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Ĥomologous saddle connections
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Recall that a quadratic differential q on a Riemann surface S defines a

canonical (ramified) double cover p : Ŝ → S such that p∗q = ω2 is a square

of a holomorphic 1-form ω on Ŝ.

Given an oriented saddle connection γ on S let γ′, γ′′ be its lifts to the double

cover. If [γ′] = −[γ′′] as cycles in

H1(Ŝ, {preimages of singularities}; Z)

we let [γ̂] := [γ′], otherwise we define [γ̂] as [γ̂] := [γ′]− [γ′′].

Definition The saddle connections γ1, γ2 on a flat surface S defined by a

quadratic differential q are ĥomologous if [γ̂1] = [γ̂2] in

H1(Ŝ, {preimages of singularities}; Z)

under an appropriate choice of orientations of γ1, γ2.
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H1(Ŝ, {preimages of singularities}; Z)

we let [γ̂] := [γ′], otherwise we define [γ̂] as [γ̂] := [γ′]− [γ′′].

Definition The saddle connections γ1, γ2 on a flat surface S defined by a

quadratic differential q are ĥomologous if [γ̂1] = [γ̂2] in
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Saddle connection ĥomologous to separatrix loop
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Saddle connections γ1, γ2, γ3 on the surface S (left picture) are ĥomologous,

though γ1 is a segment joining distinct points P1, P2 and γ2 and γ3 are closed

loops.



Rigid collections of saddle connections
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It follows from the definition that ĥomologous saddle connections are parallel

on S and that their lengths either coincide or differ by a factor of two.

Theorem (H. Masur, A. Zorich, 2008) Let S be a flat surface corresponding

to a meromorphic quadratic differential q with at most simple poles. A collection

γ1, . . . , γn of saddle connections on S is rigid if and only if all saddle
connections γ1, . . . , γn are ĥomologous.

Theorem (H. Masur, A. Zorich, 2008) Two saddle connections γ1, γ2 on S
are ĥomologous if and only if they have no interior intersections and one of the

connected components of the complement S \ (γ1 ∪ γ2) has trivial linear

holonomy. Moreover, if such a component exists, it is unique.



Homework assignment problems
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Picture created by Jian JiangQuestions.

• To what stratum belongs this square-tiled surface?

• Find all realizabe separatrix diagrams for this stratum.

• To which of the found diagrams corresponds the red foliation of the
square-tiled surface from the picture?



Which stratum?
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Picture created by Jian Jiang

Question.

• To what stratum belongs this square-tiled surface?

Answer.

There are two strata in genus two: H(2) and H(1, 1). The surface in the

picture has two symmetric conical singularities, so the ambient stratum is

H(1, 1).

One can also honestly count the cone angle at the visible conical singularity.

The neighborhood is an octagon composed of four horizontal (blue) sides of the

squares and of four vertical (red) sides. Thus, the cone angle is 4π, which

excludes stratum H(2).



Admissible diagrams in H(1, 1)
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Question.

• Find all realizabe (admissible) separatrix diagrams for this stratum.

We have two zeroes. Each has two outgoing and two incoming horizontal

separatrices.
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Question.

• Find all realizabe (admissible) separatrix diagrams for this stratum.

Let us start with critical graphs (separatrix diagram) having no closed loops. Let

us draw one saddle connection and discuss how we can complete it.
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Question.

• Find all realizabe (admissible) separatrix diagrams for this stratum.

On the left there is a single outgoing separatrix and on the right — only one

incoming. We are forced to join them.
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1-cylinder diagram in H(1, 1)
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This is the first of the two ways of joining the remaining two pairs of separatrix rays.

Mandatory Exercise. Check all of the following: The corresponding ribbon

graph has two boundary components. Each component follows once each of

the four saddle connection, so that the length of each of the two saddle

connections is ℓ1 + ℓ2 + ℓ3 + ℓ4. There are no realtions on ℓi: this diagram is
realizable for any choice of the lengths ℓi, where i = 1, . . . , 4.



2-cylinder diagram in H(1, 1)

10 / 29

This is the other way to join the remaining two pairs of separatrix rays. Note

that every maximal horizontal cylinder has one top and one boundary

component. Thus, for every pair of boundary components to which we glue a
cylinder, one component has the critical graph on the left and the other

component has it on the right.



2-cylinder diagram in H(1, 1)
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It gives us two ways in which we can organize the four boundary components

into two pairs.



2-cylinder diagram in H(1, 1)
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ℓ1

ℓ2

ℓ3

ℓ4

If we choose this way, we see that we have to impose the following conditions
on the lengths of saddle connections: ℓ2 = ℓ4. Then the red cylinder has the

waist curve of length ℓ1 + ℓ2 and the blue cylinder has the waist curve of length

ℓ3 + ℓ2. We get an admissible diagram.



