Recapitulation



S(E)=In( number of configurations with energy E.

0S(E
*1/(kgT) =22



The Boltzman canonical distribution :
P|: e_ES/kBT

* The average of a physical quantity Q,
+ <Q>=[dxQ(x)P'(x)/ [ dxP'(x);

* Angular bracket means an average.



Thermodynamics studies average properties.
An average thermodynamics quantity: Free energy F

*We define a free energy F which measures the
number of configurations of the system and its
environment. F need to be extremized for
equilibrium at fixed temperature to maximize

the number of configurations
E

ve F/KT = [ d{x}e kBT

We define a partition function Z which is

useful for calculations by
E

7 = [d{x}e kBT
+F = —k T In[ Z].



The Boltzman canonical distribution
P=e BE 7 B =1/kT
z= [ d{x}e PE is the normalization so that
[ dxP(x)=1

* The average of a physical quantity Q is
* <Q>=[dxQ(x)P(x),

*For example, < E > = [ dxE (x)P(x)
*dInZ/dp = —<E >=0(BF)/0p



Another thermodynamic quantity:
Entropy S=-k <In P>,

eP=e=PFE j7 (1)

*S is an average measure of the number of
configurations of the environment

*Entropy S = -k <In P>, (We take a log so that S is
extensive. Angular bracket means an average.)

*From (1) S=<E >/T +klnZ
S=<E>/T-F/T
e F=U-TS, U=<E>,



Usually the calculation using the
Boltzmann distribution cannot
be carried out exactly. A very
useful approximation is to
replace some of the variables by
a constant, their average value,
and to determine them later
self-consistently. This is called
the mean field approximation



Recapitulation: Energy of spins
in @ magnetic field

Atoms in magnets are charged particles with angular momenta S called
spins that, in some units, are interger or half integer.

Their magnetic moments M = gugS where gug is some constant.
In a magnetic field B, the energy is -B.M =-gugB.S.

Including heat change, we get the total energy change of a magnetic
system is

dE=TdS+other terms-B.dM
One can define a quantity F'=F+BM so that dF'=-SdT+MdB+other terms

For processes under a constant magnetic field and at fixed temperature,
F’ is minimized.



Energy of magnetic systems and mean field
approximation

* Atoms in magnets have magnetic moments proportional to their angular
momenta S, we call the angular momenta spins.

* For a ferromagnet (antiferromagnet) the interaction energy between two
spins is lowest when they are parallel (antiparallel).

* We write this energyas H = —J ZK]-?{ - ?j where J is called the exchange
energy. It is positive (negative) for a ferromagnet (antiferromagnet).

* |t is not ususally possible to do analytic calculations summing over all
configurations for all orientations of the spins.

* The mean field approximation replace one of them by an average with fixed
orientation and magnitude:

e H= _]Zi<j <Sl>'S]




Ising model

* We shall look at a special case where the spin only has a z
component of value o0 = +1



An example: Interacting spins and the mean-field approximation
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Thermodynamics

Spin interactions m [ he partition function for the Ising model is

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian ZC’ = Z eXp(—/ﬁEo—)

Energy eigenstates
oa

Thermodynamics

Partition function
Mean field = E exp ﬂJE m;og—l—ﬂhg i

Mean-field sum on states .. .
. o (3) g

Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Partition function
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

m [he partition function for the Ising model is

Zo = Z exp(—0Fs)

— ZGXP(ﬁJZO’iO'j — ﬁhZaz).

(23) ¢

m Before we try to calculate Z¢, note that our key thermodynamic
identities remain valid for interacting spins:

~

A=U—-TS - MB = —kgTlog Zc,

(E) = (%?)B:f]:U—MB,

= () =~(53),

1 0
<0>:N—ﬁ%

with
log Z¢.
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= Partition function

Spin interactions m  Now reconsider the partition function

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates ZC - Z exXp 6{] Z 0-7’0--7 _|_ 6h Z Oi

Thermodynamics o <Zj> 7

mea" frerd m Is there any way to simplify this calculation for arbitrary dimensions?
ean-field sum on states

Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Partition function

m  Now reconsider the partition function

Zo = Zexp ﬂJZUiO'j +ﬁh20¢

(23) ¢

m Is there any way to simplify this calculation for arbitrary dimensions?

