Recapitulation

S(E)=In(number of configurations with energy E.

•
$$1/(k_B T) = \frac{\partial S(E)}{\partial E}$$
.

The Boltzman canonical distribution : $P'=e^{-E_S/k_BT}$

- The average of a physical quantity Q,
- < Q > = $\int dx Q(x) P'(x) / \int dx P'(x)$;
- Angular bracket means an average.

Thermodynamics studies average properties. An average thermodynamics quantity: Free energy F

•We define a free energy F which measures the number of configurations of the system and its environment. *F need to be extremized for equilibrium at fixed temperature to maximize* the number of configurations

•
$$e^{-F/kT} = \int d\{x\}e^{-\frac{E}{k_BT}}$$

•We define a partition function Z which is useful for calculations by

•
$$Z = \int d\{x\}e^{-\frac{E}{k_BT}}$$

• $F = -k T \ln[Z]$.

The Boltzman canonical distribution $P=e^{-\beta E}$ /Z, $\beta = 1/kT$ $Z = \int d\{x\}e^{-\beta E}$ is the normalization so that $\int dx P(x)=1$

• The average of a physical quantity Q is

• <
$$Q$$
 > = $\int dx Q(x) P(x)$,

• For example, $\langle E \rangle = \int dx E(x) P(x)$

•
$$\partial \ln Z / \partial \beta = - \langle E \rangle = \partial (\beta F) / \partial \beta$$

Another thermodynamic quantity: Entropy S=-k <ln P>,

• $P=e^{-\beta E}/Z$ (1)

•S is an average measure of the number of configurations of the environment

- •Entropy S = -k <ln P>, (We take a log so that S is extensive. *Angular bracket means an average.*)
- •From (1) $S = \langle E \rangle / T + k \ln Z$
- •S = < E > /T F / T
- F=U-TS, $U=\langle E \rangle$,

Usually the calculation using the Boltzmann distribution cannot be carried out exactly. A very useful approximation is to replace some of the variables by a constant, their average value, and to determine them later self-consistently. This is called the mean field approximation

Recapitulation: Energy of spins in a magnetic field

Atoms in magnets are charged particles with angular momenta **S** called spins that, in some units, are interger or half integer.

Their magnetic moments $\mathbf{M} = g\mu_B \mathbf{S}$ where $g\mu_B$ is some constant.

In a magnetic field **B**, the energy is -**B**.**M** = - $g\mu_B B$.**S**.

Including heat change, we get the total energy change of a magnetic system is

dE=TdS+other terms-**B.**d**M**

One can define a quantity F'=F+BM so that dF'=-SdT+MdB+other terms For processes under a constant magnetic field and at fixed temperature, F' is minimized.

Energy of magnetic systems and mean field approximation

- Atoms in magnets have magnetic moments proportional to their angular momenta **S**, we call the angular momenta spins.
- For a ferromagnet (antiferromagnet) the interaction energy between two spins is lowest when they are parallel (antiparallel).
- We write this energy as $H = -J \sum_{i < j} \vec{S_i} \cdot \vec{S_j}$ where J is called the exchange energy. It is positive (negative) for a ferromagnet (antiferromagnet).
- It is not ususally possible to do analytic calculations summing over all configurations for all orientations of the spins.
- The mean field approximation replace one of them by an average with fixed orientation and magnitude:
- $H \cong -J \sum_{i < j} \overrightarrow{\langle S_i \rangle} \cdot \overrightarrow{S_j}$

Ising model

- We shall look at a special case where the spin only has a z component of value $\sigma=\pm 1$

An example: Interacting spins and the mean-field approximation

Thermodynamics

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian

Energy eigenstates

Thermodynamics

Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent

Nonzero magnetic field

Order parameter $(h \neq 0)$

The partition function for the Ising model is

 $Z_C = \sum_{\sigma} \exp(-\beta E_{\sigma})$ $= \sum_{\sigma} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\right).$

Thermodynamics

Spin interactions Electronic interaction Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates

