Make Schubert calculus calculable

Haibao Duan

Institute of Mathematics, Chinese Academy of Sciences
Current Developments in Mathematics and Physics, Yau Mathematical Sciences Center, 2024

The contents of the talk

In the year 1900, Hilbert proposed 23 problems. The 15th one was about the enumerative geometry of the 19th century, entitled

Problem 15: Rigorous Foundation of Schubert's Enumerative Calculus

15. Rigorous Foundation of Sohubert's Enumbrative

Calculus.
The problem consists in this : To establish rigorously and with an exact determination of the limits of their validity thowe geometrical numbers which Schubert \dagger especially has determined on the basis of the so-alled prineiple of special pasition, or conservation of number, by means of the enumerative caloulus developed by
Al
Although the algebra of to-day guarantees, in principle, the possibility of carrying out the processes of elimination, yet for the proof of the theorems of enosmes or elimination, yet for the proof of the theorems of enumerative geometry of the process of elimination in the case of equations of special form in such a way that the degree of the final equations and the multiplicity of their solutions may be foreseen.

The contents of the talk

In the year 1900, Hilbert proposed 23 problems. The 15th one was about the enumerative geometry of the 19th century, entitled

Problem 15: Rigorous Foundation of Schubert's Enumerative Calculus

15. Rigorous Foundation of Sohubert's Enumbrative

The problem consists in this : To establish rigorously and with an exact determination of the limits of their validity those geometrical numbers which Schubert \dagger especially has determined on the basis of the so-aulled principle of special pasition, or conservation of number, by means of the enumerative oaloulus developed by
Although the algebra of to-day guarantees, in principle, the possibility of carrying out the processes of elimination, yet for the proof of the theorems of enumerative geometry yet for the proof of the theorems of enumerative geometry decidedly more is requisite, namely, the actual carrying out of the process of elimination in the case of equations of tions and the multiplicity of their solutions may be foreseen.

The plan of the talk:
(1) The background of Problem 15;
(2) Studies before 1960: Schubert's problem of characteristics;
(3) Solution to the problem of characteristics (Duan+Zhao).

1. Background of Problem 15

In 1879 H. Schubert published the book "Calculus of Enumerative Geometry" that represents the summit of the intersection theory in the 19th century:

1. Background of Problem 15

In 1879 H. Schubert published the book "Calculus of Enumerative Geometry" that represents the summit of the intersection theory in the 19th century:

In the course of developing intersection theory, he demonstrated amazing applications to enumerative geometry, such as

- The number of conics tangent to 8 quadrics in space is $4,407,296$.
- The number of quadrics tangent to 9 quadrics in space is $666,841,088$.
- The number of twisted cubic curves tangent to 12 quadrics in space is 5,819,539,783,680.

1. Background of Problem 15

These results are great extensions of the earlier works of enumerative geometry:
Apollonius (300BC): The number of circles tangent to 3 general circles in the plane is 8 .

Chasles (1864): The number of conics tangent to 5 general conics in the plane is 3264 .

Remark: The original manuscript of Apollonius was lost. A report of the result by Pappus dated in the 4th century survived. During the Renaissance, different proofs of the result were founded by Viete, Roomen, Gergonne and Newton

1. Background of Problem 15

On the other hand, Schubert's works was controversial at his time:

- He made extensive use of Poncelet's principle of continuity, which was attached bitterly by Cauchy in 1816;
- To circumvent the prejudice, Schubert renamed the principle as "the principle of special position" in 1874; "the principle of conservation of numbers" in 1876.

1. Background of Problem 15

On the other hand, Schubert's works was controversial at his time:

- He made extensive use of Poncelet's principle of continuity, which was attached bitterly by Cauchy in 1816;
- To circumvent the prejudice, Schubert renamed the principle as "the principle of special position" in 1874; "the principle of conservation of numbers" in 1876.
- Van der Waerden (1992) recalled that: Schubert gave "no definition of intersection multiplicites, no way to find it nor to calculate it".
(1) Kleiman S., Problem 15: Rigorous foundation of Schubert's enumerative calculus, 1976.
(2) Yvonne, D. S., Interview with Bartel Leendert van der Aaerden, 1997.

1. Background of Problem 15

In Problem 15, Hilbert asked for a rigorous of Schubert's enumerative calculus:

15. Rigorous Foundation of Schubert's Enumerative

Caloulus.
The problem consists in this: To establish rigorously and with an exact determination of the limits of their validity those geometrical numbers which Schubert \dagger especially has determined on the basis of the so-called prinoiple of special position, or conservation of number, by means of the enumerative calculus developed by him.

Although the algebra of to-day guarantees, in principle the possibility of carrying out the processes of elimination, yet for the proof of the theorems of enumerative geometry decidedly more is requisite, namely, the actual carrying out of the process of elimination in the case of equations of special form in such a way that the degree of the final equations and the multiplicity of their solutions may be foreseen.
where he expressed his interests in Schubert's work:

- to foresee the final degree of a polynomial system before carrying out the process of elimination.

2. Schubert's problem of characteristics

To access the central part of Schubert's computation, we take two tables of computation from his book (1879):

Cabelle zusammengestellten Zahlen, and zwar alle diejerigen 2 mal , velche sowoh1 y als Q zum Faktor haben.

-1	$\mu^{2} \nu^{2} y^{4}-8$.	$\mu \nu^{7} \quad-34$	$v^{3} \quad-92$
2	$\mu^{2} \nu^{5} ?-14$	$\mu \nu^{6} e^{2}-52$	$\nu^{\top} \varphi=116$
- 4	$\mu^{2} \nu^{4} \rho^{2}=24$	$\mu \nu^{0} \varphi^{2}-76$	$\nu^{4} \rho^{2}=128$
-4	$\mu^{2} \nu^{3} \mathrm{q}^{4}-24$	$\mu \nu^{4} p^{3}-72$	$\nu^{5} p^{2}-104$
-2	$\mu^{2} \nu^{2} p^{4}-16$	$\mu \nu^{2} e^{4}-48$	$\nu^{4} e^{4}-64$
-1	$\mu^{2} y \rho^{5}=8$	$\mu \nu^{2} 0^{5}=24$	$v^{3} \rho^{5}=32$
	$\mu^{2} \rho^{4} \quad-4$	$\mu v \cdot \varphi^{t}=12$	$v^{2} e^{6}-16$
		$\mu \varrho^{\text {i }}=6$	$v \varrho^{7}=8$
			$p^{8}=4$

Elomentarzahlen der F_{2} heissen, sind in der folgenden Tabelle zusammengestellt.
Tabelle der Anzahlen $p^{m} n n^{p-m-n}$ far die Flache aweiten Grades. $\mu^{9}=\varphi^{3}-1\left|\nu^{2} \mu^{7}-\nu^{2} q^{9}=4\right| \nu^{4} \mu^{3} Q^{9}-\nu^{4} \mu^{2} q^{3}-112$ $\mu^{8} Q=\mu Q^{8}-3 v^{2} \mu^{0} Q=\nu^{2} \mu Q^{0}-12 \nu^{2} \mu^{4}-\nu^{5} Q^{4}-32$ $\mu^{7} \varphi^{z}-\mu^{2} e^{2}-9 \nu^{2} \mu^{5} e^{2}-\nu^{2} \mu^{2} e^{5}-36 \nu^{5} \mu^{3} Q-\nu^{3} \mu \rho^{3}-80$ $\mu^{6} Q^{3}=\mu^{3} Q^{5}-17 \nu^{2} \mu^{4} Q^{2}=\nu^{2} \mu^{3} \rho^{4}=68 \quad \nu^{4} \mu^{2} Q^{2}=\nu^{3} \mu^{3} Q^{2}-126$ $\mu^{5} \varphi^{4}=\mu^{4} \rho^{5}=21 \nu^{3} \mu^{6}-\nu^{2} \rho^{6}-8 \quad \nu^{4} \mu^{3}-\nu^{6} \rho^{3}-56$ $\nu \mu^{5}=\nu \rho^{2}=2 \quad \nu^{3} \mu^{5} Q=\nu^{3} \mu \rho^{5}-24 \quad \nu^{1} \mu^{2} \rho-\nu^{0} \mu Q^{2}-104$ $\nu \mu^{7} \rho-\nu \mu \rho^{7}-6 \quad \nu^{3} \mu^{4} \rho^{2}-\nu^{3} \mu^{2} \rho^{4}-72 \quad \nu^{7} \mu^{2}-\nu^{7} \rho^{2}-80$ $\nu \mu^{5} \rho^{2}=\nu \mu^{2} 0^{6}-18 \nu^{3} \mu^{3} \rho^{3}=\nu^{3} \mu^{3} 0^{3}=104 \nu^{\dagger} \mu Q=v^{7} \mu \rho=104$ $\nu \mu^{5} Q^{3}-\nu \mu^{3} \rho^{5}-34 \nu^{4} \mu^{5}=\nu^{4} e^{5}=16 v^{3} \mu=\nu^{8} e^{4}=92$ $\nu \mu^{4} \rho^{4}=\nu \mu^{4} \rho^{4}-42 v^{4} \mu^{4} \varphi=\nu^{4} \mu \rho^{4}=48 \quad v^{2}=v^{2}-92$ Hiemach kann man nun auch alle diejenigen neunfachen Be -

Aus diesen Zahlen ergeben sich vermöge der Incidenzformeln dingungen berechnen, dis einen Faktor enthalten, den maan als

2. Schubert's problem of characteristics

To access the central part of Schubert's computation, we take two tables of computation from his book (1879):

It consist of the equalities evaluating a monomial in the symbols μ, ν, ρ by an integer, which were called the characteristics by Schubert; and the Schubert symbolic equations by early researchers.

