
Recapitulation



S(E)=ln( number of configurations with energy E.

•1/(𝑘𝐵𝑇) =
𝜕𝑆(𝐸 )

𝜕𝐸
.

• .



The Boltzman canonical distribution : 
𝑃'= 𝑒−𝐸𝑆/𝑘𝐵𝑇

•The average of a physical quantity Q ,

• < 𝑄 >= 𝑑𝑥𝑄׬ 𝑥 𝑃′ 𝑥 / ׬ 𝑑𝑥𝑃′ 𝑥 ;

• Angular bracket means an average.



Thermodynamics studies average properties.
An average thermodynamics quantity: Free energy F

•We define a free energy F which measures the 
number of configurations  of the system and its 
environment. F need to be extremized for 
equilibrium  at fixed temperature to maximize 
the number of configurations 

•𝑒−𝐹/𝑘𝑇 = 𝑑{𝑥}𝑒׬
−

𝐸

𝑘𝐵𝑇

•𝑊𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 Z which is
useful for calculations by

•𝑍 = 𝑑{𝑥}𝑒׬
−

𝐸

𝑘𝐵𝑇

•F = −k T ln[ 𝑍].



The Boltzman canonical distribution
𝑃=𝑒−𝛽𝐸 /𝒁 , 𝛽 = 1/𝑘𝑇

Z = 𝑑{𝑥}𝑒−𝛽𝐸׬ is the normalization so that 

𝑑𝑥𝑃׬ 𝑥 =1
.

•The average of a physical quantity Q is

• < 𝑄 >= 𝑑𝑥𝑄׬ 𝑥 𝑃 𝑥 , 

•For example, < 𝐸 > = 𝑑𝑥𝐸׬ 𝑥 𝑃 𝑥

•𝜕 ln 𝑍/𝜕𝛽 = − ≺ 𝐸 > = 𝜕(𝛽𝐹)/𝜕𝛽



Another thermodynamic quantity: 
Entropy S=-k <ln P>, 

•𝑃=𝑒−𝛽𝐸 /𝒁 (1)

•S is an average measure of the number of 
configurations of the environment 

•Entropy S = -k <ln P>, (We take a log so that S is 
extensive. Angular bracket means an average.)

•From (1)   S=<𝐸 >/𝑇 + 𝑘 ln 𝑍

•S=<E>/T-F/T

•F=U-TS,    U=<E>, 



Usually the calculation using the 
Boltzmann distribution cannot 
be carried out exactly. A very 

useful approximation is to 
replace some of the variables by 
a constant, their average value, 

and to determine them later 
self-consistently. This is called 
the mean field approximation



Recapitulation: Energy of  spins 
in a magnetic field

Atoms in magnets are charged particles with angular momenta S called 
spins  that, in some units, are interger or half integer.  

Their magnetic moments M = 𝑔𝜇𝐵S where 𝑔𝜇𝐵 is some constant. 

In a magnetic field B, the energy  is -B.M = -𝑔𝜇𝐵𝐵.S.

Including heat change, we get the total energy change of a magnetic 
system is

dE=TdS+other terms-B.dM

One can define a quantity F’=F+BM so that dF’=-SdT+MdB+other terms

For processes under a constant magnetic field and at fixed temperature, 
F’ is minimized.



Energy of magnetic systems and mean field  
approximation

• Atoms in magnets have magnetic moments proportional to their angular
momenta S, we call the angular momenta spins.

• For a ferromagnet (antiferromagnet) the interaction energy between two
spins is lowest when they are parallel (antiparallel).

• We write this energy as  H = −𝐽σ𝑖<𝑗 𝑺𝑖 ∙ 𝑺𝑗 where J is called the exchange
energy. It is positive (negative) for a ferromagnet (antiferromagnet).

• It is not ususally possible to do analytic calculations summing over all
configurations for all orientations of the spins.

