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Summary

• The inherent bias pathology of the maximum likelihood (ML) estimation method

is confirmed for models with unknown parameters θ and ψ when MLE ψ̂ is function

of MLE θ̂.

• To reduce ψ̂’s bias, the likelihood equation to be solved for ψ is updated

using the model for the data Y in it. Model updated (MU) MLE, ψ̂MU , often reduces

either totally or partially ψ̂’s bias when estimating shape parameter ψ. For the Pareto

model ψ̂MU reduces also ψ̂’s variance.

• The results explain the difference that puzzled R. A. Fisher, between biased ψ̂

and the unbiased estimate he obtained for two models with the “2-stage procedure”.

MUMLE’s implementation is equivalent to the abandoned 2-stage procedure thus justi-

fying its use.

• MUMLE and Firth’s bias correcting likelihood are also obtained with the Mini-

mum Message Length method thus motivating its use in frequentist inference and, more

generally, model updating with a prior distribution.

Some key words: Bias, Likelihood equations, Minimum Description Length Crite-

rion, Minimum Message Length Method, Maximum likelihood, Model Updated MLE,

Specification problem, Two-stage MLE
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1 Introduction

When data x follows a model with density f(x|θ, ψ) and parameters

θ ∈ Rp(p ≥ 1), ψ ∈ R, the maximum likelihood estimate (MLE) ψ̂ is often

biased when it depends on MLE θ̂ and the model is ψ-regular, i.e. the ψ-

score’s expectation vanishes for all θ, ψ. An alternative estimation method

for ψ is thus motivated and proposed. The model updated (MU) maximum

likelihood principle (MLP) is used to obtain MUMLE, ψ̂MU , that reduces

often ψ̂’s bias and sometimes also its variance. MUMLE and Firth’s (1993)

bias correcting likelihood are also obtained with the Minimum Message

Length (MML) method (see, e.g. Wallace, 2005), i.e. by either selecting

a ψ-prior to update f(x|θ̂, ψ) and obtain ψ̂MU or decrease MLE’s bias in

general by updating f(x|θ, ψ) with a properly selected prior.

The results justify theoretically Fisher’s abandoned “2-stage procedure”

that does not adhere to MLP and its implementation is equivalent to

MUMLE. When the MLE of a parameter has a distribution depending only

on that parameter, its likelihood can be formed and maximized to produce

a second stage MLE (Savage, 1976, p.455, footnote 20). Fisher (1915,

1921) used the procedure to estimate the variance and the correlation

coefficient of normal population but has never formulated this “ second
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criterion”. He has never discussed the relationship between the original

and the second criterion, why he preferred the latter in 1912-1921 and

changed his mind in 1922 (Aldrich, 1997, p. 166, left column, lines 22-35).

There were neither motivating theory nor details for the implementation

of the 2-stage procedure. For example, which estimate to choose if the

second step estimate has smaller bias but larger MSE than the estimate

obtained in the first step? Why is the estimate in the second step better

than that in the first step?

MLP was introduced by Fisher (1922, 1925) who established asymptotic

optimality of the MLE θ̂ of θ for various x-models. The notions of the first

and second order efficiency of an estimate revealed asymptotic optimality

properties of θ̂ (Rao, 1962, Efron, 1975). A decision theoretic approach

showed that θ̂ is finite sample efficient with respect to the mean squared

error of the scores and within a large class of estimates (Yatracos, 1998).

Nevertheless, several examples in the literature showed that the MLE

is either biased, or inconsistent, or there are better estimates. Many of

the examples and criticisms appear in LeCam (1990) who added “It might

simply mean we have not yet translated into mathematics the basic princi-

ples which underlined Fisher’s intuition.” A lot of research was devoted to

relax the criticisms by providing MLE’s corrections thus violat-
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ing MLP that did not advocate correction. Firth (1993) observed

that most methods are corrective in character rather than preventive, i.e.

the MLE is first calculated and then corrected, and proposed a preventive

approach with systematic correction of the likelihood equations (LEs).

This work is motivated from several MLEs for the shape parameter ψ

that are unbiased only when the location θ is known. The goals are:

a) to examine whether there is a theoretical explanation for this phe-

nomenon,

b) to correct the bias adhering to MLP.

