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Context

The sampling problem
Goal: draw (approximate) samples from

ρ⋆(θ) ∝ exp(−V (θ))

Set-up: V (θ) available, rather than samples in generative modeling

Many applications in

• Uncertainty quantification
• Bayes inverse problems
• Filtering
• Active learning
• ...

Input Model

𝜃 𝐺 𝜃

𝑦 = 𝐺 𝜃 + noise

Data
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Methodology

Dynamics for sampling
Idea: construct a dynamics of ρt that gradually converges to

ρ⋆(θ) ∝ exp(−V (θ))

Note: for simplicity we consider continuous-time

• Finite time dynamics ρ1 = ρ⋆, from a given ρ0 (e.g. prior)
• Sequential Monte Carlo, e.g., ρt ∝ exp(−tV (θ)), ...

• Infinite time dynamics ρ∞ = ρ⋆, from arbitrary ρ0
• MCMC, Langevin’s dynamics, ...
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Dynamics through Gradient Flows (GFs)

Gradient flow dynamics for sampling
Idea: construct a gradient flow dynamics of ρt that converges to

ρ⋆(θ) ∝ exp(−V (θ))

Namely, dynamics comes from gradient based optimization methods

• Langevin’s dynamics and Wasserstein GFs
[Jordan, Kinderlehrer, Otto 1998], ...

• Stein variational GD and Stein variational GFs
[Liu, Wang 2016], [Liu 2017], ...

• Interaction between optimization and sampling
[Wibisono 2018], ...

• A recent review paper
[Trillos, Hosseini, Sanz-Alonso 2023]

• ...
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Gradient Flows

Ingredients in gradient flows
Formally: (P is the space of probability densities)

• An energy functional to minimize

E : P → R

• A metric for descent direction

gρ : TρP × TρP → R, gρ(σ1, σ2) = ⟨M(ρ)σ1, σ2⟩L2

=⇒ Flow:
∂ρt
∂t

= −∇gE(ρt) = −M(ρt)
−1 δE
δρ

|ρ=ρt

• TρP (tangent space) is the space of measures integrated to 0

• δE
δρ is the first variation of E at ρ

• M(ρt)
−1 can be understood as a preconditioner
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Sampling through Numerical Approximation of GFs

Gradient flow equation

∂ρt
∂t

= −M(ρt)
−1 δE
δρ

|ρ=ρt

Numerical approximations of GFs then lead to sampling methods

• Particle methods such as mean field SDEs

dθt = f(θt; ρt, ρ
⋆)dt+ h(θt; ρt, ρ

⋆)dWt

Example: Langevin’s dynamics
• E(ρ) = KL[ρ∥ρ⋆] and M(ρ)−1 = −∇ · (ρ∇·)
• The PDE: ∂ρt

∂t +∇ · (ρt∇θ log ρ
⋆) = ∆ρt

• The SDE: dθt = ∇θ log ρ
⋆(θt)dt+

√
2dWt
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The Focus of this Talk

The question:
Any guiding principles for designing E and M(ρ)?

Some desired properties of gradient flows for sampling:

• Numerical approximation is tractable
• e.g. Langevin dynamics dθt = ∇θ log ρ

⋆(θt)dt+
√
2dWt does

not need the normalization constants of ρ⋆

• Fast convergence of the flow
• e.g. Langevin dynamics converges fast for well conditioned,

single mode distributions, but may struggle for others
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Design of Gradient Flows for Sampling

1 On Choosing Energy Functionals: KL is Special

2 On Choosing Metrics: Fisher-Rao is Special

3 On Numerical Approximations by Gaussians and Mixtures
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On Choosing the Energy Functionals

Recap: Gradient flow equation

∂ρt
∂t

= −M(ρt)
−1 δE
δρ

|ρ=ρt

• Most popular choice of E(ρ): Kullback–Leibler divergence

E(ρ; ρ⋆) = KL[ρ∥ρ⋆] =
∫
ρ log

( ρ
ρ⋆

)
dθ

• Property: E(ρ; cρ⋆) = E(ρ; ρ⋆)− log c for any c ∈ R+

⇒ first variation δE
δρ is independent of c

⇒ the gradient flow equation is independent of c

Implication: no need to worry about normalization consts of ρ⋆
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The question
Any other choices of E that have such invariance property?