• The mean field approximation replace one of them by an average with fixed 
orientation and magnitude:

• H ≅ −𝐽σ𝑖<𝑗 < 𝑺𝑖> ∙ 𝑺𝑗



Ising model

• We shall look at a special case where the spin only has a z 
component of value 𝜎 = ±1



Applications of statistical mechanics Interacting spins and the mean-field approximation – 1 / 19

An example: Interacting spins and the mean-field approximation
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■ The partition function for the Ising model is

ZC =
X

σ

exp(−βEσ)

=
X

σ

exp

„

βJ
X

〈ij〉

σiσj + βh
X

i

σi

«
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■ The  partition function for the Ising model is

ZC =
X

σ

exp(−βEσ)

=
X

σ

exp

„

βJ
X

〈ij〉

σiσj + βh
X

i

σi

«

.

■ Before we try to calculate ZC , note that our key thermodynamic
identities remain valid for interacting spins:

Ã ≡ U − TS − MB = −kBT log ZC ,

〈E〉 =

„

∂(βÃ)

∂β

«

B

= Ũ = U − MB,

M ≡
fi

X

i

µi

fl

= −
„

∂Ã

∂B

«

T

,

with

M = −gµB

2
N〈σ〉, 〈σ〉 =

1

Nβ

∂

∂h
log ZC .
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■ Now reconsider the partition function

ZC =
X

σ

exp

„

βJ
X

〈ij〉

σiσj + βh
X

i

σi

«

.

■ Is there any way to simplify this calculation for arbitrary dimensions?
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■ Now reconsider the partition function

ZC =
X

σ

exp

„

βJ
X

〈ij〉

σiσj + βh
X

i

σi

«

.

■ Is there any way to simplify this calculation for arbitrary dimensions?
■ We can always write σi as

σi = 〈σi〉 + ∆σi, ∆σi ≡ σi − 〈σi〉,

where 〈σi〉 is the (as yet unknown) mean value of σi.
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■ Is there any way to simplify this calculation for arbitrary dimensions?
■ We can always write σi as

σi = 〈σi〉 + ∆σi, ∆σi ≡ σi − 〈σi〉,

where 〈σi〉 is the (as yet unknown) mean value of σi.
■ The product σiσj is then

σiσj = 〈σi〉〈σj〉 + ∆σi〈σj〉 + ∆σj〈σi〉 + ∆σi ∆σj .
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■ Now reconsider the partition function

ZC =
X

σ

exp

„

βJ
X

〈ij〉

σiσj + βh
X

i

σi

«

.

■ Is there any way to simplify this calculation for arbitrary dimensions?
■ We can always write σi as

σi = 〈σi〉 + ∆σi, ∆σi ≡ σi − 〈σi〉,

where 〈σi〉 is the (as yet unknown) mean value of σi.
■ The product σiσj is then

σiσj = 〈σi〉〈σj〉 + ∆σi〈σj〉 + ∆σj〈σi〉 + ∆σi ∆σj .

■ If we assume that the fluctuations ∆σi can be regarded as small, then to
first order in small quantities we have approximately

σiσj ≈ 〈σi〉〈σj〉 + ∆σi〈σj〉 + ∆σj〈σi〉
= σi〈σj〉 + σj〈σi〉 − 〈σi〉〈σj〉.
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■ Let us further assume that 〈σi〉 is independent of i:

〈σi〉 = 〈σ〉 ≡ 1

N

*

N
X

i=1

σi

+

.
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■ Let us further assume that 〈σi〉 is independent of i:

〈σi〉 = 〈σ〉 ≡ 1

N

*

N
X

i=1

σi

+

.

■ In this case, the partition function reduces simply to

ZC = exp

„

−βJqN

2
〈σ〉2

«

X

σ

exp

»

β
`

h + Jq〈σ〉
´

X

i

σi

–

,

where q is the number of nearest neighbors of each spin,2 and qN/2 is
the total number of distinct nearest-neighbor pairs.
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■ Let us further assume that 〈σi〉 is independent of i:

〈σi〉 = 〈σ〉 ≡ 1

N

*

N
X

i=1

σi

+

.

■ In this case, the partition function reduces simply to

ZC = exp

„
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2
〈σ〉2

«

X

σ

exp

»

β
`

h + Jq〈σ〉
´

X

i

σi

–

,

where q is the number of nearest neighbors of each spin,2 and qN/2 is
the total number of distinct nearest-neighbor pairs.