The obtained results for a) show that ψ̂’s bias in these examples is not a

coincidence and indicate how to achieve b) by not adhering to Fisher’s

model specification approach (Fisher, 1922, 1925) that dictates to

determine once and for all from the data the population model

used to obtain the LEs.

Fisher’s approach indirectly implies that the stochastic quan-

tities in the LEs have the same information with the data. How-

ever, when θ is replaced by θ̂ in the LE to be solved for ψ a new

situation arises. This modified LE has a new stochastic compo-

nent and the updated data Y in it introduces inaccuracy with

respect to the original LE because i) θ is replaced by θ̂ and ii)
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Y ’s degrees of freedom change.

For example, with a sample x = {X1, . . . , Xn} from the normal model

with mean θ and variance σ2 the LE for σ2 depends on
∑n

i=1(Xi − θ)2

that has n degrees of freedom. When the MLE X̄ replaces θ inaccuracy is

introduced and the “updated data”, Y, in the LE used to obtain σ̂2 is

Y =
n∑
i=1

(Xi − X̄)2.

This new LE is not that of a χ2-distribution with n−1 degrees of freedom,

i.e. Y ’s distribution, thus it “does not correspond to a proper model”.

The proposed preventive approach suggests to replace the LE

to be solved for ψ after plugging θ̂ in it with the LE from Y ’s

distribution, thus adhering to MLP. The data Y is a multiple of

MLE ψ̂ used in the 2-stage procedure. Using model updated LEs unbiased

ψ̂MU are obtained for the shape parameters of the normal and the shift-

exponential models; the variance estimate ψ̂MU for the Neyman and Scott

(1948) problem is unbiased and consistent; the shape parameter’s estimate

ψ̂MU for the Pareto distribution improves both the bias and the variance

of ψ̂ and, in addition, by parametrizing the model with ψ−1 its MUMLE

is unbiased contrary to the MLE.

MUMLE’s approach justifies from a frequentist’s view the like-
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lihood correction in the MML estimation method (Wallace and

Boulton, 1968, Wallace and Freeman, 1987, Wallace, 2005) and

in the Minimum Description Length Criterion (Rissanen 1984,

1987). Both methods assume a prior distribution but have different

philosophy for its choice and use (Rissanen, 1987, p. 226, Wallace and

Freeman, 1987, p. 251). Model update satisfies one of Rissanen’s crit-

icisms for the MLE “... the maximized likelihood P (x|θ̂(x)) no longer

defines a proper distribution” (1987, p. 224).

MUMLE’s formulation violates Fisher’s model specification approach

but adheres to MLP and more precisely to MUMLP. MUMLE should be

explored further. The 2-stage procedure does not adhere to MLP which

does not allow for corrections. It is a bias corrective approach that does not

touch the heart of the matter, i.e., it does not explain why the difference

in bias occurs and does not motivate the remedy. These are the reasons we

prefer the formulation for the MUMLE approach. The puzzling question

is Fisher’s rigidity with the model specification. A possible explanation is

the Bayesian flavor involved with model updating.
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2 MLE’s Bias Pathology

Let the data x be a random vector in Rd having density f(x|θ, ψ) with

respect to Lebesgue measure, parameters θ ∈ Rp, ψ ∈ R all unknown and

with the ψ-score Uψ satisfying

Uψ(x, θ, ψ) =
∂log f(x|θ, ψ)

∂ψ
̸= 0 a.s. f(·|θ, ψ), (1)

∀ x, θ, Uψ(x, θ, ψ) = 0 has unique solution, (2)

Eθ,ψUψ(x, θ, ψ) = 0 (ψ-regularity); (3)

Eθ,ψ denotes expectation with respect to f(x|θ, ψ), d ≥ 1, p ≥ 1.

Assume that MLE θ̂ of θ and Uψ are used to obtain MLE ψ̂ such that

Uψ(x, θ̂, ψ̂) = 0. (4)

It is seen in Proposition 2.1 a) that ψ-regularity (3) may most often

cause bias for ψ̂ because it is expected to imply that Eθ,ψUψ(x, θ̂, ψ) does

not vanish, especially if θ’s dimension p is large. Using instead the score

for the data Y (i.e. ψ̂) to determine ψ̂MU this drawback is avoided for

some models thus motivating the use of MUMLE.