We can always write o; as
o; = <01> + Aoy, Ao, = o0; — <07;>,

where (o;) is the (as yet unknown) mean value of o;.
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Partition function

Now reconsider the partition function
Zc :Zexp ﬁJZaiaijﬁhZai
a (i) @

Is there any way to simplify this calculation for arbitrary dimensions?

We can always write o; as
o; = <01> + Aoy, Ao; = o0; — <07;>,

where (o;) is the (as yet unknown) mean value of o;.
The product o;0; is then

0;0j = <O'7;><O'j> + AO'7;<O'j> + AO‘j<O'7;> + Ao; AO‘j.
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Partition function

Spin interactions m  Now reconsider the partition function

Electronic interaction

Spin Hamiltonian

Ising Hamiltonian L

Energy eigenstates ZC - E exXp (/BJ § 0:0; + /Bh E 0-1) .
Thermodynamics o <Z]> i

Partition function

Mean feld m Is there any way to simplify this calculation for arbitrary dimensions?
Mean-field sum on states )

Zero magnetic field m  We can always write o; as

Magnetic order

Symmetry breaking o ) ' L= o '

Order parameter 05 = <0-7'> -+ AO_Z? AO_Z = 04 <O-7,>,

Low temperature

pmerical soluton where (o;) is the (as yet unknown) mean value of o;.

Critical exponent u The prOdUCt 0:0; Is then

Nonzero magnetic field

Order parameter o _ ) _ ) ) ) ) )
= 7103 = (0003} + Aai(o5) + Acy (o) + Aci Ay,

m If we assume that the fluctuations Ac; can be regarded as small, then to
first order in small quantities we have approximately

005 = (04)(05) + Aoi(oj) + Ac; (o)
0i(0j) + o{oi) — (0:){0;).
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Mean field

Let us further assume that (o;) is independent of i:

) =(0r= (Do

1=1
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Mean field

Let us further assume that (o;) is independent of i:

N

i=1
In this case, the partition function reduces simply to
BJGN , 2
Zc = eXP(—T<0> ZGXP 5(}1 + Jq<0>) Zm ,

where ¢ is the number of nearest neighbors of each spin,? and gN/2 is
the total number of distinct nearest-neighbor pairs.
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Mean field

SIE RGeS m Let us further assume that (o;) is independent of i:

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian 1 N

Energy eigenstates O;) — \O) = — (or)
Thermodynamics < > < > N —1
1=

Partition function

Y ———— m In this case, the partition function reduces simply to

Zero magnetic field
Magnetic order

Symmetry breaking ZC = exp (— WTQN <O'>2) Z exp [ﬁ (h + Jq(a)) Z 07;] 3

Order parameter ;
(]
Low temperature

Numerical solution

(h = 0) where ¢ is the number of nearest neighbors of each spin,” and qIN/2 is
E,Z::::oef:;:::ic . the total number of distinct nearest-neighbor pairs.
Order parameter m  Apart from the constant factor in front, this expression for Z¢ is just

(h # 0) ) . . :
what we had for a system of non-interacting spins, with the replacement

h — h+ Jqg{o).
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

e

= Mean field

=

Let us further assume that (o;) is independent of i:

In this case, the partition function reduces simply to

Zo — exp(—WTqN<a>2) za:exp [ﬁ(h +Ig(e) S az-] ,

7

where ¢ is the number of nearest neighbors of each spin,” and qIN/2 is
the total number of distinct nearest-neighbor pairs.

Apart from the constant factor in front, this expression for Z¢ is just
what we had for a system of non-interacting spins, with the replacement

h — h+ Jqg{o).

The term Jg(o) is called the “mean field”, because we have replaced the
fluctuating term Jo; in the product Jo;o; with an effective constant
magnetic field.