2. Schubert's problem of characteristics

To access the central part of Schubert's computation, we take two tables of computation from his book (1879):

It consist of the equalities evaluating a monomial in the symbols μ, ν, ρ by an integer, which were called the characteristics by Schubert; and the Schubert symbolic equations by early researchers.

Schubert himself claimed that "the problem of characteristics is the fundamental one of the enumerative geometry."

However, it took 60 years for mathematicians to make the problem precise.
(1) Schubert H., Zur Theorie der Charakteristike, Celles Journ. 1870.
(2) Schubert H., a Losung des Characteristiken-Problems fur lineare Raume beliebiger Dimension, Mitteilungen der Mathematische Gesellschaft in Hamburg, 1886.

2. Schubert's problem of characteristics

The Italian school: The study of Problem 15 began with the Italian school:

Two representing works of the school were due to Severi:

- II Principio della Conservazione del numero (1912);
- Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche (1916).

2. Schubert's problem of characteristics

The Italian school: The study of Problem 15 began with the Italian school:

Two representing works of the school were due to Severi:

- II Principio della Conservazione del numero (1912);
- Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche (1916).

Van der Waerden (1971) commented that " They erected an admirable structure, but their logical foundation was shaky, the notions were not well-defined, the proofs were insufficient."

- van der Waerden B L., The foundation of algebraic geometry from Severi to André Weil, 1971

2. The Schubert's problem of characteristics

The Gottingen school: Van der Waerden propose to study Problem 15 using cohomology theory developed by Lefschetz:

2. The Schubert's problem of characteristics

The Gottingen school: Van der Waerden propose to study Problem 15 using cohomology theory developed by Lefschetz:

He had the following observations that enlightened the course of the later studies:

- Each Schubert's symbolic equation is a homological relation in some projective manifold;

2. The Schubert's problem of characteristics

The Gottingen school: Van der Waerden propose to study Problem 15 using cohomology theory developed by Lefschetz:

He had the following observations that enlightened the course of the later studies:

- Each Schubert's symbolic equation is a homological relation in some projective manifold;
- The solvability of the characteristic problem depends on a finite basis of the homology of the relevant projective manifold.

2. The Schubert's problem of characteristics

The Gottingen school: Van der Waerden propose to study Problem 15 using cohomology theory developed by Lefschetz:

He had the following observations that enlightened the course of the later studies:

- Each Schubert's symbolic equation is a homological relation in some projective manifold;
- The solvability of the characteristic problem depends on a finite basis of the homology of the relevant projective manifold.
- The common goal of all enumerative methods is the intersection products in the cohomology theory.
 Haibao Duan (CAS)

2. Schubert's problem of characteristics

The Bourbaki: C. Ehresmann (1934) went two important steps further. He discovered that

- The parameter spaces of the geometric figures concerned by Schubert are essentially certain cases of "flag manifolds G / P ", where G is a Lie group and P is a parabolic subgroup;

2. Schubert's problem of characteristics

The Bourbaki: C. Ehresmann (1934) went two important steps further. He discovered that

- The parameter spaces of the geometric figures concerned by Schubert are essentially certain cases of "flag manifolds G / P ", where G is a Lie group and P is a parabolic subgroup;
- For the Grassmannian $G_{n, k}$ of k planes on the n-space \mathbb{C}^{n}, the set of Schubert's symbols form exactly a basis of the cohomology $H^{*}\left(G_{n, k}\right)$, where he emphasized the relevance of his work with the problem of characteristics:

[^0]- C. Ehresmann, Sur la topologie de certains espaces homogenes, Ann. of Math 1934. Current Developments in Mathematic Haibao Duan (CAS)

2. Schubert's problem of characteristics

Carrying on the work of Ehressman, Chevalley(1958), Bernstein-Gel'fand-Gel'fand (1973) obtained "the basis theorem of Schubert calculus" in the natural generalities. Let W_{G} denotes the Weyl group of a Lie group G.

Theorem 1(Basis Theorem): For each flag manifold G / P, the set of Schubert classes $\left\{s_{w}, w \in W_{G} / W_{P}\right\}$ on G / P is a basis of the cohomology $H^{*}(G / P)$.

2. Schubert's problem of characteristics

Carrying on the work of Ehressman, Chevalley(1958), Bernstein-Gel'fand-Gel'fand (1973) obtained "the basis theorem of Schubert calculus" in the natural generalities. Let W_{G} denotes the Weyl group of a Lie group G.

Theorem 1(Basis Theorem): For each flag manifold G / P, the set of Schubert classes $\left\{s_{w}, w \in W_{G} / W_{P}\right\}$ on G / P is a basis of the cohomology $H^{*}(G / P)$.

Proof. Every flag manifold G / P admits a cell-decomposition into the Schubert varieties with even dimension

$$
G / P=\cup_{w \in W_{G} / W_{P}} X_{w}, \operatorname{dim} X_{w}=2 \cdot I(w),
$$

where $I: W_{G} \rightarrow \mathbb{Z}$ is the length function on the Weyl group $W_{G} . \square$
(1) Chevalley C. Sur les d'ecompositions cellulaires des Espaces $G / B, 1958$.
(2) Bernstein I N, Gel'fand I M, Gel'fand S I. Schubert cells and cohomology of the spaces G / P. Russian Math Surveys, 1973.

2. Schubert's problem of characteristics

Granted with the basis theorem, the problem of characteristics has a concise statement

The problem of characteristics: Given a set $\left\{s_{u_{1}}, \cdots, s_{u_{k}}\right\}$ of Schubert classes on G / P, express their products in term of the basis elements linearly:

$$
s_{u_{1}} \cdots s_{u_{k}}=\sum c_{u_{1}, \cdots u_{k}}^{w} \cdot s_{w}, \quad c_{u_{1}, \cdots u_{k}}^{w} \in \mathbb{Z}
$$

where the coefficients $c_{u_{1}, \cdots u_{k}}^{w} \in \mathbb{Z}$ are the Schubert characteristics.

2. Schubert's problem of characteristics

Granted with the basis theorem, the problem of characteristics has a concise statement

The problem of characteristics: Given a set $\left\{s_{u_{1}}, \cdots, s_{u_{k}}\right\}$ of Schubert classes on G / P, express their products in term of the basis elements linearly:

$$
s_{u_{1}} \cdots s_{u_{k}}=\sum c_{u_{1}, \cdots u_{k}}^{w} \cdot s_{w}, \quad c_{u_{1}, \cdots u_{k}}^{w} \in \mathbb{Z}
$$

where the coefficients $c_{u_{1}, \cdots u_{k}}^{w} \in \mathbb{Z}$ are the Schubert characteristics.
Remark: Coolidge J.L.(1940) recalled that:
"The fundamental problem which occupies Schubert is to express the product of these symbols in terms of others linearly. He succeeds in part."
(1) Coolidge J.L., A history of geometrical methods, Oxford Univ. press, 1940

2. Schubert's problem of characteristics

The characteristics play a fundamental role in geometry, algebra, topology and representation theory, where they were also termed, respectively, as

- the degree of the final equation of a system by Hilbert;
- the intersection multiplicities by Van der Waerden, Weil, Chevalley, Samuel, Serre, etc.;

2. Schubert's problem of characteristics

The characteristics play a fundamental role in geometry, algebra, topology and representation theory, where they were also termed, respectively, as

- the degree of the final equation of a system by Hilbert;
- the intersection multiplicities by Van der Waerden, Weil, Chevalley, Samuel, Serre, etc.;
and for the special case $k=2$,
- the structure constants of the flag manifolds G / P by topologists;
- the Littlewood-Richardson coefficients in representation theory.

2. Schubert's problem of characteristics

Serre formula: Based on Weil's definition on the intersection multiplicities in 1946, Serre (1965) obtained "an elegant formula" by which:

$$
\left.s_{u_{1}} \cdot s_{u_{2}}=\sum c_{u_{1}, u_{2}}^{w} \cdot s_{w}, \text { where } c_{u_{1}, u_{2}}^{w}=\sum_{k \geq 0}(-1)^{k} L\left(\underset{k}{\underset{T}{T}} \underset{\left(A / \mathfrak{a}_{1}\right.}{ }, A / \mathfrak{a}_{2}\right)\right)
$$

and where A is the local ring $\mathcal{O}\left(G / P, X_{w}\right), \mathfrak{a}_{i}$ is ideal of the Schubert varieties $X_{L_{i}}$, and L is the length of the A-modules.