Thermodynamics

Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

■ The partition function for the Ising model is

$$Z_C = \sum_{\sigma} \exp(-\beta E_{\sigma})$$
$$= \sum_{\sigma} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\right).$$

Before we try to calculate Z_C , note that our key thermodynamic identities remain valid for interacting spins:

$$\tilde{A} \equiv U - TS - MB = -k_{\rm B}T\log Z_C,$$
$$\langle E \rangle = \left(\frac{\partial(\beta \tilde{A})}{\partial \beta}\right)_B = \tilde{U} = U - MB,$$
$$M \equiv \left\langle \sum_i \mu_i \right\rangle = -\left(\frac{\partial \tilde{A}}{\partial B}\right)_T,$$

with

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle, \qquad \langle\sigma\rangle = \frac{1}{N\beta}\frac{\partial}{\partial h}\log Z_C.$$

Spin interactions Electronic interaction Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates

Thermodynamics Partition function

Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Now reconsider the partition function

$$Z_C = \sum_{\sigma} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\right).$$

Is there any way to simplify this calculation for arbitrary dimensions?

Spin interactions Electronic interaction Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates Thermodynamics

Partition function

Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Now reconsider the partition function

$$Z_C = \sum_{\sigma} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\right).$$

Is there any way to simplify this calculation for arbitrary dimensions?
 We can always write σ_i as

 $\sigma_i = \langle \sigma_i \rangle + \Delta \sigma_i, \qquad \Delta \sigma_i \equiv \sigma_i - \langle \sigma_i \rangle,$

where $\langle \sigma_i \rangle$ is the (as yet unknown) mean value of σ_i .

Spin interactions Electronic interaction Spin Hamiltonian

Ising Hamiltonian

Energy eigenstates Thermodynamics

Partition function

Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Now reconsider the partition function

$$Z_C = \sum_{\sigma} \exp\bigg(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\bigg).$$

Is there any way to simplify this calculation for arbitrary dimensions?
 We can always write σ_i as

$$\sigma_i = \langle \sigma_i \rangle + \Delta \sigma_i, \qquad \Delta \sigma_i \equiv \sigma_i - \langle \sigma_i \rangle,$$

where $\langle \sigma_i \rangle$ is the (as yet unknown) mean value of σ_i . The product $\sigma_i \sigma_j$ is then

$$\sigma_i \sigma_j = \langle \sigma_i \rangle \langle \sigma_j \rangle + \Delta \sigma_i \langle \sigma_j \rangle + \Delta \sigma_j \langle \sigma_i \rangle + \Delta \sigma_i \Delta \sigma_j.$$

Spin interactions Electronic interaction Spin Hamiltonian

Ising Hamiltonian Energy eigenstates

Thermodynamics

Partition function

Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Now reconsider the partition function

$$Z_C = \sum_{\sigma} \exp\left(\beta J \sum_{\langle ij \rangle} \sigma_i \sigma_j + \beta h \sum_i \sigma_i\right).$$

Is there any way to simplify this calculation for arbitrary dimensions?
 We can always write σ_i as

$$\sigma_i = \langle \sigma_i \rangle + \Delta \sigma_i, \qquad \Delta \sigma_i \equiv \sigma_i - \langle \sigma_i \rangle,$$

where $\langle \sigma_i \rangle$ is the (as yet unknown) mean value of σ_i . The product $\sigma_i \sigma_j$ is then

$$\sigma_i \sigma_j = \langle \sigma_i \rangle \langle \sigma_j \rangle + \Delta \sigma_i \langle \sigma_j \rangle + \Delta \sigma_j \langle \sigma_i \rangle + \Delta \sigma_i \Delta \sigma_j.$$

If we assume that the fluctuations $\Delta \sigma_i$ can be regarded as small, then to first order in small quantities we have approximately

$$\sigma_i \sigma_j \approx \langle \sigma_i \rangle \langle \sigma_j \rangle + \Delta \sigma_i \langle \sigma_j \rangle + \Delta \sigma_j \langle \sigma_i \rangle$$
$$= \sigma_i \langle \sigma_j \rangle + \sigma_j \langle \sigma_i \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle.$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