The answer is NO among a large class of E
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KL Divergence is Special

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Among all f-divergence with continuously differentiable f , KL
divergence is the only one, up to scaling, whose first variation is
invariant to the normalization consts of ρ⋆

• f -divergence: for f(0) = 1 and f convex

Df [ρ∥ρ⋆] =
∫
ρ⋆f

( ρ
ρ⋆

)
dθ

• Kullback–Leibler divergence: f(x) = x log x
• χ2 divergence: f(x) = (x− 1)2

• Hellinger distance: f(x) = (
√
x− 1)2

• ...

Use KL divergence from now on
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Design of Gradient Flows for Sampling

1 On Choosing Energy Functionals: KL is Special

2 On Choosing Metrics: Fisher-Rao is Special

3 On Numerical Approximations by Gaussians and Mixtures
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Two Metrics

Wasserstein metric [Jordan, Kinderlehrer, Otto 1998]

Metric: M(ρ)−1ψ = −∇ · (ρ∇ψ)

Flow:
∂ρt
∂t

= −∇θ · (ρt∇θ log ρ
⋆) +∇ · (∇ρt)

SDEs: dθt = ∇θ log ρ
⋆dt+

√
2dWt

• Optimal transport [Villani 2003, 2008]

Fisher-Rao metric [Rao 1945]

Metric: M(ρ)−1ψ = ρ(ψ − Eρ[ψ])

Flow:
∂ρt
∂t

= ρt
(
log ρ⋆ − log ρt

)
− ρtEρt [log ρ

⋆ − log ρt]

• Information geometry [Amari 2016], [Ay, Jost, Lê, Schwachhöfer, 2017]
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Convergence Property of Wasserstein Gradient Flow

Theorem [Markowich, Villani 2000]

Assume ∃λ > 0 such that

−D2 log ρ⋆(·) ⪰ λI

Then, for all t ≥ 0,

KL[ρt∥ρ⋆] ≤ KL[ρ0∥ρ⋆]e−2λt

Rate of exponential convergence depends on ρ⋆
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A Closer Look at Fisher-Rao

Fisher-Rao gradient flow

∂ρt
∂t

= ρt
(
log ρ⋆ − log ρt

)
− ρtEρt [log ρ

⋆ − log ρt]

Apply transformation of any diffeomorphism φ : Rdθ → Rdθ

• ρ̃t = φ#ρt is the transformed distribution at time t
• ρ̃⋆ = φ#ρ⋆ is the transformed target distribution

Then, the form of the flow equation remains invariant

∂ρ̃t
∂t

= ρ̃t
(
log ρ̃⋆ − log ρ̃t

)
− ρ̃tEρ̃t [log ρ̃

⋆ − log ρ̃t]
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Why Care About Invariance?

Implication of invariance

Convergence rates of the gradient flow are the same for
general ρ⋆ and Gaussian ρ⋆

• Assume there exists a diffeomorphism φ such that

ρ̃⋆ = φ#ρ⋆= Gaussian

• Recall the property of the KL divergence

KL[ρt∥ρ⋆] = KL[φ#ρt∥φ#ρ⋆] = KL[ρ̃t∥ρ̃⋆]

Thus, a general ρ⋆ problem ∼ a simpler Gaussian ρ⋆ problem
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Convergence of Fisher-Rao gradient flows
[Chen, Huang, Huang, Reich, Stuart 2023]

Let ρt satisfy the Fisher-Rao gradient flow. Assume
• there exist constants K,B > 0 such that ρ0 satisfies

e−K(1+|θ|2) ≤ ρ0(θ)/ρ
⋆(θ) ≤ eK(1+|θ|2)

• the second moments of ρ0, ρ⋆ are both bounded by B

Then, for any t ≥ log
(
(1 +B)K

)
,

KL[ρt∥ρ⋆] ≤ (2 +B + eB)Ke−t

See also: [Lu, Slepčev, Wang 2022], [Domingo-Enrich, Pooladian 2023]

“Unconditional” uniform exponential convergence

• In sharp contrast to Wasserstein gradient flows whose
convergence rates depend on ρ⋆
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Does This Mean Fisher-Rao is All You Need?

