motivic if $s \notin \mathbb{Q}$.
- A formal generic version of $\mathrm{H}^{\bullet}(X, f)$ is motivic.
- de Rham: a finite dimensional vector space over $k((s))$,

$$
\mathrm{M}_{\mathrm{dR}}^{i}(X, f):=\mathrm{H}^{i}\left(X,\left(\Omega_{X}^{\dot{*}}((\mathrm{~s})), \nabla\right)\right),
$$

where $\nabla: \omega \mapsto d \omega+s \frac{d f}{f} \wedge \omega$.

- Betti: a finite dimensional vector space over $\mathbb{Q}((\log \mu))$,

$$
\mathrm{M}_{i}^{\mathrm{B}}(X, f):=\mathrm{H}_{i}^{\text {sing }}(X, \mathcal{L})
$$

where \mathcal{L} is the rank 1 local system of vector spaces over $\mathbb{Q}((\log \mu))$

$$
\pi_{1}(X(\mathbb{C})) \xrightarrow{f_{*}} \pi_{1}\left(\mathbb{C}^{*}\right)=\mathbb{Z} \xrightarrow{\mu} \mathbb{Q}((\log \mu))^{\times}
$$

- Perfect pairing valued in $\mathbb{C}((s))$, with $\mu \leftrightarrow e^{2 \pi i s}$, giving rise to Laurent expansions of algebraic Mellin transforms.

Why is twisted cohomology motivic?

$$
\begin{aligned}
\mathrm{M}_{\mathrm{dR}}^{i}(X, f) & :=\mathrm{H}^{i}\left(X,\left(\Omega_{X}^{\bullet}((s)), \nabla\right)\right) \\
& \simeq\left({\underset{n}{n}}_{\left.\lim _{=: M_{n, \mathrm{dR}}}^{\mathrm{H}^{i}\left(X,\left(\Omega_{X}^{\bullet}[s] /\left(s^{n+1}\right), \nabla\right)\right)}\right) \otimes_{k[[s]]} k((s))} .\right.
\end{aligned}
$$

- Analogy with étale ℓ-adic cohomology:

$$
H_{\mathrm{e} t}^{\bullet}\left(X ; \mathbb{Q}_{\ell}\right):=\left(\underset{\overleftarrow{L}_{n}}{\lim } H_{\mathrm{et}}^{\bullet}\left(X ; \mathbb{Z} / \ell^{n+1} \mathbb{Z}\right)\right) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}
$$

Each $M_{n, \mathrm{dR}}$ is motivic

- Comes from the motivic fundamental group of \mathbb{G}_{m} (Hain, Deligne).
- The $k[s] /\left(s^{n+1}\right)$-module structure is motivic, where $s \leftrightarrow \mathrm{H}_{1}\left(\mathbb{G}_{m}\right)$.
- Tannakian category of "local Mellin motives"

$$
\mathrm{M}(X, f)=\left(\cdots \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0}\right)
$$

Application to Feynman integrals

Feynman integrals

- 「 a connected graph with n edges and first Betti number h.
- Graph polynomials $\Psi_{\Gamma}, \Xi_{\Gamma}$, homogeneous in n variables.
- Feynman integral

$$
I_{\Gamma}=\int_{\mathbb{P}^{n-1}\left(\mathbb{R}_{+}\right)} \frac{\Psi_{\Gamma}^{n-(h+1) D / 2}}{\Xi_{\Gamma}^{n-h D / 2}} \Omega
$$

Example: the massless triangle graph $(D=4)$

$$
I_{\Gamma}=\iint_{(0, \infty)^{2}} \frac{d x d y}{(x+y+1)\left(q_{1}^{2} x+q_{2}^{2} y+q_{3}^{2} x y\right)}
$$

Dimensional regularization

Problem: Feynman integrals do not always converge!

A wild idea

Work in space-time dimension

$$
D=D_{0}-2 \varepsilon
$$

and consider the Laurent expansion near $\varepsilon=0$.
Example: the massless triangle graph $\left(D_{0}=4\right)$

$$
I_{\Gamma}(\varepsilon)=\iint_{(0, \infty)^{2}}\left(\frac{(x+y+1)^{2}}{q_{1}^{2} x+q_{2}^{2} y+q_{3}^{2} x y}\right)^{\varepsilon} \frac{d x d y}{(x+y+1)\left(q_{1}^{2} x+q_{2}^{2} y+q_{3}^{2} x y\right)}
$$

- This is an algebraic Mellin transform for

$$
f=\frac{\Psi_{\Gamma}^{h+1}}{\bar{\Xi}_{\Gamma}^{h}}: X=\mathbb{P}^{n-1} \backslash\left\{\Psi_{\Gamma} \bar{\Xi}_{\Gamma}=0\right\} \longrightarrow \mathbb{G}_{m}
$$

- Corresponding geometry: $\left(X, \bigcup_{i}\left\{x_{i}=0\right\}, f\right)$.

Theorem (Brown-D.-Fresán-Tapušković)

The space of Laurent expansions of Feynman integrals in dimensional regularization is closed under the action of the motivic Galois group:

$$
\text { g. } I_{\Gamma}(\varepsilon)=\sum_{i=1}^{N} A_{g}^{(i)}(\varepsilon) I_{\Gamma_{i}}(\varepsilon) \quad \text { with } \quad A_{g}^{(i)}(\varepsilon) \in \overline{\mathbb{Q}}((\varepsilon)) .
$$

- Conjectured and checked by Abreu-Britto-Duhr-Gardi-Matthew.
- Still difficult to make explicit.
- Should lead to arithmetic constraints on Feynman integrals.