Mean field

Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ • Let us further assume that $\langle \sigma_i \rangle$ is independent of *i*:

$$\langle \sigma_i \rangle = \langle \sigma \rangle \equiv \frac{1}{N} \left\langle \sum_{i=1}^N \sigma_i \right\rangle.$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

Mean field

Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ Let us further assume that $\langle \sigma_i \rangle$ is independent of *i*:

$$\langle \sigma_i \rangle = \langle \sigma \rangle \equiv \frac{1}{N} \left\langle \sum_{i=1}^N \sigma_i \right\rangle.$$

In this case, the partition function reduces simply to $\int \int dx \, dx \, dx$

$$Z_C = \exp\left(-\frac{\beta J q N}{2} \langle \sigma \rangle^2\right) \sum_{\sigma} \exp\left[\beta \left(h + J q \langle \sigma \rangle\right) \sum_i \sigma_i\right],$$

where q is the number of nearest neighbors of each spin,² and qN/2 is the total number of distinct nearest-neighbor pairs.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

Mean field

Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ Let us further assume that $\langle \sigma_i \rangle$ is independent of *i*:

$$\langle \sigma_i \rangle = \langle \sigma \rangle \equiv \frac{1}{N} \left\langle \sum_{i=1}^N \sigma_i \right\rangle.$$

In this case, the partition function reduces simply to

$$Z_C = \exp\left(-\frac{\beta JqN}{2} \langle \sigma \rangle^2\right) \sum_{\sigma} \exp\left[\beta \left(h + Jq \langle \sigma \rangle\right) \sum_i \sigma_i\right],$$

where q is the number of nearest neighbors of each spin,² and qN/2 is the total number of distinct nearest-neighbor pairs.

Apart from the constant factor in front, this expression for Z_C is just what we had for a system of non-interacting spins, with the replacement

$$h \to h + Jq \langle \sigma \rangle.$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

Mean field

Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ Let us further assume that $\langle \sigma_i \rangle$ is independent of *i*:

$$\langle \sigma_i \rangle = \langle \sigma \rangle \equiv \frac{1}{N} \left\langle \sum_{i=1}^N \sigma_i \right\rangle.$$

In this case, the partition function reduces simply to

$$Z_C = \exp\left(-\frac{\beta J q N}{2} \langle \sigma \rangle^2\right) \sum_{\sigma} \exp\left[\beta \left(h + J q \langle \sigma \rangle\right) \sum_i \sigma_i\right],$$

where q is the number of nearest neighbors of each spin,² and qN/2 is the total number of distinct nearest-neighbor pairs.

Apart from the constant factor in front, this expression for Z_C is just what we had for a system of non-interacting spins, with the replacement

$$h \to h + Jq\langle \sigma \rangle.$$

The term $Jq\langle\sigma\rangle$ is called the "mean field", because we have replaced the fluctuating term $J\sigma_j$ in the product $J\sigma_i\sigma_j$ with an effective constant magnetic field.

Applications of statistical mechanics

²Also known as the coordination number.

Mean-field sum on states

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field

Order parameter

 $(h \neq 0)$

In the non-interacting case we found $Z_C = (2 \cosh \beta h)^N$, so the mean-field partition function is

$$Z_C = \exp\left(-\frac{\beta JqN}{2} \langle \sigma \rangle^2\right) \left[2\cosh\beta(h+Jq\langle \sigma \rangle)\right]^N.$$

Mean-field sum on states

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order

Symmetry breaking Order parameter

Low temperature

Numerical solution (h = 0)

Critical exponent

Nonzero magnetic field Order parameter $(h \neq 0)$ In the non-interacting case we found $Z_C = (2 \cosh \beta h)^N$, so the mean-field partition function is

$$Z_C = \exp\left(-\frac{\beta JqN}{2} \langle \sigma \rangle^2\right) \left[2\cosh\beta(h+Jq\langle \sigma \rangle)\right]^N.$$

• Likewise, for non-interacting spins we had $\langle \sigma \rangle = \tanh \beta h$, so in the mean-field approximation

$$\langle \sigma \rangle = \tanh \beta (h + Jq \langle \sigma \rangle).$$

This self-consistency condition determines the allowed values of (σ).
 Once (σ) is known, we can use Z_C to calculate any other thermodynamic quantity of interest in the mean-field approximation.