Proposition 2.1 (MLE’s inherent bias pathology) Let x be data in Rd

from f(x|θ, ψ) with θ ∈ Rp, ψ ∈ R both unknown with the ψ-score Uψ
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satisfying (1)-(3) and ψ̂ obtained from (4); θ̂ is the MLE of θ, d ≥ 1, p ≥

1.

a) If
∂Uψ(x,θ̂,ψ)

∂ψ = C is fixed constant, C ̸= 0, ψ̂ is biased estimate of

ψ if and only if

Eθ,ψUψ(x, θ̂, ψ) ̸= 0 (5)

at least for ψ = ψ0. Since (3) holds ψ̂ is expected to be biased.

b) If
∂Uψ(x,θ̂,ψ)

∂ψ = C(x, θ̂, ψ) exists in a neighborhood of ψ0, ψ̂ is biased

estimate of ψ if and only if

Eθ,ψ
Uψ(x, θ̂, ψ)

C(x, θ̂, ψ∗)
̸= 0 (6)

at least for ψ = ψ0; ψ
∗ is between ψ̂ and ψ0. ψ̂ is expected to be biased.

Proof of Proposition 2.1: a) Make a Taylor expansion of Uψ(x, θ̂, ψ̂)

around ψ using Uψ’s linearity in ψ,

Uψ(x, θ̂, ψ̂) = Uψ(x, θ̂, ψ) + (ψ̂ − ψ)C. (7)

From (4) it follows that

Eθ,ψ(ψ̂ − ψ) = −C−1Eθ,ψUψ(x, θ̂, ψ) ̸= 0

if and only if Eθ,ψUψ(x, θ̂, ψ) ̸= 0.
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b) Equation (7) remains valid with C = C(x, θ̂, ψ) evaluated at ψ = ψ∗

between ψ and ψ̂. Then ψ̂ is biased if and only if

Eθ,ψUψ(x, θ̂, ψ)C
−1(x, θ̂, ψ∗) ̸= 0. (8)

Most often (8) will hold. To examine this expectation further make a sec-

ond order Taylor approximation of the left side in (8) around Eθ,ψUψ(x, θ̂, ψ)

(denoted by EUψ) and Eθ,ψC(x, θ̂, ψ
∗) (denoted by EC) assuming negligi-

bility of the remainder,

Eθ,ψ
Uψ
C

≈ EUψ
EC

− Cov(Uψ, C)

E2C
+
V ar(C)EUψ

E3C
. (9)

Whether or not EUψ = 0, (9) is not expected to vanish. 2

A simple result follows motivating the use of MUMLE when Y ’s distri-

bution depends only on ψ.

Corollary 2.1 Under the assumptions of Proposition 2.1 a) but with ψ

the only model parameter, ψ-regularity (3) implies that ψ̂ is unbiased for

ψ.

The next proposition can be used to show ψ̂ is biased.

Proposition 2.2 Let T (x, θ, ψ) be a functional for which (4) holds with
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T instead of Uψ,
∂T
∂ψ is a constant C (̸= 0) and for ψ0 it holds

Eθ,ψ0
T (x, θ̂, ψ0) ̸= 0.

Then ψ̂ is biased estimate of ψ.

Proof of Proposition 2.2: Follows along the proof of Proposition 2.1a)

with T instead of Uψ since T is linear in ψ. 2

When Uψ(x, θ, ψ) has the form

Uψ(x, θ, ψ) =
U ∗(x, θ, ψ)

h̃(ψ)
, (10)

(2)-(4) hold also for U ∗; h̃ is a real valued function. The equation to be

solved for ψ has the form

U ∗(x, θ, ψ) = C(x, θ)ψ +D(x, θ) = 0. (11)

U ∗ is a useful tool that will play the role of T when applying Proposition

2.2.

With the next proposition ψ̂’s bias is confirmed directly for some models.

Proposition 2.3 For f(x|θ, ψ) with θ̂ the MLE for θ assume in addition

to (1)-(3) that

10



a) ψ > 0,

b)

log f(x|θ, ψ) = C

A
logψ − D(x, θ)

Aψ
+ g(x) (12)

which implies that

Uψ(x|θ, ψ) =
Cψ +D(x, θ)

Aψ2
; (13)

C is a constant, D is a function with positive values, A > 0 and g is a real

valued function of x.