2. Schubert's problem of characteristics

Serre formula: Based on Weil's definition on the intersection multiplicities in 1946, Serre (1965) obtained "an elegant formula" by which:

$$
\left.s_{u_{1}} \cdot s_{u_{2}}=\sum c_{u_{1}, u_{2}}^{w} \cdot s_{w}, \text { where } c_{u_{1}, u_{2}}^{w}=\sum_{k \geq 0}(-1)^{k} L\left(\underset{k}{\underset{T}{T}} \underset{\left(A / \mathfrak{a}_{1}\right.}{ }, A / \mathfrak{a}_{2}\right)\right),
$$

and where A is the local ring $\mathcal{O}\left(G / P, X_{w}\right), \mathfrak{a}_{i}$ is ideal of the Schubert varieties $X_{u_{i}}$, and L is the length of the A-modules.

Unfortunately, this formula is not computable, because it uses the defining polynomials $f_{w}, f_{u_{i}}$ of the Schubert varieties $X_{w}, X_{u_{i}} \subset G / P$ as input.

Remark: Nowadays, algebraic geometers use "intersection multiplicities" instead of "characteristics", e.g. the survey articles:
(1) Pierre Samuel, Sur I'histoire du quinzième problème de Hilbert, Gaz.Math. Soc. Math. Fr. 1974.
(2) W. Fulton, R.D. MacPherson, "Defining algebraic intersections", LNM. 687, 1978.
(3) J.P.Serre, Algebre Locale, Multiplicites, LNM, 11, 1965.

2. The Schubert's problem of characteristics

Weil Problem: In the momentous treatise "Foundations of Algebraic Geometry", A. Weil completed the definition of "the intersection multiplicities" for the first time in the history, and made the task of Problem 15 precise:
"The classical Schubert calculus amounts to the determination of the intersection rings of flag manifolds G / P."

2. Schubert's problem of characteristics

Weil commented that his problem as "the modern form taken by the topic formerly known as enumerative geometry in the last century". We show that

Theorem 2: Weil problem is equivalent to the problem of characteristics.

2. Schubert's problem of characteristics

Weil commented that his problem as "the modern form taken by the topic formerly known as enumerative geometry in the last century". We show that

Theorem 2: Weil problem is equivalent to the problem of characteristics.
Proof. A ring is an abelian group R that is furnished with a product:

$$
R \times R \rightarrow R .
$$

By the basis theorem, the cohomology $H^{*}(G / P)$ is a free abelian group with a basis consisting of Schubert classes.

Theorefore, the product on the ring $H^{*}(G / P)$ is determined uniquely by the product among the basis elements (i.e. the Schubert symbols), which is handled by the problem of characteristics. \square

Solution to the problem of characteristics (Duan and Zhao)

Summarizing the earlier studies on Problem 15 by 1960 there two problems remain. For a flag manifold G / P
(1) Schubert: Compute all the characteristics numbers $c_{u_{1}, \cdots, u_{k}}^{w}$;
(2) Weil: Determine the cohomology ring $H^{*}(G / P)$.

Solution to the problem of characteristics

The difficulties that one encounters with characteristics are fairly transparent:

- The simply-connected simple Lie groups G consist of the three infinite families of the classical groups $\operatorname{Spin}(n), \operatorname{Sp}(n), S U(n)$, as well as the five exceptional ones $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$;

Solution to the problem of characteristics

The difficulties that one encounters with characteristics are fairly transparent:

- The simply-connected simple Lie groups G consist of the three infinite families of the classical groups $\operatorname{Spin}(n), S p(n), S U(n)$, as well as the five exceptional ones $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$;
- For each Lie group G with rank n, there are precisely $2^{n}-1$ parabolic subgroups P.

Solution to the problem of characteristics

The difficulties that one encounters with characteristics are fairly transparent:

- The simply-connected simple Lie groups G consist of the three infinite families of the classical groups $\operatorname{Spin}(n), \operatorname{Sp}(n), S U(n)$, as well as the five exceptional ones $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$;
- For each Lie group G with rank n, there are precisely $2^{n}-1$ parabolic subgroups P.
- For each flag manifold G / P, the number of Schubert classes on G / P is equal to the Euler characteristic $\chi(G / P)$, which is normally very large:

G	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
$\chi(G / T)$	12	1152	$2^{7} \cdot 3^{4} \cdot 5$	$2^{10} \cdot 3^{4} \cdot 5 \cdot 7$	$2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$

Solution to the problem of characteristics

The difficulties that one encounters with characteristics are fairly transparent:

- The simply-connected simple Lie groups G consist of the three infinite families of the classical groups $\operatorname{Spin}(n), \operatorname{Sp}(n), S U(n)$, as well as the five exceptional ones $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$;
- For each Lie group G with rank n, there are precisely $2^{n}-1$ parabolic subgroups P.
- For each flag manifold G / P, the number of Schubert classes on G / P is equal to the Euler characteristic $\chi(G / P)$, which is normally very large:

G	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
$\chi(G / T)$	12	1152	$2^{7} \cdot 3^{4} \cdot 5$	$2^{10} \cdot 3^{4} \cdot 5 \cdot 7$	$2^{2^{14}} \cdot 3^{5} \cdot 5^{2} \cdot 7$

Summarizing, it is impossible to solve the problem of characteristics case by case.

Solution to the problem of characteristics

On the other hand, by a fundamental contribution of E. Cartan, the simply-connected Lie groups are classified by their Cartan matrices

$$
\begin{aligned}
& G_{2}:\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right) \quad F_{4}:\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -2 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right) \quad E_{6}:\left(\begin{array}{cccccc}
2 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \\
& E_{7}:\left(\begin{array}{ccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \quad E_{8}:\left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

The cosmological constants by which all flag manifolds can be classified!

Solution to the problem of characteristics

On the other hand, by a fundamental contribution of E. Cartan, the simply-connected Lie groups are classified by their Cartan matrices
$G_{2}:\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right) \quad F_{4}:\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -2 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right) \quad E_{6}:\left(\begin{array}{cccccc}2 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$
$E_{7}:\left(\begin{array}{ccccccc}2 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2\end{array}\right) \quad E_{8}:\left(\begin{array}{cccccccc}2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$
The cosmological constants by which all flag manifolds can be classified!

Question

Can we compute all the characteristics numbers, or construct the Chow ring of a flag manifold G/P, merely from the Cartan matrix of the Lie group G ?

We realize this expectation.

Solution to the problem of characteristics

Thus, let $C=\left(c_{i, j}\right)_{n \times n}$ be the Cartan matrix of some compact Lie group G. Let \mathbb{R}^{n} be the n-dimensional real vector space with basis $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$. Define in term of C the automorphisms $\sigma_{i} \in \operatorname{Aut}\left(\mathbb{R}^{n}\right), 1 \leq i \leq n$, by the formula

$$
\sigma_{i}\left(\omega_{k}\right)=\left\{\begin{array}{l}
\omega_{k} \text { if } i \neq k ; \\
\omega_{k}-\left(c_{k, 1} \omega_{1}+c_{k, 2} \omega_{2}+\cdots+c_{k, n} \omega_{n}\right) \text { if } i=k .
\end{array}\right.
$$

Theorem 3. The subgroup W of $\operatorname{Aut}\left(\mathbb{R}^{n}\right)$ generated by the σ_{i} 's is the Weyl group of G.

Solution to the problem of characteristics

Thus, let $C=\left(c_{i, j}\right)_{n \times n}$ be the Cartan matrix of some compact Lie group G. Let \mathbb{R}^{n} be the n-dimensional real vector space with basis $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$. Define in term of C the automorphisms $\sigma_{i} \in \operatorname{Aut}\left(\mathbb{R}^{n}\right), 1 \leq i \leq n$, by the formula

$$
\sigma_{i}\left(\omega_{k}\right)=\left\{\begin{array}{l}
\omega_{k} \text { if } i \neq k ; \\
\omega_{k}-\left(c_{k, 1} \omega_{1}+c_{k, 2} \omega_{2}+\cdots+c_{k, n} \omega_{n}\right) \text { if } i=k .
\end{array}\right.
$$

Theorem 3. The subgroup W of $\operatorname{Aut}\left(\mathbb{R}^{n}\right)$ generated by the σ_{i} 's is the Weyl group of G.

Definition. For a Weyl group element $w \in W$ with a minimized decomposition

$$
w=\sigma_{i_{1}} \circ \sigma_{i_{2}} \circ \cdots \circ \sigma_{i_{m}}, 1 \leq i_{1}, i_{2}, \cdots, i_{m} \leq n,
$$

the structure matrix of w is $A_{w}=\left(a_{s, t}\right)_{m \times m}$, where

$$
a_{s, t}=0 \text { if } s \geq t ; \quad a_{s, t}=-c_{i_{s}, i_{t}} \text { if } s<t .
$$

Solution to the problem of characteristics

Example: The Cartan matrix of the exceptional Lie group G_{2} is

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

by which we get two generators σ_{1}, σ_{2} of the Weyl group W of G_{2}.