Zero magnetic field

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order

Symmetric order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ • Let us now examine the special case h = 0:

 $\langle \sigma \rangle = \tanh(\beta Jq \langle \sigma \rangle).$

This equation is always satisfied when (σ) = 0.
 Are there any nontrivial solutions with (σ) ≠ 0?

Zero magnetic field

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field

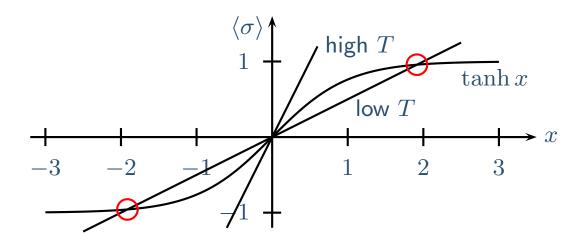
Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ • Let us now examine the special case h = 0:

$$\langle \sigma \rangle = \tanh(\beta Jq \langle \sigma \rangle).$$

- **This equation is always satisfied when** $\langle \sigma \rangle = 0$.
- Are there any nontrivial solutions with $\langle \sigma \rangle \neq 0$?
- We can write the consistency condition as

$$\left(\frac{k_{\rm B}T}{qJ}\right)x = \tanh x, \qquad x \equiv \beta Jq \langle \sigma \rangle,$$

which can then be solved graphically:



Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution

(h = 0)Critical exponent

Nonzero magnetic field Order parameter $(h \neq 0)$ We find a nontrivial solution ($\langle \sigma \rangle \neq 0$) provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

Mean field

Mean-field sum on states Zero magnetic field

Magnetic order

Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ We find a nontrivial solution ($\langle \sigma \rangle \neq 0$) provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle.$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order

Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ We find a nontrivial solution ($\langle \sigma \rangle \neq 0$) provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

The condition $\langle \sigma \rangle \neq 0$ means that the system has a nonvanishing magnetic dipole moment M even when h = 0, since

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle.$$

• Hence, our mean-field calculation predicts that when $T < T_c$, the system can exhibit a spontaneous magnetic order.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature

Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

We find a nontrivial solution ($\langle \sigma
angle
eq 0$) provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle.$$

- Hence, our mean-field calculation predicts that when $T < T_c$, the system can exhibit a spontaneous magnetic order.
- Physically, if $T < T_c$, the thermal disordering is insufficient to overcome the ordering influences of the spin-spin interactions.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter

Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

We find a nontrivial solution ($\langle \sigma
angle
eq 0$) provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle.$$

- Hence, our mean-field calculation predicts that when $T < T_c$, the system can exhibit a spontaneous magnetic order.
- Physically, if $T < T_c$, the thermal disordering is insufficient to overcome the ordering influences of the spin-spin interactions.
- This tells us to expect a phase transition at $T = T_c$, going from a disordered state for $T > T_c$ to an ordered state for $T < T_c$.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking

Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

We find a nontrivial solution $(\langle \sigma
angle
eq 0)$ provided that $T < T_c$, where

$$T_c = \frac{qJ}{k_{\rm B}}.$$

$$M = -\frac{g\mu_{\rm B}}{2}N\langle\sigma\rangle.$$

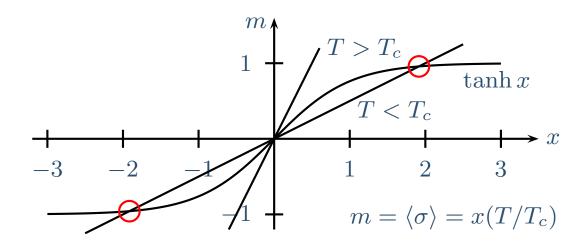
- Hence, our mean-field calculation predicts that when $T < T_c$, the system can exhibit a spontaneous magnetic order.
- Physically, if $T < T_c$, the thermal disordering is insufficient to overcome the ordering influences of the spin-spin interactions.
- This tells us to expect a phase transition at $T = T_c$, going from a disordered state for $T > T_c$ to an ordered state for $T < T_c$.
- We call $\langle \sigma \rangle$ the order parameter, and to emphasize the physical relationship with magnetization we often denote it as