Then, ψ̂ is biased for ψ.

Proof of Proposition 2.3: From (12)

f(x|θ̂, ψ) > f(x|θ, ψ) ∀ ψ ⇔ D(x, θ̂) < D(x, θ). (14)

Thus, from (13) it follows that

Uψ(x|θ̂, ψ) < Uψ(x|θ, ψ) a.s.

⇒ Eθ,ψUψ(x|θ̂, ψ) < Eθ,ψUψ(x|θ, ψ) = 0

from (3). From (13) it also holds that

Eθ,ψ[Cψ +D(x, θ̂)] ̸= 0

and from Proposition 2.2 with

T (x, θ, ψ) = Cψ +D(x, θ)
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ψ̂ is biased. 2

Proposition 2.3 is used in Examples 2.1-2.4.

Example 2.1 Let x = {X1, . . . , Xn} be i.i.d. normal random variables

with mean θ and variance ψ. Then f(x|θ, ψ) satisfies (12), θ̂ = X̄ and Uψ

has form (13) with

C = −n, D(x, θ) =
n∑
i=1

(Xi − θ)2, A = 2.

From Proposition 2.3 ψ̂ is biased for ψ.

Example 2.2 (The Neyman-Scott problem) Let {Xij, j = 1, ..., k} be a

sample from a normal distribution with mean θi and variance ψ, i = 1, ..., n,

and let x represent all the observations. The samples are independent and

θ̂i = X̄i, i = 1, . . . , n. Then f(x|θ, ψ) satisfies (12) and Uψ has form (13)

with

C = −nk, D(x, θ1, . . . , θn) =
n∑
i=1

k∑
j=1

(Xij − θi)
2, A = 2.

From Proposition 2.3 it follows that ψ̂ is biased for ψ.

Example 2.3 Let x = {X1, . . . , Xn} be i.i.d. random variables from a

shifted exponential density f with parameters θ and ψ (> 0),

f(w, θ, ψ) = ψ−1e−(w−θ)/ψI[θ,∞)(w); (15)
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I denotes the indicator function. Then f(x|θ, ψ) satisfies (12), θ̂ is the

smallest observation X(1) and Uψ has form (13) with

C = −n, D(x, θ) =
n∑
i=1

(Xi − θ), A = 1.

From Proposition 2.3 ψ̂ is biased for ψ.

Example 2.4 (Pareto family with non-usual parametrization of the shape

parameter.) Let x = {X1, . . . , Xn} be i.i.d. random variables with density

f(w|θ, ψ∗) =
1

ψ∗θ
1/ψ∗

w−( 1
ψ∗+1)I[θ,∞)(w), ψ

∗ > 0, θ > 0; (16)

I denotes the indicator function. Then f(x|θ, ψ) satisfies (12), θ̂ is the

smallest observation X(1) and Uψ∗ has form (13) with

C = −n, D(x, θ) =
n∑
i=1

log
Xi

θ
, A = 1.

From Proposition 2.3 MLE ψ̂∗ is biased for ψ∗.

The proposition that follows presents conditions under which ψ̂ is bi-

ased. The definition of a complete family of densities is provided according

to Lehmann and Scheffé (1950).

Definition 2.1 Let G = {g(u|η), η ∈ H} be a family of densities of a

random variable (or statistic) U indexed by the parameter set H. G is

complete if for any function ϕ satisfying

Eηϕ(U) = 0 ∀ η ∈ H
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it holds that ϕ(u) = 0 for every u except for a set of u’s having probability

zero for all η ∈ H.

Proposition 2.4 a) Under the assumptions and the notation of Proposi-

tion 2.1 a), with C(x, θ̂, ψ) a constant C and

f(x|θ, ψ) > 0 ∀ x ∈ U ⊂ Rd,∀ θ, ψ, (17)

if the family {f(x, θ, ψ), θ ∈ R} is complete for each fixed ψ and the dis-

tribution of Uψ(x|θ̂, ψ) depends also on θ, then ψ̂ is biased estimate of ψ.

b) Under the assumptions and the notation of Proposition 2.1 b), for

general C(x, θ̂, ψ) existing in neighborhoods of ψ0 and ψ̃0 and with (17)

holding, if the family {f(x, θ, ψ), θ ∈ R} is complete for each fixed ψ and

the distribution of
Uψ(x|θ̂,ψ)
C(x,θ̂,ψ∗)

for ψ = ψ0, ψ̃0, depends also on θ, then ψ̂ is

biased.