2Also known as the coordination number.
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=

Mean-field sum on states

Spin interactions

e = In the non-interacting case we found Zc = (2cosh Bh)", so the
Electronic interaction ) L . .
Spin Hamiltonian mean-field partition function is

Ising Hamiltonian

Energy eigenstates /BJ
qN

Thermodynamics ZC — eXp
Partition function 2

Mean field

Mean-field sum on states

Zero magnetic field

(o) ) [2 cosh B(h + Jq(o))]™.

Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Mean-field sum on states

Spin interactions

e = In the non-interacting case we found Zc = (2cosh Bh)", so the
ectronic interaction . L. . .
Spin Hamiltonian mean-field partition function is

Ising Hamiltonian

Energy eigenstates

Thermodynamics ZC — eXp (
Partition function

Mean field

- : : : - _ ,
T — m Likewise, for non-interacting spins we had (o) = tanh 8h, so in the

Magnetic order mean-field approximation
Symmetry breaking

Order parameter <0‘> = tanh /B(h ‘1‘ JC]<U>)

Low temperature

_BJgN

2 <a>2) 2.cosh B(h + Ja(o))]™.

Numerical solution
(h = 0)

Critical exponent

m  This self-consistency condition determines the allowed values of (o).

Nonzero magnetic field m  Once (o) is known, we can use Z¢ to calculate any other
Ord . . . . . . )
g thermodynamic quantity of interest in the mean-field approximation.
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Zero magnetic field

S e m Let us now examine the special case h = 0:

Electronic interaction

Spin Hamiltonian

Ising Hamiltonian <U> = tanh(ﬁjq<0> ) .
Energy eigenstates
Thermodynamics m  This equation is always satisfied when (o) = 0.
Partition function

Mean field m Are there any nontrivial solutions with (o) # 07
Mean-field sum on states

Magnetic order

Symmetry breaking

Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)
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Zero magnetic field

S e m Let us now examine the special case h = O:

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian <U> = tanh(ﬁjq<0_> ) .
Energy eigenstates
Thermodynamics

m  This equation is always satisfied when (o) = 0.

Partition function

Mean field m Are there any nontrivial solutions with (o) # 07
e o e m  We can write the consistency condition as
Magnetic order

Symmetry breaking kBT

x = tanh x, x = BJq{o),

Order parameter J
Low temperature q
Numerical solution

(h = 0) which can then be solved graphically:

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Magnetic order

Spin interactions m  We find a nontrivial solution ({o) # 0) provided that T' < T, where
Electronic interaction

Spin Hamiltonian

Ising Hamiltonian T . g

Energy eigenstates ¢ kB :
Thermodynamics

Partition function

Mean field

Mean-field sum on states

Zero magnetic field

Magnetic order

Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Magnetic order

Sroti Hiereeiois m  We find a nontrivial solution ({o) # 0) provided that T < T, where

Electronic interaction

Spin Hamiltonian

Ising Hamiltonian T . qJ

Energy ei ¢ :
gy eigenstates kB

Thermodynamics

Partition function

Mean field m  The condition (o) # 0 means that the system has a nonvanishing
Mean-field sum on states magnetic dipole moment M even when h = 0, since

Zero magnetic field

gus
Symmetry breaking M = —— N<U> .
Order parameter 2

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states
Zero magnetic field

Magnetic order

Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Magnetic order

We find a nontrivial solution ({(o) # 0) provided that T < 1., where

T, = —.
ks

The condition (o) # 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = —WTBN@.

Hence, our mean-field calculation predicts that when T' < T, the system
can exhibit a spontaneous magnetic order.