$$m \equiv \langle \sigma \rangle.$$

Symmetry breaking

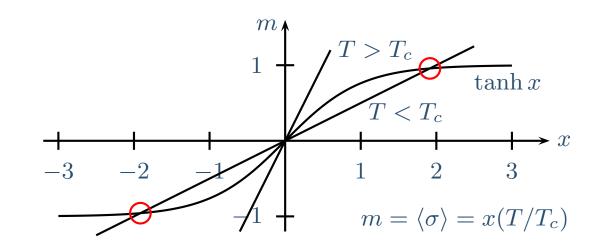
Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Notice that when $T < T_c$, m can be either positive or negative:



Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Notice that when $T < T_c$, m can be either positive or negative:



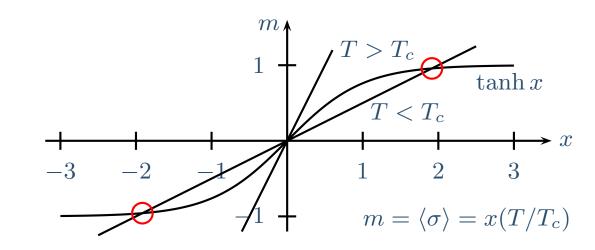
However, for h = 0, the Ising Hamiltonian

$$H_{\rm Ising} = -J_0 \sum_{\langle ij \rangle} S_{zi} S_{zj}$$

is symmetric under a "spin flip" operation that changes the sign of all spins.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

Notice that when $T < T_c$, m can be either positive or negative:



However, for h = 0, the Ising Hamiltonian

$$H_{\rm Ising} = -J_0 \sum_{\langle ij \rangle} S_{zi} S_{zj}$$

is symmetric under a "spin flip" operation that changes the sign of all spins.

- The ordered state with $m \neq 0$ therefore breaks the symmetry of the Hamiltonian.
- This is known as "spontaneous symmetry breaking."

Order parameter

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field

Order parameter

 $(h \neq 0)$

What is the temperature dependence of the order parameter m in the broken-symmetry state?

Order parameter

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

- What is the temperature dependence of the order parameter m in the broken-symmetry state?
- For h = 0, the consistency condition was

$$\left(\frac{T}{T_c}\right)x = \tanh x = x - \frac{x^3}{3} + \cdots$$

Order parameter

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function

- Mean field
- Mean-field sum on states
- Zero magnetic field
- Magnetic order
- Symmetry breaking

Order parameter

Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

- What is the temperature dependence of the order parameter m in the broken-symmetry state?
- For h = 0, the consistency condition was

$$\left(\frac{T}{T_c}\right)x = \tanh x = x - \frac{x^3}{3} + \cdots$$

For small values of $x = m(T_c/T)$, we therefore have

$$T/T_c \approx 1 - x^2/3, \qquad x^2 \approx 3(1 - T/T_c),$$

 $x \approx \pm \sqrt{3}(1 - T/T_c)^{1/2}.$

Order parameter

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

- What is the temperature dependence of the order parameter *m* in the broken-symmetry state?
- For h = 0, the consistency condition was

$$\left(\frac{T}{T_c}\right)x = \tanh x = x - \frac{x^3}{3} + \cdots$$

For small values of $x = m(T_c/T)$, we therefore have

$$T/T_c \approx 1 - x^2/3, \qquad x^2 \approx 3(1 - T/T_c),$$

 $x \approx \pm \sqrt{3}(1 - T/T_c)^{1/2}.$

Since we assumed x was small, this solution is valid only when T is very close to T_c (i.e., $T \leq T_c$ and $T_c - T \ll T_c$).