Numerical approximations of Fisher-Rao GFs can be tricky

Particle methods (i.e. Diracs ansatz)

• Birth-death dynamics [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]

• Ensemble MCMC [Lindsey, Weare, Zhang 2021]

Need ways to move the support of the particles to explore the space
and choices of smoothing kernels

Before going that far, let us first ask a basic question

The question:
Any other choices of metric having such invariance property?

The answer is again, NO
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Fisher-Rao Metric is Special

Unique property of Fisher-Rao metric
[Cencov 2000], [Ay, Jost, Lê, Schwachhöfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the only Riemannian metric on
smooth positive densities (up to scaling) that is invariant under
any diffeomorphism of the parameter space.

No other alternatives if we ask for diffeomorphism invariance!

But can ask for a relaxed affine invariance

• Affine invariant MCMC [Goodman, Weare 2010]

• Preconditioned Langevin and Kalman-Wasserstein GFs
[Reich Cotter 2015], [Leimkuhler, Matthews, Weare 2018], [Garbuno-Inigo,

Hoffmann, Li, Stuart 2020]

• Other affine invariant gradient flow examples in the paper
• e.g., affine invariant Stein gradient flow
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Numerical Approximation of the Fisher-Rao Gradient Flow

Particle methods (i.e. Diracs ansatz)

• Birth-death dynamics [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]

• Ensemble MCMC [Lindsey, Weare, Zhang 2021]

Need ways to move the support of the particles to explore the space
and choices of smoothing kernels

Our focus: parametric approximation (full support ansatz)
• Gaussian approximations
• Gaussian mixtures for multimodal problems



19/29

Gaussian Approximation by Moment Closures

The general procedures:

• Consider any dynamics in the density space

∂ρt(θ)

∂t
= σt(θ, ρt)

• Write down the dynamics of the mean and covariance

dmt

dt
=

∫
σt(θ, ρt)θdθ

dCt

dt
=

∫
σt(θ, ρt)(θ −mt)(θ −mt)

Tdθ

• Closure: replace ρt in the above RHS by ρat = N (mt, Ct)
Notation: at = (mt, Ct)

References: Moment closure in variational Kalman filtering [Särkkä, 2007], and in

Wasserstein gradient flow [Lambert, Chewi, Bach, Bonnabel, Rigollet 2022]
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Gaussian Approximation by Moment Closures

Gaussian approximate Fisher-Rao gradient flow

dmt

dt
= CtEρat

[∇θ log ρ
⋆],

dCt

dt
= Ct + CtEρat

[∇θ∇θ log ρ
⋆]Ct

• Derived using Stein’s lemma

• Equivalent to natural gradient flow [Amari 1998] for

Gaussian variational inference: min
m,C

KL[N (m,C)∥ρ⋆]

Key: Fisher information matrix is used for preconditioning

d

dt
(mt, Ct) = −FI(mt, Ct)

−1∇mt,CtKL
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Convergence Guarantee

Gaussian target
If ρ⋆ = N (m⋆, C⋆), and C0 = λ0I, λ0 > 0, then

∥mt −m⋆∥2 = O(e−t), ∥Ct − C⋆∥2 = O(e−t)

• Same story, due to invariance property
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Convergence Guarantee

Logconcave target [Chen, Huang, Huang, Reich, Stuart 2023]