Interacting spins and the mean-field approximation — 12 / 19



Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states
Zero magnetic field

Magnetic order

Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Magnetic order

We find a nontrivial solution ({(o) # 0) provided that T < 1., where

Te = —.
kB

The condition (o) # 0 means that the system has a nonvanishing

magnetic dipole moment M even when h = 0, since

M = —IEB N(g).
2
Hence, our mean-field calculation predicts that when T' < T, the system
can exhibit a spontaneous magnetic order.
Physically, if T' < T, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states
Zero magnetic field

Magnetic order

e

q-:-'-l

=

Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Magnetic order

We find a nontrivial solution ({(o) # 0) provided that T < 1., where

T. = —.
kg

The condition (o) # 0 means that the system has a nonvanishing

magnetic dipole moment M even when h = 0, since

M = —IEB N(g).
2

Hence, our mean-field calculation predicts that when T' < T, the system
can exhibit a spontaneous magnetic order.
Physically, if T' < T, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.
This tells us to expect a phase transition at T' = T, going from a
disordered state for 1" > T, to an ordered state for T' < T%.
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states
Zero magnetic field

Magnetic order

Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Magnetic order

We find a nontrivial solution ({(o) # 0) provided that T < 1., where

T. = —.
kg

The condition (o) # 0 means that the system has a nonvanishing

magnetic dipole moment M even when h = 0, since

M = —IEB N(g).
2

Hence, our mean-field calculation predicts that when T' < T, the system
can exhibit a spontaneous magnetic order.
Physically, if T' < T, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.
This tells us to expect a phase transition at T' = T, going from a
disordered state for 1" > T, to an ordered state for T' < T%.
We call (o) the order parameter, and to emphasize the physical
relationship with magnetization we often denote it as
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Symmetry breaking

Spolln lnieeiiens m  Notice that when T' < T, m can be either positive or negative:

Electronic interaction
Spin Hamiltonian m
Ising Hamiltonian

Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states

Zero magnetic field
Magnetic order

Symmetry breaking

Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Symmetry breaking

Spolln lnieeiiens m  Notice that when T' < T, m can be either positive or negative:

Electronic interaction
Spin Hamiltonian m
Ising Hamiltonian

Energy eigenstates
Thermodynamics
Partition function

Mean field

Mean-field sum on states

Zero magnetic field
Magnetic order

Symmetry breaking

Order parameter

Low temperature

Numerical solution
(h = 0) . . .
Critical exponent | However, for h = 0, the |S|ng Hamiltonian

Nonzero magnetic field
Order parameter

(h # 0) HIsing — _JO Z SziSzj
(i7)

is symmetric under a “spin flip” operation that changes the sign of all
spins.
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order

Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Symmetry breaking

m  Notice that when T' < T, m can be either positive or negative:

™ 4

m  However, for h = 0, the Ising Hamiltonian

HIsing — _JO ZSziSzj
(7)

is symmetric under a “spin flip” operation that changes the sign of all
spins.

m  The ordered state with m # 0 therefore breaks the symmetry of the
Hamiltonian.

m This is known as “spontaneous symmetry breaking.”
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Spin interactions
Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Order parameter

What is the temperature dependence of the order parameter m in the

broken-symmetry state?

Applications of statistical mechanics
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Order parameter

:’i“ interactions m  What is the temperature dependence of the order parameter m in the
ectronic interaction

Sefin Ml broken-symmetry state?

tsing Hamiltonian m For h =0, the consistency condition was

Energy eigenstates

Thermodynamics 3

Partition function T o t h o €T

Mean field — |Jr=tanhr =2 — — + - .

Te 3

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics Interacting spins and the mean-field approximation — 14 / 19



Order parameter

Eoin RS m  What is the temperature dependence of the order parameter m in the
ectronic interaction
Sefin Ml broken-symmetry state?
Ising Hamiltonian m For h = 0, the consistency condition was
Energy eigenstates
Thermodynamics 3
Partition function T ¢ hop — T
Mean field T T = tan x—x—g—i—"'-
@

Mean-field sum on states
Zero magnetic field

Magnetic order m  For small values of x = m(T./T), we therefore have
Symmetry breaking

1 2 a1
Low temperature T/TC 1 L /3’ L =~ 3(1 T/TC)’
Numerical solution 1/2

(h = 0) x~+V3(1 —T/T.)"2.