■ Apart from the constant factor in front, this expression for ZC is just
what we had for a system of non-interacting spins, with the replacement

h → h + Jq〈σ〉.
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■ Let us further assume that 〈σi〉 is independent of i:

〈σi〉 = 〈σ〉 ≡ 1

N

*

N
X

i=1

σi

+

.

■ In this case, the partition function reduces simply to

ZC = exp

„

−βJqN

2
〈σ〉2

«

X

σ

exp

»

β
`

h + Jq〈σ〉
´

X

i

σi

–

,

where q is the number of nearest neighbors of each spin,2 and qN/2 is
the total number of distinct nearest-neighbor pairs.

■ Apart from the constant factor in front, this expression for ZC is just
what we had for a system of non-interacting spins, with the replacement

h → h + Jq〈σ〉.

■ The term Jq〈σ〉 is called the “mean field”, because we have replaced the
fluctuating term Jσj in the product Jσiσj with an effective constant
magnetic field.

2Also known as the coordination number.
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■ In the non-interacting case we found ZC = (2 cosh βh)N , so the

mean-field partition function is

ZC = exp

„

−βJqN

2
〈σ〉2

«

[2 cosh β(h + Jq〈σ〉)]N .
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■ In the non-interacting case we found ZC = (2 cosh βh)N , so the
mean-field partition function is

ZC = exp

„

−βJqN

2
〈σ〉2

«

[2 cosh β(h + Jq〈σ〉)]N .

■ Likewise, for non-interacting spins we had 〈σ〉 = tanh βh, so in the
mean-field approximation

〈σ〉 = tanh β(h + Jq〈σ〉).

■ This self-consistency condition determines the allowed values of 〈σ〉.
■ Once 〈σ〉 is known, we can use ZC to calculate any other

thermodynamic quantity of interest in the mean-field approximation.
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■ Let us now examine the special case h = 0:

〈σ〉 = tanh(βJq〈σ〉).

■ This equation is always satisfied when 〈σ〉 = 0.
■ Are there any nontrivial solutions with 〈σ〉 6= 0?
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■ Let us now examine the special case h = 0:

〈σ〉 = tanh(βJq〈σ〉).

■ This equation is always satisfied when 〈σ〉 = 0.
■ Are there any nontrivial solutions with 〈σ〉 6= 0?
■ We can write the consistency condition as

„

kBT

qJ

«

x = tanh x, x ≡ βJq〈σ〉,

which can then be solved graphically:

1 2 3−1−2−3

1

−1

x

tanh x

low T

high T
〈σ〉
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.

■ The condition 〈σ〉 6= 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = −gµB

2
N〈σ〉.
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.

■ The condition 〈σ〉 6= 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = −gµB

2
N〈σ〉.

■ Hence, our mean-field calculation predicts that when T < Tc, the system
can exhibit a spontaneous magnetic order.
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.

■ The condition 〈σ〉 6= 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = −gµB

2
N〈σ〉.

■ Hence, our mean-field calculation predicts that when T < Tc, the system
can exhibit a spontaneous magnetic order.

■ Physically, if T < Tc, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.

■ The condition 〈σ〉 6= 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = −gµB

2
N〈σ〉.

■ Hence, our mean-field calculation predicts that when T < Tc, the system
can exhibit a spontaneous magnetic order.

■ Physically, if T < Tc, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.

■ This tells us to expect a phase transition at T = Tc, going from a
disordered state for T > Tc to an ordered state for T < Tc.
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■ We find a nontrivial solution (〈σ〉 6= 0) provided that T < Tc, where

Tc =
qJ

kB

.

■ The condition 〈σ〉 6= 0 means that the system has a nonvanishing
magnetic dipole moment M even when h = 0, since

M = −gµB

2
N〈σ〉.

■ Hence, our mean-field calculation predicts that when T < Tc, the system
can exhibit a spontaneous magnetic order.