Solution to the problem of characteristics

Example: The Cartan matrix of the exceptional Lie group G_{2} is

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

by which we get two generators σ_{1}, σ_{2} of the Weyl group W of G_{2}.
Consider the following elements of W with length 4 :

$$
u=\sigma_{1} \circ \sigma_{2} \circ \sigma_{1} \circ \sigma_{2} \text { and } v=\sigma_{2} \circ \sigma_{1} \circ \sigma_{2} \circ \sigma_{1} .
$$

From the Cartan matrix C one reads the structure matrices of u, v, respectively,

$$
A_{u}=\left(\begin{array}{cccc}
0 & 1 & -2 & 1 \\
0 & 0 & 3 & -2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and } A_{v}=\left(\begin{array}{cccc}
0 & 3 & -2 & 3 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Solution to the problem of characteristics

Definition. Given a strictly upper triangular matrix $A=\left(a_{i, j}\right)_{m \times m}$ the triangular operator T_{A} associated to A is the linear map

$$
T_{A}: \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]^{(m)} \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{m-1}\right]^{(m-1)} \rightarrow \cdots \rightarrow \mathbb{Z}
$$

Solution to the problem of characteristics

Definition. Given a strictly upper triangular matrix $A=\left(a_{i, j}\right)_{m \times m}$ the triangular operator T_{A} associated to A is the linear map

$$
T_{A}: \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]^{(m)} \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{m-1}\right]^{(m-1)} \rightarrow \cdots \rightarrow \mathbb{Z}
$$

defined recursively by the following elimination rules:

$$
\begin{aligned}
& T_{A}\left(x_{1}^{r_{1}} \ldots x_{m}^{r_{m}}\right)=0 \text { if } r_{m}=0 ; \\
& T_{A}\left(x_{1}^{r_{1}} \ldots x_{m}^{r_{m}^{m}}\right)=T_{A_{1}}\left(x_{1}^{r_{1}} \ldots x_{m-1}^{r_{m-1}}\left(a_{1, m} x_{1}+\cdots+a_{m-1, m} x_{m-1}\right)^{r_{m}-1}\right)
\end{aligned}
$$

if $r_{m}>0$, where A_{1} is obtained from A by deleting the last column and row.

Solution to the problem of characteristics

Definition. Given a strictly upper triangular matrix $A=\left(a_{i, j}\right)_{m \times m}$ the triangular operator T_{A} associated to A is the linear map

$$
T_{A}: \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]^{(m)} \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{m-1}\right]^{(m-1)} \rightarrow \cdots \rightarrow \mathbb{Z}
$$

defined recursively by the following elimination rules:

$$
\begin{aligned}
& T_{A}\left(x_{1}^{r_{1}} \ldots x_{m}^{r_{m}}\right)=0 \text { if } r_{m}=0 ; \\
& T_{A}\left(x_{1}^{r_{1}} \ldots x_{m}^{r_{m}}\right)=T_{A_{1}}\left(x_{1}^{r_{1}} \ldots x_{m-1}^{r_{m-1}}\left(a_{1, m} x_{1}+\cdots+a_{m-1, m} x_{m-1}\right)^{r_{m}-1}\right)
\end{aligned}
$$

if $r_{m}>0$, where A_{1} is obtained from A by deleting the last column and row.
Summarizing, starting barely from the Cartan matrix $C=\left(c_{i, j}\right)_{n \times n}$ of G, we have constructed:

- The Weyl group W of G;
- Strictly upper-triangular matrices $\left\{A_{w}, w \in W\right\}$;
- Linear maps $\left\{T_{A_{w}}: \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]^{(m)} \rightarrow \mathbb{Z}, w \in W\right\}$.

Solution to the problem of characteristics

Applying Morse theory to the canonical embeddings $G / P \hookrightarrow L(G)$ of the flag manifold G / P into the Lie algebra $L(G)$, we have obtained the following formula.

Theorem 4 (The Characteristic Formula): Let A_{w} be the structure matrix of w associated the minimized decomposition $w=\sigma_{i_{1}} \circ \sigma_{i_{2}} \circ \cdots \circ \sigma_{i_{m}}$, then the characteristic $c_{u_{1}, \cdots u_{k}}^{w}$ is given by

$$
c_{u_{1}, \cdots, u_{k}}^{w}=T_{A_{w}}\left(\prod_{i=1, \ldots, k}\left(\sum_{I \subseteq\{1, \ldots, m\},|I|=l\left(u_{i}\right), \sigma_{l}=u_{i}} x_{l}\right)\right)
$$

where for a multi-index $I=\left\{s_{1}, \cdots, s_{t}\right\} \subseteq\{1, \cdots, m\}$

$$
|I|=t, \sigma_{I}=\sigma_{i_{s_{1}}} \circ \cdots \circ \sigma_{i_{s_{t}}}, x_{I}=x_{s_{1}} \cdots x_{s_{t}} . \square
$$

Solution to the problem of characteristics

Applying Morse theory to the canonical embeddings $G / P \hookrightarrow L(G)$ of the flag manifold G / P into the Lie algebra $L(G)$, we have obtained the following formula.

Theorem 4 (The Characteristic Formula): Let A_{w} be the structure matrix of w associated the minimized decomposition $w=\sigma_{i_{1}} \circ \sigma_{i_{2}} \circ \cdots \circ \sigma_{i_{m}}$, then the characteristic $c_{u_{1}, \cdots u_{k}}^{w}$ is given by

$$
c_{u_{1}, \cdots, u_{k}}^{w}=T_{A_{w}}\left(\prod_{i=1, \ldots, k}\left(\sum_{I \subseteq\{1, \ldots, m\},\left|| |=I\left(u_{i}\right), \sigma_{l}=u_{i}\right.} x_{l}\right)\right)
$$

where for a multi-index $I=\left\{s_{1}, \cdots, s_{t}\right\} \subseteq\{1, \cdots, m\}$

$$
|I|=t, \sigma_{I}=\sigma_{i_{s_{1}}} \circ \cdots \circ \sigma_{i_{s_{t}}}, x_{l}=x_{s_{1}} \cdots x_{s_{t}} . \square
$$

Remark: The formula depends only on the Cartan matrix C of G, and applies uniformly

- to all flag manifolds G / P;
- to any monomial $s_{U_{1}} \cdots s_{U_{k}}$ in the Schubert basis of G / P.

Solution to the problem of characteristics

Based on the formula, a packages entitled "CHARACTERISTICS" have been composed in the works

- Duan and Zhao, Multiplicative rule of Schubert classes (2005)
- Duan and Zhao, Algorithm for multiplying Schubert classes (2006)
- Duan and Zhao, Schubert presentations of complete flag manifolds G / T (2015)
- Duan and Zhao, On Schubert's Problem of Characteristics (2020).
whose function can be described as follows:

Algorithm

Input: The Cartan matrix $C=\left(c_{i j}\right)_{n \times n}$ of the Lie group G, and a subset $I \subseteq\{1,2, \cdots, n\}$ to specify a parabolic subgroup $P \subset G$.

Output: The characteristic numbers $c_{u_{1}, \ldots u_{k}}^{w}$ of G / P.

Solution to the problem of characteristics

Example

The characteristics of the Grassmannian $G_{9,4}(\mathbb{C})($ the universal Chern numbers):