Proof of Proposition 2.4: a) The result is proved by contradiction.

Assume that ψ̂ is unbiased. Then from Proposition 2.1 a) for ψ0

Eθ,ψ0
Uψ(x, θ̂, ψ0) = 0 ∀ θ. (18)

Let

K(ψ0) = {x : Uψ(x, θ̂, ψ0) = 0}.

Since Uψ(x, θ̂, ψ0) is function of x only, by assumption its distribution

depends on both θ and ψ0 and the family {f(x|θ, ψ0), θ ∈ R} is complete,
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it follows from (18) that

Pθ,ψ0
[Uψ(x, θ̂, ψ0) = 0] = Pθ,ψ0

[K(ψ0)] = 1 ∀ θ. (19)

Equalities (19) hold also for ψ̃0 ̸= ψ0 and for x ∈ K(ψ0) ∩K(ψ̃0)(̸= ∅) the

likelihood equation for ψ has 2 solutions, ψ0 and ψ̃0, leading to contradic-

tion because of (2).

b) Assume that ψ̂ is unbiased. From Proposition 2.1 b) for ψ0 it holds

Eθ,ψ0

Uψ(x, θ̂, ψ0)

C(x, θ̂, ψ∗)
= 0 ∀ θ.

Since
Uψ(x,θ̂,ψ0)

C(x,θ̂,ψ∗)
is function of x only, its distribution depends on both θ and

ψ0 and family {f(x|θ, ψ0), θ ∈ R} is complete it follows that

Uψ(x, θ̂, ψ0)

C(x, θ̂, ψ∗)
= 0 a.s.

which implies that

Pθ,ψ0
[Uψ(x, θ̂, ψ0) = 0] = 1 ∀ θ.

The proof follows as in part a). 2

Remark 2.1 Proposition 2.4 motivates the use of MUMLE and the 2-

stage procedure when ψ̂’s distribution does not depend on θ. Proposition

2.4 a) does not apply in Examples 2.1-2.4 because Uψ(x|θ̂, ψ0)’s distribution

does not depend on θ.
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3 Fisher’s specification problem, MUMLE and the

MML method

According to Fisher(1922): “... The data is to be replaced by few quan-

tities that will contain as much as possible of the relevant information

contained in the original data. This object is accomplished by construct-

ing a hypothetical infinite population of which the actual data are regarded

as constituting a random sample(the specification problem). ... The prob-

lems of specification are entirely a matter for the practical statistician.

The discussions of theoretical statistics may be regarded as alternating

between problems of estimation and problems of distribution.”

We include the specification problem in these alternating discussions.

The goal is that the k-th LE to be solved, k ≥ 2, maximizes a proper

likelihood, i.e. a likelihood that coincides with that of the data Y in it

after replacement of other parameter values with their MLEs. Results in

section 2 suggest that bias may be reduced.

The MUMLP approach: Let f(x|θ1, ..., θp) be the density of the data

x; θ1, ..., θp are real valued parameters. Assume that k − 1 likelihood

equations have been solved obtaining estimates θ̂1, ..., θ̂k−1, respectively,
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of θ1, ..., θk−1, k− 1 < p. The LE for θk has form (11) with θk instead of ψ,

and solving it we obtain

θ̂k = −D(x, θ̂1, . . . , θ̂k−1)

C(x, θ̂1, . . . , θ̂k−1)
= Y.

When Y ’s density depends only on θk it is used as model to obtain MUMLE

θ̂k,MU .

In the examples presented in the next section the distribution of Y is

easy to obtain. If Y ’s distribution is not immediately accessible, as in the

case of a sample x = {X1, . . . , Xn} from a Gamma distribution with two

unknown parameters and Y = Πn
i=1Xi/X̄

n
n , other methods can be used to

obtain a LE from a proper model. One possibility is to use the machinery

of the MML87 method (Wallace and Freeman, 1987, Wallace, 2005) for

the model f(x|θ) with prior h(θ) and choose, according to a criterion, one

of the estimates obtained from a data-dependent class of priors.