■ Physically, if T < Tc, the thermal disordering is insufficient to overcome
the ordering influences of the spin-spin interactions.

■ This tells us to expect a phase transition at T = Tc, going from a
disordered state for T > Tc to an ordered state for T < Tc.

■ We call 〈σ〉 the order parameter, and to emphasize the physical
relationship with magnetization we often denote it as

m ≡ 〈σ〉.
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■ Notice that when T < Tc, m can be either positive or negative:

1 2 3−1−2−3

1

−1

x

tanh x

T < Tc

T > Tc

m

m = 〈σ〉 = x(T/Tc)
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■ Notice that when T < Tc, m can be either positive or negative:

1 2 3−1−2−3

1

−1

x

tanh x

T < Tc

T > Tc

m

m = 〈σ〉 = x(T/Tc)

■ However, for h = 0, the Ising Hamiltonian

HIsing = −J0

X

〈ij〉

SziSzj

is symmetric under a “spin flip” operation that changes the sign of all
spins.
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■ Notice that when T < Tc, m can be either positive or negative:

1 2 3−1−2−3

1

−1

x

tanh x

T < Tc

T > Tc

m

m = 〈σ〉 = x(T/Tc)

■ However, for h = 0, the Ising Hamiltonian

HIsing = −J0

X

〈ij〉

SziSzj

is symmetric under a “spin flip” operation that changes the sign of all
spins.

■ The ordered state with m 6= 0 therefore breaks the symmetry of the
Hamiltonian.

■ This is known as “spontaneous symmetry breaking.”
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■ What is the temperature dependence of the order parameter m in the
broken-symmetry state?
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■ What is the temperature dependence of the order parameter m in the
broken-symmetry state?

■ For h = 0, the consistency condition was

„

T

Tc

«

x = tanhx = x − x3

3
+ · · · .
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■ What is the temperature dependence of the order parameter m in the
broken-symmetry state?

■ For h = 0, the consistency condition was

„

T

Tc

«

x = tanhx = x − x3

3
+ · · · .

■ For small values of x = m(Tc/T ), we therefore have

T/Tc ≈ 1 − x2/3, x2 ≈ 3(1 − T/Tc),

x ≈ ±
√

3(1 − T/Tc)
1/2.
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■ What is the temperature dependence of the order parameter m in the
broken-symmetry state?

■ For h = 0, the consistency condition was

„

T

Tc

«

x = tanhx = x − x3

3
+ · · · .

■ For small values of x = m(Tc/T ), we therefore have

T/Tc ≈ 1 − x2/3, x2 ≈ 3(1 − T/Tc),

x ≈ ±
√

3(1 − T/Tc)
1/2.

■ Since we assumed x was small, this solution is valid only when T is very
close to Tc (i.e., T ≤ Tc and Tc − T ≪ Tc).
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■ What is the temperature dependence of the order parameter m in the
broken-symmetry state?

■ For h = 0, the consistency condition was

„

T

Tc

«

x = tanhx = x − x3

3
+ · · · .

■ For small values of x = m(Tc/T ), we therefore have

T/Tc ≈ 1 − x2/3, x2 ≈ 3(1 − T/Tc),

x ≈ ±
√

3(1 − T/Tc)
1/2.

■ Since we assumed x was small, this solution is valid only when T is very
close to Tc (i.e., T ≤ Tc and Tc − T ≪ Tc).

■ Under these conditions, the order parameter m = x(T/Tc) is
approximately

m ≈ ±
√

3(T/Tc)(1 − T/Tc)
1/2

= ±
√

3(T/Tc)
3/2(Tc/T − 1)1/2.
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■ At very low temperatures (T ≪ Tc), we cannot use this approximation,
so let us reconsider the consistency equation

m = tanh(mTc/T ).
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■ At very low temperatures (T ≪ Tc), we cannot use this approximation,
so let us reconsider the consistency equation

m = tanh(mTc/T ).

■ For large x, we have

tanh x =
ex − e−x

ex + e−x
=

1 − e−2x

1 + e−2x
≈ 1 − 2e−2x.
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■ At very low temperatures (T ≪ Tc), we cannot use this approximation,
so let us reconsider the consistency equation

m = tanh(mTc/T ).