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking

Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Order parameter

m  What is the temperature dependence of the order parameter m in the
broken-symmetry state?
m For h = 0, the consistency condition was

2 x—tanhx—x—x—3+
T.)" N 3 '

m  For small values of x = m(T./T), we therefore have
T/T.~1—-2°/3, x°~301-T/T.),
x~ +V3(1—T/T.)"2.

m  Since we assumed x was small, this solution is valid only when T is very
close to T, (i.e., T <Tcand T, — T < T).
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Order parameter

:’i“ interactions - m  What is the temperature dependence of the order parameter m in the
ectronic interaction

Spin Hamiltonian broken-symmetry state?

Ising Hamiltonian m For h =0, the consistency condition was

Energy eigenstates

Thermodynamics 3

Partition function T o t h o i

Mean field T I = tan x—x_g‘i'"'-
Mean-field sum on states ¢

Zero magnetic field

Magnetic order m  For small values of x = m(T./T), we therefore have
Symmetry breaking

1 2 a1

Low temperature T/TC ~ 1 £ /37 L~ 3(1 T/TC)7

(N}L:m:eri(c);\l solution T :l:\/g(l o T/Tc)l/Q.
Critical exponent

Nonzero magnetic field

i m  Since we assumed x was small, this solution is valid only when T is very
(h #0) close to T, (i.e., T <Tcand T, — T < T).
m  Under these conditions, the order parameter m = x(T'/T.) is
approximately

m ~ +V3(T/T.)(1 — T/T.)"?
= +V3(T/T.)**(T.)T — 1)*/2.
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Spin interactions
Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Low temperature

At very low temperatures (7" < T¢), we cannot use this approximation,
so let us reconsider the consistency equation

m = tanh(mT./T).
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Low temperature

Spin interactions m At very low temperatures (7' < T.), we cannot use this approximation,

Electronic interaction

Spin Hamiltonian so let us reconsider the consistency equation
Ising Hamiltonian
Energy eigenstates m = tanh(mTc/T)

Thermodynamics
Partition function

Mean field m For large x, we have

Mean-field sum on states

Zero magpnetic field T —x —2x
Magnetic order tanhx — € —¢° = 1—e ~ 11— 26_2x
Symmetry breaking et 4+ e % 1 -+ e— 2z

Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking

Order parameter

Low temperature

Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Low temperature

At very low temperatures (7" < T¢), we cannot use this approximation,
so let us reconsider the consistency equation

m = tanh(mT./T).

For large =, we have

et —e 7 1] —e 2
tanh z = — - R
e* +e * 14 e ="

The low-temperature solution with m > 0 is therefore given by
ma1—2exp(—2mT./T)~1—2exp(—2T./T).

Including also the solution with m < 0, our final result at low
temperature is

m =~ +[1 — 2exp(—2T./T)].
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Spin interactions

Electronic interaction
Spin Hamiltonian

Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field

Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent
Nonzero magnetic field
Order parameter

(h # 0)

Numerical solution (h = 0)

m A numerical solution for m(7T") is shown below, together with our two
approximate solutions (shown as dashed lines):

T A

1 -

m  The value of m(T) is continuous at T' = T, but its slope is
discontinuous.

Applications of statistical mechanics Interacting spins and the mean-field approximation — 16 / 19



Numerical solution (h = 0)

opin mersetions m A numerical solution for m(T) is shown below, together with our two
ectronic interaction
i el approximate solutions (shown as dashed lines):

Ising Hamiltonian

Energy eigenstates m oA
Thermodynamics

Partition function

Mean field 1 -
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent

Nonzero magnetic field
Order parameter

(h # 0)
m  The value of m(T) is continuous at T' = T, but its slope is

discontinuous.
m A phase transition with a continuous order parameter is called a
continuous (or second-order) phase transition.’

3In a first-order phase transition, the order parameter m (7T) is discontinuous. In an nth-order
phase transition, d"m /dT™ is singular but d”~tm /dT™ 1 is finite.
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Spin interactions
Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter
Low temperature
Numerical solution
(h = 0)

Critical exponent

Nonzero magnetic field
Order parameter

(h # 0)

Critical exponent

A key prediction of the mean-field theory is the behavior

T 1/2
T — —1
m(T) T

just below the critical point T' = T..
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Critical exponent

Sl e m A key prediction of the mean-field theory is the behavior

Electronic interaction

Spin Hamiltonian

Ising Hamiltonian T 1/2

@

Energy eigenstates m(T) X — 1

Thermodynamics T

Partition function

Mean field just below the critical point T' = T..