$c_{4}^{5}=1$	$c_{3}^{4} c_{4}^{2}=1$	$c_{2} c_{3}^{2} c_{4}^{3}=1$	$c_{2} c_{3}^{6}=9$
$c_{2}^{2} c_{4}^{4}=1$	$c_{2}^{2} c_{3}^{4} c_{4}=6$	$c_{2}^{3} c_{3}^{2} c_{4}^{2}=4$	$c_{2}^{4} c_{4}^{3}=3$
$c_{2}^{4} c_{3}^{4}=45$	$c_{2}^{5} c_{3}^{2} c_{4}=26$	$c_{2}^{6} c_{4}^{2}=16$	$c_{2}^{7} c_{3}^{2}=231$
$c_{2}^{8} c_{4}=126$	$c_{2}^{10}=1296$	$c_{1} c_{3} c_{4}^{4}=1$	$c_{1} c_{3}^{5} c_{4}=4$
$c_{1} c_{2} c_{3}^{3} c_{4}^{2}=3$	$c_{1} c_{2}^{2} c_{3} c_{4}^{3}=2$	$c_{1} c_{2}^{2} c_{3}^{5}=29$	$c_{1} c_{2}^{3} c_{3}^{3} c_{4}=17$
$c_{1} c_{2}^{4} c_{3} c_{4}^{2}=10$	$c_{1} c_{2}^{5} c_{3}^{3}=141$	$c_{1} c_{2}^{6} c_{3} c_{4}=76$	$c_{1} c_{2}^{8} c_{3}=756$
$c_{1}^{2} c_{3}^{2} c_{4}^{3}=2$	$c_{1}^{2} c_{3}^{6}=19$	$c_{1}^{2} c_{2} c_{4}^{4}=1$	$c_{1}^{2} c_{2} c_{3}^{4} c_{4}=12$
$c_{1}^{2} c_{2}^{2} c_{3}^{2} c_{4}^{2}=7$	$c_{1}^{2} c_{2}^{3} c_{4}^{3}=4$	$c_{1}^{2} c_{2}^{3} c_{3}^{4}=89$	$c_{1}^{2} c_{2}^{4} c_{3}^{2} c_{4}=48$
$c_{1}^{2} c_{2}^{5} c_{4}^{2}=26$	$c_{1}^{2} c_{2}^{6} c_{3}^{2}=451$	$c_{1}^{2} c_{2}^{7} c_{4}=231$	$c_{1}^{2} c_{2}^{9}=2556$
$c_{1}^{3} c_{3}^{3} c_{4}^{2}=6$	$c_{1}^{3} c_{2} c_{3} c_{4}^{3}=3$	$c_{1}^{3} c_{2} c_{3}^{5}=59$	$c_{1}^{3} c_{2}^{2} c_{3}^{3} c_{4}=32$
$c_{1}^{3} c_{2}^{3} c_{3} c_{4}^{2}=17$	$c_{1}^{3} c_{2}^{4} c_{3}^{3}=276$	$c_{1}^{3} c_{2}^{5} c_{3} c_{4}=141$	$c_{1}^{3} c_{2}^{7} c_{3}=1491$
$c_{1}^{4} c_{4}^{4}=1$	$c_{1}^{4} c_{3}^{4} c_{4}=24$	$c_{1}^{4} c_{2} c_{3}^{2} c_{4}^{2}=12$	$c_{1}^{4} c_{2}^{2} c_{4}^{3}=6$
$c_{1}^{4} c_{2}^{2} c_{3}^{4}=175$	$c_{1}^{4} c_{2}^{3} c_{3}^{2} c_{4}=89$	$c_{1}^{4} c_{2}^{4} c_{4}^{2}=45$	$c_{1}^{4} c_{2}^{5} c_{3}^{2}=886$
$c_{1}^{4} c_{2}^{6} c_{4}=436$	$c_{1}^{4} c_{2}^{8}=5112$	$c_{1}^{5} c_{3} c_{4}^{3}=4$	$c_{1}^{5} c_{3}^{5}=119$
$c_{1}^{5} c_{2} c_{3}^{3} c_{4}=59$	$c_{1}^{5} c_{2}^{2} c_{3} c_{4}^{2}=29$	$c_{1}^{5} c_{2}^{3} c_{3}^{3}=539$	$c_{1}^{5} c_{2}^{4} c_{3} c_{4}=264$
$c_{1}^{5} c_{2}^{6} c_{3}=2962$	$c_{1}^{6} c_{3}^{2} c_{4}^{2}=19$	$c_{1}^{6} c_{2} c_{4}^{3}=9$	$c_{1}^{6} c_{2} c_{3}^{4}=339$
$c_{1}^{6} c_{2}^{2} c_{3}^{2} c_{4}=164$	$c_{1}^{6} c_{2}^{3} c_{4}^{2}=79$	$c_{1}^{6} c_{2}^{4} c_{3}^{2}=1744$	$c_{1}^{6} c_{2}^{5} c_{4}=832$
$c_{1}^{6} c_{2}^{7}=10302$	$c_{1}^{7} c_{3}^{3} c_{4}=104$	$c_{1}^{7} c_{2} c_{3} c_{4}^{2}=49$	$c_{1}^{7} c_{2}^{2} c_{3}^{3}=1047$
$c_{1}^{7} c_{2}^{3} c_{3} c_{4}=496$	$c_{1}^{7} c_{2}^{5} c_{3}=5912$	$c_{1}^{8} c_{4}^{3}=14$	$c_{1}^{8} c_{3}^{4}=641$
$c_{1}^{8} c_{2} c_{3}^{2} c_{4}=300$	$c_{1}^{8} c_{2}^{2} c_{4}^{2}=140$	$c_{1}^{8} c_{2}^{3} c_{3}^{2}=3437$	$c_{1}^{8} c_{2}^{4} c_{4}=1600$
$c_{1}^{8} c_{2}^{6}=20887$	$c_{1}^{9} c_{3} c_{4}^{2}=84$	$c_{1}^{9} c_{2} c_{3}^{3}=2025$	$c_{1}^{9} c_{2}^{2} c_{3} c_{4}=936$
$c_{1}^{9} c_{2}^{4} c_{3}=11853$	$c_{1}^{10} c_{3}^{2} c_{4}=552$	$c_{1}^{10} c_{2} c_{4}^{2}=252$	$c_{1}^{10} c_{2}^{2} c_{3}^{2}=6792$
$c_{1}^{10} c_{2}^{3} c_{4}=3102$	$c_{1}^{10} c_{2}^{5}=42597$	$c_{1}^{11} c_{3}^{3}=3927$	$c_{1}^{11} c_{2} c_{3} c_{4}=1782$
$c_{1}^{11} c_{2}^{3} c_{3}=23892$	$c_{1}^{12} c_{4}^{2}=462$	$c_{1}^{12} c_{2} c_{3}^{2}=13497$	$c_{1}^{12} c_{2}^{2} c_{4}=6072$
$c_{1}^{12} c_{2}^{4}=87417$	$c_{1}^{13} c_{3} c_{4}=3432$	$c_{1}^{13} c_{2}^{2} c_{3}=48477$	$c_{1}^{14} c_{3}^{2}=27027$
$c_{1}^{14} c_{2} c_{4}=12012$	$c_{1}^{14} c_{2}^{3}=180609$	$c_{1}^{15} c_{2} c_{3}=99099$	$c_{1}^{16} c_{4}=24024$
$c_{1}^{16} c_{2}^{2}=375804$	$c_{1}^{17} c_{3}=204204$	$c_{1}^{18} c_{2}=787644$	$c_{1}^{20}=1662804$

Table 2. The characteristics of the Grassmaniann $G_{9,4}$ Current Developments in Mathematic

Solution to the problem of characteristics

Example

The characteristics of the exceptional flag manifold $E_{6} / S^{1} \times S U(6)$

$y_{3} y_{6}^{3}=3$	$y_{3} y_{4}^{3} y_{6}=3$	$y_{3}^{3} y_{6}^{2}=21$	$y_{3}^{3} y_{4}^{3}=21$	$y_{3}^{5} y_{6}=156$	
$y_{3}^{7}=1158$	$y_{1} y_{4}^{2} y_{6}^{2}=2$	$y_{1} y_{4}^{5}=2$	$y_{1} y_{3}^{2} y_{4}^{2} y_{6}=14$	$y_{1} y_{3}^{4} y_{4}^{2}=100$	
$y_{1}^{2} y_{3} y_{4} y_{6}^{2}=9$	$y_{1}^{2} y_{3} y_{4}^{4}=9$	$y_{1}^{2} y_{3}^{3} y_{4} y_{6}=66$	$y_{1}^{2} y_{3}^{5} y_{4}=483$	$y_{1}^{3} y_{6}^{3}=6$	
$y_{1}^{3} y_{4}^{3} y_{6}=6$	$y_{1}^{3} y_{3}^{2} y_{6}^{2}=42$	$y_{1}^{3} y_{3}^{2} y_{4}^{3}=42$	$y_{1}^{3} y_{3}^{4} y_{6}=312$	$y_{1}^{3} y_{3}^{6}=2328$	
$y_{1}^{4} y_{3} y_{4}^{2} y_{6}=28$	$y_{1}^{4} y_{3}^{3} y_{4}^{2}=201$	$y_{1}^{5} y_{4} y_{6}^{2}=18$	$y_{1}^{5} y_{4}^{4}=18$	$y_{1}^{5} y_{3}^{2} y_{4} y_{6}=132$	
$y_{1}^{5} y_{3}^{4} y_{4}=972$	$y_{1}^{6} y_{3} y_{6}^{2}=84$	$y_{1}^{6} y_{3} y_{4}^{3}=84$	$y_{1}^{6} y_{3}^{3} y_{6}=624$	$y_{1}^{6} y_{3}^{5}=4677$	
$y_{1}^{7} y_{4}^{2} y_{6}=56$	$y_{1}^{7} y_{3}^{2} y_{4}^{2}=404$	$y_{1}^{8} y_{3} y_{4} y_{6}=264$	$y_{1}^{8} y_{3}^{3} y_{4}=1956$	$y_{1}^{9} y_{6}^{2}=168$	
$y_{1}^{9} y_{4}^{3}=168$	$y_{1}^{9} y_{3}^{2} y_{6}=1248$	$y_{1}^{9} y_{3}^{4}=9390$	$y_{1}^{10} y_{3} y_{4}^{2}=813$	$y_{1}^{11} y_{4} y_{6}=528$	
$y_{1}^{11} y_{3}^{2} y_{4}=3936$	$y_{1}^{12} y_{3} y_{6}=2496$	$y_{1}^{12} y_{3}^{3}=18837$	$y_{1}^{13} y_{4}^{2}=1638$	$y_{1}^{14} y_{3} y_{4}=7917$	
$y_{1}^{15} y_{6}=4992$	$y_{1}^{15} y_{3}^{2}=37752$	$y_{1}^{17} y_{4}=15912$	$y_{1}^{18} y_{3}=75582$	$y_{1}^{21}=151164$	
Table 3. The characteristics of the flag manifold $E_{6} / S^{1} \cdot S U(6)$					