■ For large x, we have

tanh x =
ex − e−x

ex + e−x
=

1 − e−2x

1 + e−2x
≈ 1 − 2e−2x.

■ The low-temperature solution with m > 0 is therefore given by

m ≈ 1 − 2 exp(−2mTc/T ) ≈ 1 − 2 exp(−2Tc/T ).

■ Including also the solution with m < 0, our final result at low
temperature is

m ≈ ±[1 − 2 exp(−2Tc/T )].
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■ A numerical solution for m(T ) is shown below, together with our two
approximate solutions (shown as dashed lines):

1

1

T/Tc

m

■ The value of m(T ) is continuous at T = Tc, but its slope is
discontinuous.
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■ A numerical solution for m(T ) is shown below, together with our two
approximate solutions (shown as dashed lines):

1

1

T/Tc

m

■ The value of m(T ) is continuous at T = Tc, but its slope is
discontinuous.

■ A phase transition with a continuous order parameter is called a
continuous (or second-order) phase transition.3

3In a first-order phase transition, the order parameter m(T ) is discontinuous. In an nth-order

phase transition, dnm/dT n is singular but dn−1m/dT n−1 is finite.
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■ A key prediction of the mean-field theory is the behavior

m(T ) ∝
„

Tc

T
− 1

«1/2

just below the critical point T = Tc.
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■ A key prediction of the mean-field theory is the behavior

m(T ) ∝
„

Tc

T
− 1

«1/2

just below the critical point T = Tc.
■ For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed

of the form

m(T ) ∝
„

Tc

T
− 1

«β

,

but the critical exponent β is closer to 1/3 than 1/2 (experimentally,
β ≈ 0.334).4
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■ A key prediction of the mean-field theory is the behavior

m(T ) ∝
„

Tc

T
− 1

«1/2

just below the critical point T = Tc.
■ For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed

of the form

m(T ) ∝
„

Tc

T
− 1

«β

,

but the critical exponent β is closer to 1/3 than 1/2 (experimentally,
β ≈ 0.334).4

■ Although Tc varies from one material to another (Fe, Ni, etc.), the value
of β is independent of the material.
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■ A key prediction of the mean-field theory is the behavior

m(T ) ∝
„

Tc

T
− 1

«1/2

just below the critical point T = Tc.
■ For ferromagnets (i.e., J > 0) in 3D, the true critical behavior is indeed

of the form

m(T ) ∝
„

Tc

T
− 1

«β

,

but the critical exponent β is closer to 1/3 than 1/2 (experimentally,
β ≈ 0.334).4

■ Although Tc varies from one material to another (Fe, Ni, etc.), the value
of β is independent of the material.

■ Hence, there exist both universal properties (e.g., β) and non-universal
properties (e.g., Tc) associated with phase transitions.

4The distinction between the inverse temperature β = 1/kBT and the critical exponent β
will always be clear from the context.
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■ To find m(T ) when h 6= 0, we must return to the original consistency
equation

m = tanh[β(h + Jqm)].
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■ To find m(T ) when h 6= 0, we must return to the original consistency
equation

m = tanh[β(h + Jqm)].

■ A graphical solution can be found by substituting x = β(h + Jqm),
which yields

tanh x =
T

Tc
x − h

kBTc
.
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■ To find m(T ) when h 6= 0, we must return to the original consistency
equation

m = tanh[β(h + Jqm)].

■ A graphical solution can be found by substituting x = β(h + Jqm),
which yields

tanh x =
T

Tc
x − h

kBTc
.

■ Hence, a solution with m 6= 0 always exists when h 6= 0:

1 2 3−1−2−3

1

−1

x

tanh x

(T/Tc)x − h/kBTc

m
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■ Numerical solutions for m(T ) are shown below, for magnetic fields with
h/kBTc between 0 and 0.3:

1 2

1

T/Tc

m

h = 0

h = 0.3kBTc

■ Notice that the discontinuity in dm/dT for h = 0 is no longer present
when h 6= 0.
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