M _field tat . . - . . .
ean-fie SLfm-onsaes - e. ,

, For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed
ero magnetic field

Magnetic order Of the form

Symmetry breaking T B

Order parameter m(T) X -c 1

Low temperature T ’

Numerical solution
(h = 0)

but the critical exponent (3 is closer to 1/3 than 1/2 (experimentally,
ritical exponen
Nonzero magnetic field /8 ~ 0334)4

Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter
Low temperature

Numerical solution

(h = 0)

Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Critical exponent

A key prediction of the mean-field theory is the behavior

m(T) (TT - 1)1/2

just below the critical point T' = T..
For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed

of the form
T I6]
T i |

but the critical exponent 3 is closer to 1/3 than 1/2 (experimentally,
B~ 0.334)."

Although T varies from one material to another (Fe, Ni, etc.), the value
of 3 is independent of the material.
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter
Low temperature
Numerical solution
(h = 0)

Critical exponent

e

q-:-'-l

=

Nonzero magnetic field
Order parameter

(h # 0)

Applications of statistical mechanics

Critical exponent

A key prediction of the mean-field theory is the behavior

m(T) (TT - 1)1/2

just below the critical point T' = T..
For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed

of the form
T I6]
T i |

but the critical exponent 3 is closer to 1/3 than 1/2 (experimentally,
B~ 0.334)."

Although T varies from one material to another (Fe, Ni, etc.), the value
of 3 is independent of the material.

Hence, there exist both universal properties (e.g., #) and non-universal
properties (e.g., T.) associated with phase transitions.

*The distinction between the inverse temperature 3 = 1/ksT and the critical exponent 3
will always be clear from the context.
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Nonzero magnetic field

Spin interactions

ractions m  To find m(T") when h # 0, we must return to the original consistency
Electronic interaction .
Spin Hamiltonian €q uation
Ising Hamiltonian —
Energy eigenstates m = tanh [/B(h —|_ qu)] ’
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter

Low temperature
Numerical solution

(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter
Low temperature
Numerical solution
(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)

Nonzero magnetic field

m  To find m(T") when h # 0, we must return to the original consistency
equation
m = tanh[B(h 4+ Jgm)].

m A graphical solution can be found by substituting x = G(h + Jgm),

which vyields

tanhx—zaz— f
T ksT.’
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Spin interactions

Electronic interaction
Spin Hamiltonian
Ising Hamiltonian
Energy eigenstates
Thermodynamics
Partition function
Mean field
Mean-field sum on states
Zero magnetic field
Magnetic order
Symmetry breaking
Order parameter
Low temperature
Numerical solution
(h = 0)

Critical exponent

Nonzero magnetic field

Order parameter

(h # 0)

Applications of statistical mechanics

Nonzero magnetic field

To find m(7T") when h # 0, we must return to the original consistency
equation
m = tanh[B(h 4+ Jgm)].

A graphical solution can be found by substituting = = 8(h + Jgm),

which vyields

tanhx—zx— f
T ksT.’

Hence, a solution with m # 0 always exists when h # O:

T A

(T/T:)x — h/ksTe
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Order parameter (h # 0)

oPin interactions m  Numerical solutions for m(T") are shown below, for magnetic fields with
Electronic interaction
Spin Hamiltonian h/kBTc between 0 and 0.3:

Ising Hamiltonian

Energy eigenstates m A
Thermodynamics

Partition function

Mean field 1 -
Mean-field sum on states

Zero magnetic field

Magnetic order h — OBkBTC
Symmetry breaking
Order parameter
Low temperature
Numerical solution
(h = 0)

Critical exponent

Y

T/T,

Nonzero magnetic field
Order parameter

(h # 0)
m  Notice that the discontinuity in dm/dT for h = 0 is no longer present

when h # 0.
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