Order parameter

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order

Symmetry breaking

Order parameter Low temperature

Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

- What is the temperature dependence of the order parameter m in the broken-symmetry state?
- For h = 0, the consistency condition was

$$\left(\frac{T}{T_c}\right)x = \tanh x = x - \frac{x^3}{3} + \cdots$$

For small values of $x = m(T_c/T)$, we therefore have

$$T/T_c \approx 1 - x^2/3, \qquad x^2 \approx 3(1 - T/T_c),$$

 $x \approx \pm \sqrt{3}(1 - T/T_c)^{1/2}.$

Since we assumed x was small, this solution is valid only when T is very close to T_c (i.e., $T \leq T_c$ and $T_c - T \ll T_c$).

• Under these conditions, the order parameter $m = x(T/T_c)$ is approximately

$$m \approx \pm \sqrt{3} (T/T_c) (1 - T/T_c)^{1/2}$$

= $\pm \sqrt{3} (T/T_c)^{3/2} (T_c/T - 1)^{1/2}$

Low temperature

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$

At very low temperatures ($T \ll T_c$), we cannot use this approximation, so let us reconsider the consistency equation

 $m = \tanh(mT_c/T).$

Low temperature

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states

Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature

Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ At very low temperatures ($T \ll T_c$), we cannot use this approximation, so let us reconsider the consistency equation

 $m = \tanh(mT_c/T).$

For large x, we have

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \approx 1 - 2e^{-2x}.$$

Low temperature

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field

Magnetic order

Symmetry breaking

Order parameter

Low temperature Numerical solution

(h = 0)Critical exponent Nonzero magnetic field Order parameter $(h \neq 0)$ At very low temperatures $(T \ll T_c)$, we cannot use this approximation, so let us reconsider the consistency equation

 $m = \tanh(mT_c/T).$

For large x, we have

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \approx 1 - 2e^{-2x}.$$

The low-temperature solution with m > 0 is therefore given by

$$m \approx 1 - 2\exp(-2mT_c/T) \approx 1 - 2\exp(-2T_c/T).$$

Including also the solution with m < 0, our final result at low temperature is

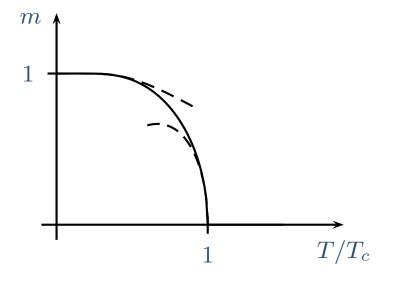
$$m \approx \pm [1 - 2\exp(-2T_c/T)].$$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

A numerical solution for m(T) is shown below, together with our two approximate solutions (shown as dashed lines):

Numerical solution (h = 0)



The value of m(T) is continuous at $T = T_c$, but its slope is discontinuous.

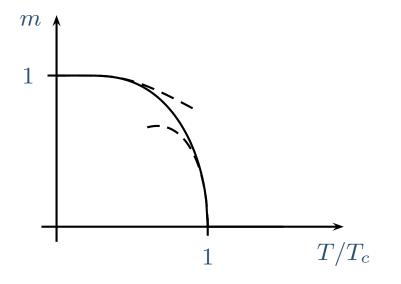
Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

• A numerical solution for m(T) is shown below, together with our two

approximate solutions (shown as dashed lines):

Numerical solution (h = 0)



- The value of m(T) is continuous at $T = T_c$, but its slope is discontinuous.
- A phase transition with a continuous order parameter is called a continuous (or second-order) phase transition.³

³In a first-order phase transition, the order parameter m(T) is discontinuous. In an *n*th-order phase transition, $d^n m/dT^n$ is singular but $d^{n-1}m/dT^{n-1}$ is finite.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent

Nonzero magnetic field Order parameter $(h \neq 0)$ A key prediction of the mean-field theory is the behavior

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{1/2}$$

just below the critical point $T = T_c$.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent

Nonzero magnetic field Order parameter $(h \neq 0)$ A key prediction of the mean-field theory is the behavior

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{1/2}$$

just below the critical point $T = T_c$.

