Quintic 3-fold
Gwen a pair Δ, Δ° of polar dual reflexive pohtopes we get a pair X_{Δ}, X_{Δ} of tonic varieties, which are Fans. Antican onical dwisors $Y_{\Delta}, Y^{\prime} \circ$ gwen Calabi-Yaus, which are candidates for mirror symmetry
In fact, however, they may be singular, so we need
to resole them: see $[c k, \xi 41]$
Ex Previously, we found dual pair

$$
\begin{aligned}
& \Delta=\operatorname{span}\left\{2 e_{1}-e_{2}, 2 e_{2}-e_{1},-e_{1}-e_{2}\right\} \\
& \Delta^{0}=\operatorname{span}\left\{e_{1}, e_{2},-e_{1}-e_{2}\right\}
\end{aligned}
$$

with $X_{\Delta} \cong \mathbb{P}^{2}$

Ex Generalizing, we have dual pair

$$
\begin{aligned}
& \Delta=\operatorname{span}\left\{4 e_{i}-\sum_{j \neq i} e_{j}\right\}_{1 \leqslant i \leqslant 4} \cup\left\{-\sum_{1 \leqslant i \leqslant 4} e_{i}\right\} \\
& D^{O}=\operatorname{span}\left\{e_{i}\right\}_{1 \leqslant i \leqslant 4} \cup\left\{-\sum_{1 \leqslant \leqslant 4} e_{i}\right\}
\end{aligned}
$$

We have that Norm $(\Delta)=$ Cone $\left(\Delta^{0}\right)$ is a
fan for \mathbb{P}^{4}, so $X_{0} \cong \mathbb{P}^{4}$

Recall we constructed divisors in X_{Δ} from the polytope \triangle via a space L of functions f on the torus $\mathbb{C}^{* d} \subset X_{0}$. The result in this example is the quintics in $\mathbb{P 4}$, as follows. Note these are Calabi-Yon

Take a chart $\mathbb{C}^{4} \cong\left\{x_{0} \neq 0\right\}$ with coordinates $z_{1} z_{4}$
The space L then consists of functions f on $\mathbb{T} *_{4}$ where $f\left(z_{1}-z_{4}\right)=z_{1}^{-1}-z_{4}^{-1} q\left(z_{1}-z_{4}\right)$ for q an arbitrary quintic. Then homogenizing we get $F\left(x_{0} \ldots x_{4}\right)=x_{0}-x_{4} q\left(x_{1} x_{0}^{-1}-x_{4} x_{0}^{-1}\right)$ an arbitrary homogeneous quintic.

The description of the dual X_{Δ} and Y_{Δ} is more complicated. We find (see $[C K, \S 4.2])$ that $X_{\Delta}=\mathbb{P}^{4} / G$ finite group We have to take a resolution.

However, it can be proved (see work of Batyren, [CK, The 4.1.5]) that the Y_{Δ} and $Y_{\Delta 0}$ thus obtained satisfy the relation on Hodge numbers predicted by MS