Example

The characteristics of the exceptional flag manifold $E_{7} / S^{1} \times E_{6}$

$y_{9}^{3}=10$	$y_{1}^{2} y_{5}^{5}=184$	$y_{1}^{3} y_{5}^{3} y_{9}=92$	$y_{1}^{4} y_{5} y_{9}^{2}=46$	$y_{1}^{7} y_{5}^{4} y_{9}=432$
$y_{1}^{8} y_{5}^{2} y_{9}=216$	$y_{1}^{9} y_{9}^{2}=108$	$y_{1}^{12} y_{5}^{3}=1014$	$y_{1}^{13} y_{5} y_{9}=507$	$y_{1}^{17} y_{5}^{2}=2380$
$y_{1}^{18} y_{9}=1190$	$y_{1}^{22} y_{5}=5586$	$y_{1}^{27}=13110$		

Table 4. The characteristics of the flag manifold $E_{7} / S^{1} \cdot E_{6}$

Solution to Weil problem

Turning to the Weil problem we show that:
Theorem 5. For a flag manifold G / P, there exist a minimal system of Schubert classes $\left\{x_{1}, \cdots, x_{n}\right\}$, and polynomials $f_{1}, \cdots, f_{m} \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$, such that

$$
H^{*}(G / P)=\frac{\mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]}{\left\langle f_{1}, \cdots, f_{m}\right\rangle} .
$$

Solution to Weil problem

Turning to the Weil problem we show that:
Theorem 5. For a flag manifold G / P, there exist a minimal system of Schubert classes $\left\{x_{1}, \cdots, x_{n}\right\}$, and polynomials $f_{1}, \cdots, f_{m} \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$, such that

$$
H^{*}(G / P)=\frac{\mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]}{\left\langle f_{1}, \cdots, f_{m}\right\rangle} .
$$

Proof. Since the flag manifold G / P is finite dimensional, the quotient group

$$
H^{+}(G / P) / H^{+}(G / P) \cdot H^{+}(G / P)
$$

is finitely generated. By the basis theorem of Schubert calculus, there exists a set of Schubert classes $\left\{x_{1}, \cdots, x_{n}\right\}$ on G / P that correspond to a basis of the quotient group $H^{+}(G / P) / H^{+}(G / P) \cdot H^{+}(G / P)$.
It follows that the inclusion $x_{1}, \cdots, x_{n} \in H^{*}(G / P)$ induces an epimorphism

$$
h: \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right] \rightarrow H^{*}(G / P) .
$$

By the Hilbert's basis theorem, there exist finite set of polynomials $\left\{f_{1}, \cdots, f_{m}\right\}$ in x_{1}, \cdots, x_{n} such that ker $h=\left\langle f_{1}, \cdots, f_{m}\right\rangle . \square$

Solution to Weil problem

Combining " CHARACTERISTICS" with the proof of Theorem 5, we have composed a package entitled "CHOWRING" in the works:

- The Chow rings of generalized Grassmannians (2010);
- Schubert presentations of complete flag manifolds G/T (2015),

Solution to Weil problem

Combining " CHARACTERISTICS" with the proof of Theorem 5, we have composed a package entitled "CHOWRING" in the works:

- The Chow rings of generalized Grassmannians (2010);
- Schubert presentations of complete flag manifolds G/T (2015), whose function can be described as follows:

Algorithm

Input: The Cartan matrix $C=\left(c_{i j}\right)_{n \times n}$ of the Lie group G, and a subset $I \subseteq\{1,2, \cdots, n\}$ to specify a parabolic subgroup $P \subset G$.

Output: A presentation of the Chow ring $H^{*}(G / P)=A^{*}(G / P)$.

Solution to Weil problem

Example

The Chow rings $A^{*}(G / P)$ of the flag manifolds
$G / P=\frac{F_{4}}{\operatorname{Sp}(3) \cdot S^{1}}, \frac{F_{4}}{\operatorname{Spin}(3) \cdot S^{1}}, \frac{E_{6}}{\operatorname{SU}(6) \cdot S^{1}}, \frac{E_{6}}{\operatorname{Spin}(10) \cdot S^{1}}, \frac{E_{7}}{E_{6} \cdot S^{1}}, \frac{E_{7}}{\operatorname{Spin}(12) \cdot S^{1}}, \frac{E_{8}}{E_{7} \cdot S^{1}}$

c	F_{4}	F_{4}	${ }_{5}$	5_{5}	5.	5	F_{3}
*	Q	\cdots	az	as	\#	*	*
\%	C-5.94	A ${ }^{1}$	2-3-	A4. s^{2}	Os $\mathrm{s}^{\text {c }}$	58	S\%-st
4	c)	n	\% 4	ds	i^{3}	2.	as

 Given

w

$$
\begin{aligned}
& r=20 \quad \therefore \\
& n_{0}=2 n+2,-2 x_{2}^{2}, n \\
& \text { n. 减 } \\
& \mathrm{c}_{.2}=\frac{1}{5}-\lambda_{2}^{2}
\end{aligned}
$$

 141..c13.2, 3,-1 crspetivis, Durn
wbra

$$
\begin{aligned}
& r_{2}=3 y_{2}^{2}-y_{1}^{3} \\
& r_{12}-26 r_{1}^{2}-5 y_{1}^{\prime 2}
\end{aligned}
$$

$\mathrm{s}=3 y^{2}-6 \mathrm{c}_{4} \mathrm{~s} \mathrm{c}_{4}-\mathrm{s}^{2} \mathrm{~s}+5 x_{1}^{2}-2 y_{1}^{2} \mathrm{~s}$.

243
Fousd Compt Mall (2010) 10: 24:-274

$$
\begin{aligned}
r 9 & =2 y_{3} y_{6}-y_{1}^{3} y_{6} ; \\
r_{12} & =y_{4}^{3}-y_{6}^{2} .
\end{aligned}
$$

Theorem 4 Let y_{1}, y be the Sctublert dasses on $E_{6} / D_{5} \cdot S^{1}$ with Weyi coordinates $\sigma[6], \sigma[2,4,5, \sigma]$ respectively. Then
$A^{*}\left(E_{6} / D_{3} \cdot S^{1}\right)=Z\left[y_{1}, y_{4}\right] /\left\langle r_{9}, r_{12}\right\rangle$,
where

$$
\begin{aligned}
& r_{9}=2 y_{1}^{9}+3 y_{1} y_{4}^{2}-6 y_{1}^{5} y_{4}: \\
& r_{12}=y_{4}^{3}-6 y_{1}^{4} y_{4}^{2}+y_{1}^{2} .
\end{aligned}
$$

Theorem 5 Let y_{1}, y_{5}, yo be the Sctubert classes on $E_{7} / E_{6} \cdot S^{1}$ with Weyl coondi. nates $\sigma[7], \sigma[2,4,5,6,7], \sigma[1,5,4,2,3,4,5,6,7]$ respectively. Then

$$
A^{x}\left(E_{7 /} / E_{6} \cdot S^{1}\right)=Z_{\left[y_{1}, y_{5}, v_{9}\right] / /\left(r_{10}, r_{14}, r_{18}\right\rangle}
$$

where

$$
\begin{aligned}
& r_{10}=y_{5}^{2}-2 y_{1} y_{g_{i}} \\
& r_{4}=2 y_{s} y_{9}-9 y_{1}^{4} y_{5}^{2}+6 y_{1}^{9} y s-y_{1}^{14} ; \\
& r_{18}=y_{9}^{2}+10 y_{1}^{3} y_{5}^{3}-9 y_{1}^{8} y_{5}^{2}+2 y_{1}^{13} y_{s} .
\end{aligned}
$$

Theorem 6 Let y. 34. y. yo be the Schubert classes on $E_{7} / D_{6} \cdot S^{1}$ widh Weyl cooraïnares $\sigma[1], \sigma[2,4,3,1], \sigma[2,6,5,4,3,1], \sigma[3,4,2,7,6,5,4,3,1]$ respectively. Then
$A^{\prime}\left(E_{7} / D_{6} \cdot S^{l}\right)=Z\left[y_{1}, y_{4}, y_{6}, y_{0}\right] /\left(r_{2}, r_{12}, r_{14}, r_{18}\right)$,
where
$r_{9}=2 y_{9}+3 y_{1} y_{4}^{2}+4 y_{1}^{3} y_{6}+2 y_{1}^{5} y_{4}-2 y_{1}^{9} ;$
$r_{12}=3 y_{6}^{2}-y_{4}^{3}-3 y_{1}^{4} y_{4}^{2}-2 y_{1}^{6} y_{6}+2 y_{1}^{3} y_{4} ;$
$r_{14}=3 y_{4}^{2} y_{6}+3 y_{1}^{2} y_{6}^{2}+6 y_{1}^{2} y_{4}^{3}+6 y_{1}^{4} y_{4} y_{6}+2 y_{1}^{5} y_{y}-y_{1}^{14} ;$
$r_{18}=5 y_{5}^{2}+29 y_{6}^{3}-24 y_{1}^{6} y_{6}^{2}+45 y_{1}^{2} y_{4} y_{6}^{2}+2 y_{1}^{9} y_{5}$.
Theorem 7 Let $y_{1}, y_{6}, y_{10}, y_{1}$ be the Schubert dasses on E_{5} / E_{7}. S^{1} with Weyl coor${ }_{3}$ dinates $\sigma[8], \sigma[3,4,5,6,7,8], \sigma[1,5,4,2,3,4,5,6,7,8], \circ[5,4,3,1,7,6,5,4,2$, 3, 4, 5, 6, 7, 8] respectively. Then