For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed of the form

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{\beta},$$

but the critical exponent β is closer to 1/3 than 1/2 (experimentally, $\beta \approx 0.334$).⁴

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field

Order parameter

 $(h \neq 0)$

A key prediction of the mean-field theory is the behavior

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{1/2}$$

just below the critical point $T = T_c$.

For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed of the form

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{\beta},$$

but the critical exponent β is closer to 1/3 than 1/2 (experimentally, $\beta \approx 0.334$).⁴

Although T_c varies from one material to another (Fe, Ni, etc.), the value of β is independent of the material.

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field

Order parameter

 $(h \neq 0)$

A key prediction of the mean-field theory is the behavior

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{1/2}$$

just below the critical point $T = T_c$.

For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed of the form

$$m(T) \propto \left(\frac{T_c}{T} - 1\right)^{\beta},$$

but the critical exponent β is closer to 1/3 than 1/2 (experimentally, $\beta \approx 0.334$).⁴

- Although T_c varies from one material to another (Fe, Ni, etc.), the value of β is independent of the material.
- Hence, there exist both universal properties (e.g., β) and non-universal properties (e.g., T_c) associated with phase transitions.

⁴The distinction between the inverse temperature $\beta = 1/k_{\rm B}T$ and the critical exponent β will always be clear from the context.

Nonzero magnetic field

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field

Order parameter

 $(h \neq 0)$

• To find m(T) when $h \neq 0$, we must return to the original consistency equation

 $m = \tanh[\beta(h + Jqm)].$

Nonzero magnetic field

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature

Numerical solution

(h=0)

Critical exponent

Nonzero magnetic field

Order parameter $(h \neq 0)$

• To find m(T) when $h \neq 0$, we must return to the original consistency equation

$$m = \tanh[\beta(h + Jqm)].$$

A graphical solution can be found by substituting $x = \beta(h + Jqm)$, which yields

$$\tanh x = \frac{T}{T_c}x - \frac{h}{k_{\rm B}T_c}.$$

Nonzero magnetic field

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)

Critical exponent

Nonzero magnetic field

Order parameter $(h \neq 0)$

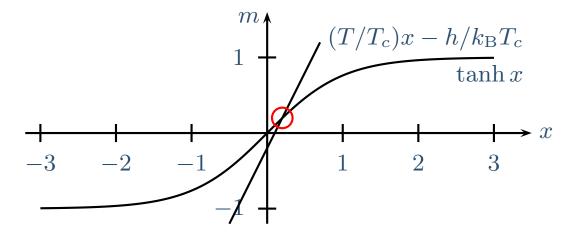
To find m(T) when $h \neq 0$, we must return to the original consistency equation

$$m = \tanh[\beta(h + Jqm)].$$

A graphical solution can be found by substituting $x = \beta(h + Jqm)$, which yields

$$\tanh x = \frac{T}{T_c}x - \frac{h}{k_{\rm B}T_c}$$

• Hence, a solution with $m \neq 0$ always exists when $h \neq 0$:

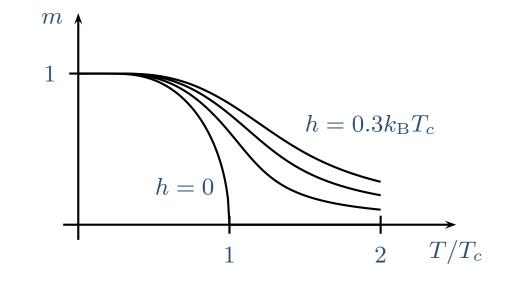


Order parameter $(h \neq 0)$

Spin interactions Electronic interaction Spin Hamiltonian Ising Hamiltonian Energy eigenstates Thermodynamics Partition function Mean field Mean-field sum on states Zero magnetic field Magnetic order Symmetry breaking Order parameter Low temperature Numerical solution (h = 0)Critical exponent Nonzero magnetic field Order parameter

 $(h \neq 0)$

Numerical solutions for m(T) are shown below, for magnetic fields with $h/k_{\rm B}T_c$ between 0 and 0.3:



Notice that the discontinuity in dm/dT for h = 0 is no longer present when $h \neq 0$.