The MML87 method: The MML estimate of θ(∈ Rp) is the value θ̂MML

maximizing

log h(θ) + log f(x|θ)− 1

2
log |Ix(θ)|; (20)

h(θ) is a prior and |Ix(θ)| is the determinant of the Fisher’s information
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matrix for x, p ≥ 1.

The next propositions motivate the use of the MML approach for fre-

quentist inference.

Proposition 3.1 If θ(∈ Rp) are the canonical parameters of an exponen-

tial family model, the MML estimates remove the O(n−1) term in θ̂’s bias

when

h(θ) ∝ |Ix(θ)|. (21)

Proof of Proposition 3.1: Replacing (21) in (20) it follows that θ̂MML

is the value maximizing

log f(x|θ) + 1

2
log |Ix(θ)|

and the result follows from Firth (1993, p. 30, sec. 3). 2

Remark 3.1 Proposition 3.1 can be extended for exponential family mod-

els in non-canonical parametrization as well as for non-exponential models

with the proper choice of h(θ) along the lines in Firth (1993, p. 30, sec.

4).

The proposition that follows provides conditions for a model with pa-

rameters θ and ψ and ψ̂ function of θ̂ under which the MUMLE estimates

θ̂, ψ̂MU coincide with MML estimates θ̂MML, ψ̂MML.
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Proposition 3.2 Assume that the data x has density f(x|θ, ψ), θ ∈ Rp, ψ ∈

R, that MLEs θ̂, ψ̂ are obtained, ψ̂ is a function of θ̂ and Y (i.e. ψ̂) has

density gY (y|ψ). Assume in addition that

a) |Ix(θ, ψ)| = |Ix(ψ)|,

b) there are functions ϕ(ψ), u(y) :

log f(x|θ̂, ψ)− log gY (y|ψ) = log ϕ(ψ) + u(y). (22)

Then, MML estimates θ̂MML and ψ̂MML coincide, respectively, with θ̂ and

ψ̂MU if the prior

h(θ, ψ) ∝ |Ix(ψ)|1/2

ϕ(ψ)
. (23)

Proof of Proposition 3.2: Replacing h from (23) in (20) the MML

log-likelihood is

c− log ϕ(ψ) + log f(x, θ, ψ); (24)

c is a constant. It follows that

θ̂MML = θ̂.

From (22) and (24) the MML log-likelihood for ψ is

c− log ϕ(ψ) + log f(x, θ̂, ψ) = c+ log gY (y|ψ) + u(y)

and

ψ̂MML = ψ̂MU . 2
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Remark 3.2 The assumptions in Proposition 3.2 hold at least under the

set-up of Example 2.1 for which

ϕ(ψ) ∝ ψ−1/2, |I(θ, ψ)| = |I(ψ)| = 2n2/ψ2.

Then,

h(θ, ψ) ∝ ψ−1/2

that is the prior used to obtain θ̂MML, ψ̂MML (Wallace, 2005, p. 250).

4 Examples-MUMLE’s Applications

An elementary Lemma follows to be used in the examples.

Lemma 4.1 Let W be a chi-square random variable with k degrees of free-

dom and let Y = Wτ 2, τ > 0. Then,

a) Y ’s density has the form Ck exp{−y/2τ 2}y(k−2)/2τ−k, Ck(> 0) is a con-

stant.

b) The likelihood equation, corresponding to Y is

−kτ 2 + Y = 0

and the MLE τ̂ 2 is given by Y/k.

Proof of Lemma 4.1: The density ofW is given by Ckw
(k−2)/2 exp{−w/2}, Ck >

0. Thus, the density of Y is Ck exp{−y/2τ 2}(y/τ 2)(k−2)/2τ−2. 2
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The first example is the variance estimation problem for a normal sam-

ple with unknown mean. The MUMLE of the variance is its unbiased es-

timate that is also the MML estimate (Wallace and Boulton, 1968, p.190)

and Firth’s (1993, p. 34, l. 1) bias corrected estimate.

Example 4.1 (Example 2.1 continued) The LE for ψ with θ̂ = X̄ is

−nψ +
n∑
i=1

(Xi −X)2 = 0, Y =
n∑
i=1

(Xi −X)2

and Y ’s distribution follows from Lemma 4.1 with τ and k taking,respectively,

values
√
ψ and n− 1. The model updated LE is

−(n− 1)ψ +
n∑
i=1

(Xi −X)2 = 0.