2-cylinder diagram in H(1, 1)
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Exercise. Verify that the second way to arrange boundary components into

pairs (as in the picture) is symmetric to the first one under interchanging the

labels of the two singularities.



Diagrams with two loops in H(1, 1)
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Now we have to consider diagrams having at least one loop. It is clear, that if a

diagram has a loop and a saddle connection joining the two zeroes, it has to

have another loop at the other zero.



Diagrams with two loops in H(1, 1)
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There are two choices for the second loop. This is the first possible choice.
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There are two choices for the second loop. This is the first possible choice.

This is the unique way to join the remaining pair of separatrix rays.



Diagrams with two loops in H(1, 1)
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The boundary component of the resulting ribbon graph is longer than any other

component for any choice of lengths of saddle connections (edges of the

graph). This diagram is not realizable.



Diagrams with two loops in H(1, 1)
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Recall that we are considering diagrams having at least one loop and a saddle
connection joining the two zeroes.



Diagrams with two loops in H(1, 1)
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The second choice for the second loop as in the picture.
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The second choice for the second loop as in the picture. This is the unique way

to join the remaining pair of separatrix rays.



Diagrams with two loops in H(1, 1)
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This is one of the four boundary components of the resulting ribbon graph.



Diagrams with two loops in H(1, 1)
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This is one more boundary component.



Diagrams with two loops in H(1, 1)
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It is really easy to check that the only choice is to paste a cylinder to the pair of

red boundary components. This implies a condition that the lengths of the

corresponding loops are the same.
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It is really easy to check that the only choice is to paste a cylinder to the pair of

red boundary components. This implies a condition that the lengths of the

corresponding loops are the same. This automatically implies that the lengths
of the blue boundary components are the same. We get one more realizable

diagram with two cylinders.



Diagrams with four loops in H(1, 1)
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In the remaining case all the edges are loops.



Diagrams with four loops in H(1, 1)
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In the remaining case all the edges are loops. There is, clearly only one way to
arrange boundary components into pairs. We get the last admissible

(realizable) diagram in the stratum H(1, 1).



Admissible diagrams in H(1, 1)
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These four separatrix diagrams are admissible (realizable) diagrams in the

stratum H(1, 1) and there are no other ones (up to interchange of the labelling

of the two zeroes).



Which diagram?
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Picture created by Jian JiangQuestion.

• To which of the found diagrams corresponds the red foliation of the

square-tiled surface from the picture?

Answer.

There are, clearly, three distinct cylinders. There only one 3-cylinder diagram in

the stratum H(1, 1):



Approach of Eskin and Okounkov
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Encoding square-tiled surfaces by pairs of permutations
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1 2

3

Consider a square-tiled surface S ∈ H(m1, . . . ,mn). Enumerate the squares

in some way. For the square number j let πh(j) be the number of its neighbor
to the right and let πv(j) be the number of the square atop the square number

j.

Example. Our favorite L-shaped surface tiled with 3 squares can be encoded

by the following two permutations decomposed into cycles:

πh = (1, 2)(3) πv = (1, 3)(2)

Note that there is no canonical enumeration of squares, so the permutations

πh, πv are defined up to a simultaneous conjugation.



Almost commuting permutations
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Consider the commutator π′ = πhπvπ
−1

h π−1
v The resulting permutation

corresponds to the following path: we start from a square number j, then we

move one step right, one step up, one step left, one step down, and we arrive to

π′(j).

When the total number of squares is large, then for majority of the squares such
path brings us back to the initial square; for such squares j we get π′(j) = j.

For squares having a singularity at the top right corner the path
right-up-left-down does not bring us back to the initial square. The commutator

π′ = πhπvπ
−1

h π−1
v decomposes into a product of n cycles of lengths

(m1 + 1), . . . , (mn + 1) completed with huge number of cycles of length 1.

For example, for any square-tiled surface in H(2) the commutator is a single

3-cycle completed with plenty of fixed points.



Encoding square-tiled surfaces by pairs of permutations
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1 2

3 4

5 6 7 8 9

10 11 12 13 14

πh = (1, 2) (3, 4) (5, 6, 7, 8, 9) (10, 11, 12, 13, 14)

πv = (1, 14, 9, 13, 8, 12, 7, 11, 6, 4, 2, 10, 5, 3)

πhπvπ
−1

h π−1

v = (2, 9, 6) (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

The commutator πhπvπ
−1

h π−1
v decomposes into a single cycle of length 3

completed with cycles of length 1. The cycle of length 3 corresponds to 3
squares, for which the top right corner is located at the conical singularity.

