Toric geometry

We study a class of algebraic varieties determined by combinatorial (and easily-visualized) data. For many problems in algebraic geometry, toric varieties give a class where problem is more easily solved, helping to understand the general case.

Ref Ranganathan, Torc geometry (notes) [R] (First half.)

We work over C.

Def A toric variety X is an irreducible variety, dim d, with dense open $M \subset X$ where $M \cong \mathbb{C}^{*d}$. Therefore have multiplication $M \times M \to M$. Require that it extends to $X \times M \to X$, group action.

 $\underline{E_X} (I) \mathbb{C}^{*d} (here \mathcal{N} = X)$ 2 Cd (take N=C*d) (3) IPd. For this, choose a standard chart Id C Pd and take M= [*d C Id (4) Pd × Pe (exercise) Combinatorial data Def (lattice of one-parameter subgroups of C*d cocharacter (attice) $N = Hom(\mathbb{C}^*, \mathbb{C}^*d) \cong \mathbb{Z}^d$ Here $\lambda \in \mathbb{Z}^d$ gives homomorphism $t \mapsto (t^{\lambda_1}, \dots, t^{\lambda_d})$. Def (character (attice) M = Hom(C*d, C*) ≈ Zd Here MEZd gives (t,, _, td) > the total These lattice are dual under pairing (2, M) = 2 ripi

Kern The notation M and N is standard, so it's useful to memorize it Question For toric variety X, as we vary ZEN, what are possible $\lim \lambda(t) \mapsto X$? one-parameter subgroup of t *d

Answer to this motivates a combinatorial structure called a fan in $M_R = M \otimes R$

We gives examples first.

 $\underline{E_X} X = \mathbb{C}^2 \supset \mathbb{C}^{*2} = \{(t_1, t_2)\}, \quad \underline{\lambda} = (\lambda_1, \lambda_2)$ Case () $\lambda_1, \lambda_2 > 0$. $t \mapsto (t^{\lambda_1}, t^{\lambda_2}) \longrightarrow (0, 0)$ (2) $\lambda_1 = 0, \lambda_2 > 0$ \rightarrow (1,0)

 $E_{X} \mathbb{P}' \supset \mathbb{C} \supset \mathbb{C}^{*} \mathbb{N}_{\mathbb{R}} \cong \mathbb{R} \longleftrightarrow$

EX P'×P'

Later, we'll explain how to get a variety from such pictures.

Interlude birational geometry Consider algebraic varieties/C.

P² and P'×P' are brotunal. We have

with V non-empty open.

Rem Informally, may say f is a "partially defined" map. Ex a morphism f gives a rational map (V=X)Def Son & birational if there exists Y - 3 X such that fg, gf are identity (on the open subsets where they can be defined). Note In this case, write XG->Y. EX Blowup of X's smooth point p. Gives new variety Y = Blp X, where p is replaced by $E = \mathbb{P}(T_p X) \cong \mathbb{P}^{\dim X-1}$, and morphism E $f: \gamma \rightarrow \times$

Now
$$f|_{X-\varepsilon}$$
 is a isomorphism to $Y-p$
So f is a birational map
(we take g to be inverse of iso, defined on $Y-p$)
 $E_X \mathbb{P}' \times \mathbb{P}' \longrightarrow \mathbb{P}^2$
We may take rational map
 $((x,y), (z,w)) \mapsto (xz, w, yz)$ Alternatively, if
 \mathbb{I} take $p,q \in \mathbb{P}^2$ distinct, and $r \in \mathbb{P}' \times \mathbb{P}'$ then
 $\mathbb{P}^2 \leftarrow Blp q \mathbb{P}^2 \cong Bl_r \mathbb{P}' \times \mathbb{P}' \longrightarrow \mathbb{P}' \times \mathbb{P}'$
this is an example of
"del Pezzo surface" dP_3
These rational maps give the birational map claimed

We don't prove = above (it is a good exercise, or see [Vakil, Foundations of Alg Geom, Blowing up] But we will see that it corresponds to fans as follows, that is, blowup corresponds to adding a new ray. This shows how useful toric diagrams can be!

Calabi-Yan hypersurfaces

For a subvariety YCX we define the normal bundle NyIX of Y by the short exact sequence

$$0 \rightarrow T_{y} \rightarrow T_{x|y} \rightarrow N_{y|x} \rightarrow 0$$

when X and Y are smooth.

If Y is furthermore a divisor (codimension I) and arises as the zeroes of some section s of a line bundle L on X then $N_{Y|X} \cong L|_Y$.

Ex A point $(a:b) \in \mathbb{P}'$ is zero of section b:x - ay of line bundle G(I) on \mathbb{P}'

Ex A line
$$(a:b:0) \in \mathbb{P}^2$$
 is zeroes of section z of
line bundle $G(I)$ on \mathbb{P}^2 . Hence for this line $Y \cong \mathbb{P}^1$
have $N_{Y|\mathbb{P}^2} \cong G_p(I)|_{\mathbb{P}^1} \cong G_{\mathbb{P}^1}(I)$.

The short exact sequence above implies that det Tx/y = det Ty & det Ny/x $\omega_{Y} \cong \omega_{X|Y} \otimes \det N_{Y|X}$ \Rightarrow "adjunction formula" Ex For Y given as above with $L = \omega_X^{*}$, have $\omega_{y} \cong \omega_{x|y} \otimes \omega_{x|y}$ trivial Hence for X compact Kähler (for instance, X projective variety) get that Y is Calabi-Yan $E_X \times = \mathbb{P}^n$, $L = \omega_X = O(n+1)$, $\dim Y = n-1$. Ren Many further examples may be found with Xtoric