The MUMLE of ψ is its UMV U estimate

(n− 1)−1
n∑
i=1

(Xi −X)2.

Example 4.2 (Example 2.2 continued, the Neyman-Scott problem) The

LE for ψ after replacing θi by its MLE X̄i (for every i) is

−nmψ +
n∑
i=1

m∑
j=1

(Xij − X̄i)
2 = 0, Y =

n∑
i=1

m∑
j=1

(Xij − X̄i)
2.

Using Y ’s model from Lemma 4.1 with k = n(m− 1), the MUMLE is

n−1(m− 1)−1
n∑
i=1

m∑
j=1

(Xij − X̄i)
2,

an unbiased and consistent estimate of ψ.
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For the Neyman-Scott problem one of Firth’s (1993, p. 35) estimates

of σ2, A(O), is unbiased and consistent while the other estimate, A(E), is

consistent. The MML estimate obtained is consistent and asymptotically

unbiased (Dowe and Wallace, 1997, p. 617, Wallace, 2005, p. 202).

Example 4.3 (Example 2.3 continued) θ̂ is the smallest observation X(1)

and the LE for ψ is

−nψ +
n∑
i=1

(X(i) −X(1)) = 0, Y =
n∑
i=1

(X(i) −X(1)).

Y follows Gamma distribution with parameters ψ and n − 1. The LE for

Y is

−(n− 1)ψ +
n∑
i=1

(X(i) −X(1)) = 0

and the MUMLE of ψ is ∑n
i=1(X(i) −X(1))

n− 1

that is also the UMVU estimate (Arnold, 1970, p. 1261).

In the Pareto family example that follows with parameters ψ and θ

both unknown ψ̂MU reduces by 50% the bias of the MLE ψ̂ and has also

smaller variance. With this parametrization ψ̂ is not unbiased even when

θ is known. Using the parametrization ψ = 1/ψ∗, MLE ψ̂∗ is unbiased for

ψ∗ when θ is known but when θ is unknown MUMLE ψ̂∗
MU is unbiased.
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Example 4.4 LetX1, · · · , Xn be independent random variables from Pareto

density (16) with ψ∗ = ψ−1, ψ > 0. The log-likelihood of the sample is

n logψ + nψ log θ − (ψ + 1)
n∑
i=1

logXi +
n∑
i=1

log I[θ,∞)(Xi)

and θ̂ is the smallest observation, X(1). The score and the MLE are, re-

spectively,

Uψ(X, θ̂, ψ) = n− ψ
n∑
i=2

log
Xi

X(1)
, ψ̂ =

n∑n
i=2 log

Xi

X(1)

.

Since

Y =
n∑
i=2

log
Xi

X(1)

has a Γ(n − 1, ψ) distribution (see, e.g, Baxter, 1980, p. 136, l. -6 and

references therein) ψ̂ is biased and

Eψ̂ − ψ =
2

n− 2
ψ, V ar(ψ̂) =

n2

(n− 2)2(n− 3)
ψ2.

The updated score based on the data Y and MUMLE ψ̂MU are, respec-

tively,

(n− 1)− ψY, ψ̂MU =
n− 1∑n
i=2 log

Xi

X(1)

,

with

Eψ̂MU − ψ =
1

n− 2
ψ, V ar(ψ̂MU) =

(n− 1)2

(n− 2)2(n− 3)
ψ2.

Observe that ψ̂MU improves both the bias and the variance of ψ̂.
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Using instead density (16) the ψ∗-score and the MLE are, respectively,

Uψ∗(X, θ̂, ψ∗) = −nψ∗ +
n∑
i=2

log
Xi

X(1)
, ψ̂∗ =

∑n
i=2 log

Xi

X(1)

n
.

ψ̂∗ is biased; see Example 2.4. Using the model from data

Y =
n∑
i=2

log
Xi

X(1)

the updated score and MUMLE ψ̂∗
MU are, respectively

−(n− 1)ψ∗ + Y, ψ̂∗
MU =

∑n
i=2 log

Xi

X(1)

n− 1
.

ψ̂∗
MU is unbiased for ψ∗.
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