Make Schubert calculus calculable

Foman Compui Mant (2010) 10: 245:-274

where

$r_{15}=2 y_{15}-16 y_{1}^{3} y_{10}-10 y_{1}^{3} y_{6}^{2}+10 y_{1}^{9} y_{6}-y_{1}^{15}$
$r_{20}=3 y_{10}^{2}+10 y_{1}^{2} y_{6}^{2}+18 y_{1}^{4} y_{6} y_{10}-2 y_{1}^{5} y_{15}-8 y_{1}^{5} y_{6}^{2}+4 y_{1}^{16} y_{10}-y_{1}^{14} y_{6}:$ $r_{24}=5 y_{6}^{4}+30 y_{1}^{2} y_{6}^{2} y_{10}+15 y_{1}^{4} y_{10}^{2}-2 y_{1}^{9} y_{15}-5 y_{1}^{12} y_{6}^{2}+y_{1}^{14} y_{10}$ $r_{90}=y_{15}^{2}-8 y_{10}^{3}+y_{6}^{5}-2 y_{1}^{3} y_{6}^{2} y_{15}+3 y_{1}^{4} y_{6} y_{10}^{2}-8 y_{1}^{5} y_{10} y_{15}+6 y_{1}^{9} \% y_{15}$ $-9 y_{1}^{10} y_{10}^{2}-y_{1}^{12} y_{6}^{3}-2 y_{1}^{14} y_{6} y_{10}-3 y_{1}^{15} y_{15}+8 y_{1}^{20} y_{10}+y_{1}^{24} y_{6}-y_{1}^{30}$.
Traditionally, Sctubert calculus deals with intersection theory on dag varieties. The algorithms in Sect. 4.3 and the proofs of Theorems $8-14$ in Sect. 5 demonstrate how this calculation is extended to homogeneous spaces of other types

This paper is arranged as follows. Section 2 contains a brief introdaction to what we need from Schubert calculus, Section 3 develops some al gebraic results concemof circle bundles, the relationship between colomologies of a Grassmannian G / H and its allied space G / H_{z} is formulated in Sect 4 . With these preliminaries. Theorems $1-7$ (resp. Theorems $8-14$) are established in a unified pattern in Sect. 6 (tesp. Sect. 5).
Historically, the problem of computing the Chow ring of a flag variety (resp. the integral ochomology of a homogenocus spaco) has been studied by many authoss. Compariscres between our method and the classical means are made in Sect. 7 , where Cettin thecretical notions and results of this paper ane also al 7.Svith
Certain thecretical notions and results of this paper are also algorithmic in nature. Their effective computability is emphasized by referting to appropriate sections
of [13] where intermatiste data facilitating our calcolations sue piven in detail. To of [13], where intermediste data facilitating our calculations ane given in detail. To make the present work self-contained, the most relevant data from [13] are summa-
rizod and tisulated in the proxfs of Theorems $8-14$ in Sect. 5 . rized and tabulated in the proofs of Theorems 8-14 in Sect. 5.

2 Elements of Schubert Calculus

Assume throughout that the Lie group G under consideration is compact and 1 -connected. Fix a maximal torus T in G and equip the Lie algebra $L(G)$ with an inner product (,), so that the adjoint representation scts as isometries of $L(G)$. Let $\phi=\left\langle\beta_{1}, \ldots, \beta_{n}\right) \subset L(T)$ be a ret of simple rots of $G[20, p, 47]$. The Cartan matrix of G is $C=\left(c_{i j}\right)_{n \times n}$, where

$$
c_{j j}=2\left(\beta_{i}, \beta_{j}\right) /\left(\beta_{j}, \beta_{j}\right), \quad 1 \leq i, j \leq n[20, \text { p. } 55] .
$$

We recall two algorithms "Decomposition" and "L-R coefficient" developed in [11]- The first presents the Weyl group of G by the minimized deocmpositions of its elements, in terms of which the Schubert varicties on G / H can be constructed The second expands a polynomial in the Schabert classes as the linear combination of the Schubert basis.

Current Developments in Mathematic

Solution to Weil problem

Example

The Chow rings $A^{*}(G / T)$ of the complete flag manifolds: $G=G_{2}, F_{4}, E_{6}, E_{7}$:

Theorrm 5.1. For each exceptional Lie group G, the cohomology ring $H^{*}(G / T)$ has the following presentation:

```
H
\rho}=3\mp@subsup{\omega}{1}{2}-3\mp@subsup{\omega}{1}{}\mp@subsup{\omega}{2}{}+\mp@subsup{\omega}{2}{2}
r3}=2\mp@subsup{y}{3}{}-\mp@subsup{\omega}{1}{3}
r}=\mp@subsup{y}{3}{2}
H
\rho}=\mp@subsup{c}{2}{}-4\mp@subsup{\omega}{1}{2}
\rho4}=3\mp@subsup{y}{4}{}+2\mp@subsup{\omega}{1}{\prime}\mp@subsup{y}{3}{}-\mp@subsup{c}{4}{
ra}=2\mp@subsup{y}{3}{}-\mp@subsup{\omega}{1}{3}
r}=\mp@subsup{y}{3}{2}+2\mp@subsup{c}{6}{}-3\mp@subsup{\omega}{1}{2}\mp@subsup{y}{4}{
rg}=3\mp@subsup{y}{4}{2}-\mp@subsup{\omega}{1}{2}\mp@subsup{c}{\textrm{f}}{
```



```
H
\rho}=4\mp@subsup{\omega}{2}{2}-\mp@subsup{c}{2}{}
\rho}=2\mp@subsup{y}{3}{}+2\mp@subsup{\omega}{2}{3}-
\rho4}=3\mp@subsup{y}{4}{}+\mp@subsup{\omega}{2}{4}-\mp@subsup{c}{4}{4
\rho
r
```



```
rg=2\mp@subsup{y}{3}{}\mp@subsup{c}{6}{}-\mp@subsup{\omega}{2}{3}\mp@subsup{c}{6}{\prime};
r12 = 诸 - con.
H
    where i}\in{6,8,9,10,12,14,18} and wher
\mp@subsup{\rho}{2}{}}=4\mp@subsup{\omega}{2}{2}-\mp@subsup{c}{2}{
\rho}=2\mp@subsup{y}{3}{}+2\mp@subsup{\omega}{2}{3}-\mp@subsup{c}{3}{\prime
\rho}=3\mp@subsup{y}{4}{}+\mp@subsup{w}{2}{4}-\mp@subsup{c}{4}{
\rho}=2\mp@subsup{y}{5}{\prime}-2\mp@subsup{\omega}{2}{2}\mp@subsup{y}{3}{}+\mp@subsup{\omega}{2}{}\mp@subsup{c}{4}{}-\mp@subsup{c}{5}{}
r}\mp@subsup{r}{6}{}=\mp@subsup{y}{5}{2}-\mp@subsup{\omega}{2}{}\mp@subsup{c}{5}{\prime}+2\mp@subsup{c}{6}{}
rs}=3\mp@subsup{y}{4}{2}+2\mp@subsup{y}{3}{}\mp@subsup{y}{5}{5}-2\mp@subsup{y}{5}{}\mp@subsup{y}{5}{}\mp@subsup{c}{5}{}+2\mp@subsup{\omega}{2}{}\mp@subsup{c}{7}{}-\mp@subsup{\omega}{2}{2}\mp@subsup{c}{6}{}+\mp@subsup{\omega}{2}{3}\mp@subsup{c}{5}{\prime}
rg}=2\mp@subsup{y}{9}{}+2\mp@subsup{y}{4}{}\mp@subsup{y}{5}{}-2\mp@subsup{y}{3}{}\mp@subsup{c}{6}{}-\mp@subsup{\omega}{2}{2}\mp@subsup{c}{7}{}+\mp@subsup{\omega}{2}{3}\mp@subsup{c}{6}{
```



```
r
r
```

$r_{18}=y_{9}^{2}+2 y_{5} c_{6} c_{7}-y_{4} c_{7}^{2}-2 y_{4} y_{5} y_{9}+2 y_{3} y_{5}^{5}-5 \omega_{2} y_{5}^{2} c_{7} . \square \quad$ Current Developments in Mathematic

Solution to Weil problem

For a compact Lie group G and a closed subgroup H, the quotient space G / H is smooth manifold, called a homogeneous space of G.