Assume
• αI ⪯ −∇θ∇θ log ρ

⋆ ⪯ βI

• λ0,minI ⪯ C0 ⪯ λ0,maxI

Then

KL[ρat∥ρ⋆]−KL[ρa⋆∥ρ⋆] ≤ e−Kt(KL[ρa0∥ρ⋆]−KL[ρa⋆∥ρ⋆])

where
• at = (mt, Ct), ρat = N (mt, Ct)

• a⋆ = argmina KL[ρa∥ρ⋆]
• K = αmin{1/β, λ0,min}

• Inspired by the proof for the Wasserstein gradient flow in Gaussian
variational inference for logconcave target
[Lambert, Chewi, Bach, Bonnabel, Rigollet 2022]
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Local Convergence Rates: Linearized Analysis

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Assume αI ⪯ −∇θ∇θ log ρ
⋆ ⪯ βI. For Nθ = 1, let λ⋆,max < 0

denote the largest eigenvalue of the linearized Jacobian matrix of
the flow around a⋆. Then we have

−λ⋆,max ≥ 1

(7 + 4√
π
)
(
1 + log

Ä
β
α

ä)
Moreover, the bound is sharp: it is possible to construct a sequence
of triplets ρ⋆n, αn and βn, where limn→∞

βn

αn
= ∞, such that, if we

let λ⋆,max,n denote the corresponding largest eigenvalues of the
linearized Jacobian matrix for the n-th triple, then, it holds that

−λ⋆,max,n = O
Å
1/ log

βn
αn

ã
Convergence rates only depend on log(condition number)
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Numerical Examples

• 2D Convex Potential: θ = (θ(1), θ(2))

V (θ) =
(
√
λθ(1) − θ(2))2

20
+

(θ(2))4

20
with λ = 0.01, 0.1, 1

• Method: Gaussian approximation of Fisher-Rao GF,
Wasserstein GF and vallina GF

• Configuration: we initialize the Gaussian at

N
(ï0

0

ò
,

ï
4 0
0 4

ò)
We integrate the mean and covariance dynamics to t = 15
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Numerical Examples

Figure: x axis is from t = 0 to 15. Convergence rate of Gaussian
approximate Fisher-Rao gradient flows not influenced by values of λ
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Ongoing Work: Gaussian Mixtures + Kalman Methods

Consider the 2d Darcy flow problem (θ ∈ R128)

−∇ · (a(x, θ)∇p(x)) = f(x) = 1000 sin
(
4πx(2)

)
x ∈ D

p(x) = 0 x ∈ ∂D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

20

10

0

10

20

30

Figure: The reference pressure field p and observations
p([x(1),x(2)]

T )+p([1−x(1),x(2)]
T )

2 at 28 equidistant points (solid black dots)
and their mirroring points (empty black dots).
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Truth Truth (mirrored) Mode 1 Mode 2 Mode 3

Figure: The truth log permeability field a(x; θref ), and log permeability
fields obtained by 3-mode GMKI (Gaussian Mixture Kalman Inversion)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 indices

30

20

10

0

10

20

30

GMKI
Truth
Mode 1
Mode 2
Mode 3

Figure: The truth expansion parameters θ(i) (black crosses), and mean
estimations of θ(i) for each modes (circles) and the associated marginal
distributions obtained GMKI at the 30-th iteration.
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Summary

Gradient flows for sampling

• Energy functional: KL divergence is special
• Invariance to normalization consts

• Metric: Fisher-Rao metric is special
• Invariance to any diffeomorphism of the parameter space

⇒ unconditional uniform exponential convergence
• Relaxed to affine invariance and many constructions

• Gaussian approximation
• Moment closures = natural gradient in Gaussian VI
• Convergence guarantee for Gaussian and logconcave targets

• Further directions
• Gaussian mixture approximations for multimodal targets
• Derivative free approximations via Kalman’s methodology
• Other approximations to sample curved distributions
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Thank You!

[Chen, Huang, Huang, Reich, Stuart 2023]

Sampling via Gradient Flows in the Space of Probability Measures

Link: https://arxiv.org/abs/2310.03597.

https://arxiv.org/abs/2310.03597
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