A classical problem in topology, starting with the works of H. Cartan, A. Borel, P. Baum, H . Toda (and so forth), is to express the cohomology ring $H^{*}(G / H)$ by a minimal system of explicit generators and relations.
To study the problem, various spectral sequence techniques were developed for certain fibrations associated with G / H, such as

- Leray-Serre spectral sequences;
- Eilenberg-Moore spectral sequences;
- Bockstein spectral sequences;
-

Solution to Weil problem

For a compact Lie group G and a closed subgroup H, the quotient space G / H is smooth manifold, called a homogeneous space of G.

A classical problem in topology, starting with the works of H. Cartan, A. Borel, P. Baum, H . Toda (and so forth), is to express the cohomology ring $H^{*}(G / H)$ by a minimal system of explicit generators and relations.
To study the problem, various spectral sequence techniques were developed for certain fibrations associated with G / H, such as

- Leray-Serre spectral sequences;
- Eilenberg-Moore spectral sequences;
- Bockstein spectral sequences;
- … .

But the calculation encounters the same difficulties when the cohomology $H^{*}(G)$ contains torsion elements, in particular, if G is an exceptional Lie group.

Solution to Weil problem (Duan and Zhao)

Example

Schubert calculus makes the cohomology theory of homogeneous spaces appearing in a new light: $(G, H)=\left(E_{6}, \operatorname{SU}(6)\right),\left(E_{7}, \operatorname{Spin}(12)\right),\left(E_{8}, E_{7}\right)$

References

In problem 15 Hilbert asked for a rigorous foundation of Schubert calculus.

References

In problem 15 Hilbert asked for a rigorous foundation of Schubert calculus.
Baker (1933) and Manin (1969) commented that, to secure "the foundation of a calculus" it suffices to decide:

- The objects to be calculated;
- The rule of the calculation.
(1) Baker, H. F. Principles of geometry, Cambridge: Univ. Press, 1933.
(2) Manin, Ju. I. On Hilbert's fifteenth problem, Izdat. "Nauka", Moscow, 1969.

References

In problem 15 Hilbert asked for a rigorous foundation of Schubert calculus.
Baker (1933) and Manin (1969) commented that, to secure "the foundation of a calculus" it suffices to decide:

- The objects to be calculated;
- The rule of the calculation.
(1) Baker, H. F. Principles of geometry, Cambridge: Univ. Press, 1933.
(2) Manin, Ju. I. On Hilbert's fifteenth problem, Izdat. "Nauka", Moscow, 1969.

As for the case of Schubert calculus, the foundation consists of two results:

- The basis theorem of Schubert calculus tells that the objects to be calculated are the "Schubert symbols", or "Schubert varieties";
- Our characteristic formula (or intersection formula) provides an effective rule performing the calculation.

References

This talk is based on the following survey papers on Problem 15:

- Duan, Zhao, Schubert calculus and Intersection theory of Flag manifolds, Russian Math. Surveys, 77 (in Russia, Uspekhi Mat. Nauk, 77), 2022;
- Duan, Zhao, Make Schubert calculus rigorous (in Chinese). Sci Sin Math, 2022.
- Duan, Zhao, On Schubert's Problem of Characteristics, In: Schubert Calculus and Its Applications in Combinatorics and Representation Theory, Springer proceedings in Mathematics and Statistics, 332, 2020.
where we have concluded that "Problem 15 has been solved satisfactorily".

References

This talk is based on the following survey papers on Problem 15:

- Duan, Zhao, Schubert calculus and Intersection theory of Flag manifolds, Russian Math. Surveys, 77 (in Russia, Uspekhi Mat. Nauk, 77), 2022;
- Duan, Zhao, Make Schubert calculus rigorous (in Chinese). Sci Sin Math, 2022.
- Duan, Zhao, On Schubert's Problem of Characteristics, In: Schubert Calculus and Its Applications in Combinatorics and Representation Theory, Springer proceedings in Mathematics and Statistics, 332, 2020.
where we have concluded that "Problem 15 has been solved satisfactorily".
In particular, the following tasks have been accomplished:
- Schubert (1870), Severi (1916): "The problem of characteristics is the fundamental one of the enumerative geometry";
- Weil (1963): "The classical Schubert calculus amounts to the determination of intersection theory of flag manifolds."

Thanks you so much for your attention!

Computational aspects:

- Data mining: Cartan matrix \Rightarrow Characteristic numbers
- Data Processing: Characteristic numbers \Rightarrow the Chow rings $A^{*}(G / P)$

Computational aspects:

- Data mining: Cartan matrix \Rightarrow Characteristic numbers
- Data Processing: Characteristic numbers \Rightarrow the Chow rings $A^{*}(G / P)$

Question

Can AI be helpful to speed up the computation?

Van Der Waerden's paper

Topologische Begründung des Kalküls der abzählenden Geometrie.

Von
Bartel L. van der Waerden in Groningen (Niederlande).

§ 1.

Einleitang.

Eines der Pariser Probleme Hilberts ${ }^{1}$) lautet: „Eine strenge Begründung des Schubertschen Abzählungskalküls".

In früheren Arbeiten ${ }^{2}$) habe ich gesucht darzutun, daß das Kernproblem der abzählenden Geometrie besteht in der Aufstellung einer brauchbaren Definition der "Multiplizitäten" oder der Vielfachheiten, mit denen die Lösungen eines algebraisch-geometrischen Problems gezählt werden müssen, damit das „Prinzip der Erhaltung der Anzahl" für diese Lösungen bei jeder Spezialisierung der Daten des Problems gelte. In der Arbeit W_{1} habe ich gezeigt, daß man bei jedem Problem, dessen Gleichungen homogen in den Unbekannten und rational in einigen Parametern sind, die Lösungen für jede spezielle Parameterzahl in einer und nur einer Weise mit solchen Vielfachheiten versehen kann, daß Anzahl und algebraische Eigenschaften der Lösungen bei diesen Parameterspezialisierungen erhalten bleiben, und daß bei allgemeiner Parameterwahl die Multiplizitäten gleich 1 sind. Damit war eine implizite Definition der Multiplizitäten gegeben, aber noch kein brauchbares Mittel, diese in vorliegenden Fallen (außer den allereinfachsten) wirklich zu bestimmen. Eine besondere Schwierigkeit bei der Anwendung war noch, daß mit der Möglichkeit von „Lösungen mit der
${ }^{1}$) D. Hilbert, Mathematische Probleme, Gött. Nachr. 1900, S. 253.
${ }^{2}$ B. L. v. d. Waerden, Diss. Amsterdam 1926. Der Multiplizitătsbegriff der alge-rrent Developments in Mathematic

Serre's elegant formula for the intersection multiplicites

subvarieties in X that intersect properly (i.e. the codimension of $Y \cap Z$ is equal to the sum of the codimensions of Y and Z). Each component W of the intersection $Y \cap Z$ is ascribed some positive integer $i(Y, Z ; W)$, which is the local multiplicity of the intersection. There are several definitions of $i(Y, Z ; W)$, for example, Serre's Tor-formula:

$$
i(Y, Z ; W)=\sum_{k \geq} 0(-1)^{k} l(\underset{k}{\operatorname{Tor}}(A / \mathfrak{a}, A / \mathfrak{b}))
$$

where A is the local ring $\mathcal{O}_{X, W}, \mathfrak{a}$ and \mathfrak{b} are ideals of Y and Z, and l is the length of the A module. After this, one puts

$$
Y \cdot Z=\sum_{W} i(Y, Z ; W) \cdot W
$$

where W runs through the irreducible components of $Y \cap Z$.

[^0]: 12. Remarcque su sujet du problème des caractéristiques de Schubert. La
 peut pas etre conssidérét commer. ripoureux, ear il ne s'sppuie pas sur uede deffitition procise et générile de l'ordre de multiplieité d'un point d'intersection et it
 mannque de precision en oe qui conecrae une certaine defformation de variettes
 nigereinguas.
 Rappelons que la topologie fournit une interpretation et une justifeation du
 Raplit symbalique de Schuber." File permet aussi de moatreer que le problemer
 des carradetriditiues pour une varieté algébrigue sans singularités admet toujoars une solution.
 Etant donnce la

 tenue dans V. Elle deffinit un cycle nlgébrique A bu- La relation (3) du paraentraine une égnlité symbolique de Sebubert

 Cate efpatitt fournit la solation du problime der caraudetistipues. Les differentes

 13. Reme a prpa ara
 13. Remarque à propos d'un theorème de M. F. Severi. Nos réaultats topologiques sont ì rupprocher d'un théorène démontre. par M. F. Severi.
 Considerons la rarieté de Grussnann engendrée par les $|k|$ de (n) et sont $V_{(0)}$ sa représentation it laide des coordonnés plickeriennes $p_{\& \&} \cdots$ os dans l'espace