There are 4 times more corners of squares at the same singularity, so the cone

angle is 3 · 2π, where 3 is the length of the cycle. Our surface lives in H(2).
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1 2

3 4

5 6 7 8 9

10 11 12 13 14

πh = (1, 2) (3, 4) (5, 6, 7, 8, 9) (10, 11, 12, 13, 14)

πv = (1, 14, 9, 13, 8, 12, 7, 11, 6, 4, 2, 10, 5, 3)

πhπvπ
−1

h π−1

v = (2, 9, 6) (1) (3) (4) (5) (7) (8) (10) (11) (12) (13) (14)

We conclude that a square-tiled surface S ∈ H(m1, . . . ,mn) tiled with N
squares can be encoded by a pair of permutations πh, πr (defined up to a

common conjugation) such that the commutator πhπvπ
−1

h π−1
v decomposes

into given number n of cycles of given lengths (m1 + 1), . . . , (mn + 1) and

πh, πr do not have common nontrivial invariant subsets in 1, 2, . . . , N .



Count by A. Eskin, A. Okounkov, R. Pandharipande
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Using a version of the description of square-tiled surfaces by pairs of almost

commuting permutations and using results of S. Bloch and A. Okounkov,

A. Eskin, A. Okounkov and R. Pandharipande proved the following assertion.

Theorem (A. Eskin, A. Okounkov, R. Pandharipande) For every connected

component of every stratum the generating function

∞∑

N=1

qN
∑

N-square-tiled
surfaces S

1

|Aut(S)|

is a quasimodular form: it is a polynomial in Eisenstein series G2(q), G4(q),
G6(q) of controllable complexity.

Corollary (A. Eskin, A. Okounkov, R. Pandharipande) The Masur–Veech

volume VolHcomp
1

(m1, . . . ,mn) of every connected component of every
stratum is a rational multiple of π2g, where 2g − 2 = m1 + · · ·+mn.
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Equidistribution and Non-correlation Theorems
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Theorem. The asymptotic proportion pk(L) of square-tiled surfaces tiled with

tiny ε× ε-squares and having exactly k maximal horizontal cylinders among all

such square-tiled surfaces living inside an open set B ⊂ L in a stratum L of

Abelian or quadratic differentials does not depend on B.

Let ck(L) be the contribution of horizontally k-cylinder square-tiled surfaces
(pillowcase covers) to the Masur–Veech volume of the stratum L, so that

c1(L) + c2(L) + · · · = VolL, and pk(L) = ck(L)/Vol(L). Let

ck,j(L) be the contribution of horizontally k-cylinder and vertically j-cylinder ones.

Theorem. There is no correlation between statistics of the number of

horizontal and vertical maximal cylinders:

ck(L)

Vol(L)
=

ckj(L)

cj(L)
.

This formula is an asymptotic formula! Proof: Moore ergodicity theorem.
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Experimental evaluation of volumes
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The Equidistribution Theorem allows to compute approximate values of

volumes experimentally. Choose some ball B (or some box) in the stratum.

Consider a sufficiently small grid in it and collect statistics of frequency p1(B)
of 1-cylinder square-tiled surfaces (pillow-case covers) in our grid in B.

Now compute the absolute contribution c1(H) of all 1-cylinder square-tiled

surfaces to VolH1; it is easier than for k-cylinder ones with k > 2. By the
Equdistribution Theorem, the volume of the ambient stratum is VolH1 =

c1
p1

.

The statistics p1(H) can be, actually, collected using interval exchanges, which

simplifies the experiment. Approximate values of volumes were extremely

useful in debugging numerous normalization factors in rigorous answers in the
implementation by E. Goujard of the method of Eskin–Okounkov.
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ℓ8 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7

ℓ4 ℓ3 ℓ2 ℓ5 ℓ8 ℓ7 ℓ6 ℓ1

ℓ9 ℓ91 2 3 4 5 6 7 8

πh = (1, 2, 3, 4, 5, 6, 7, 8)

πv = (1, 5) (2, 8, 6, 4) (3) (7)

πhπvπ
−1

h π−1

v = (1, 7) (2, 4) (3, 5) (6, 8)

We see 4 cycles of length 2 which corresponds to H(1, 1, 1, 1).

Note that by construction, the permutation πh of a square-tiled surface
composed from a single band of squares is a long cycle πh = (1, . . . , N).
Thus, for any πv, the permutation σ = πvπ

−1

h π−1
v is also a long cycle. For any

pair of long cycles σ, πh there are exactly N solutions πv of the equation

σ = πvπ
−1

h π−1
v (if πv is a solution, πv(πh)

k, where k = 0, 1, . . . , N − 1, is

also a solution).



Frobenius formula
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N−cycle) · (N−cycle) = product of cycles of lengths m1+1, . . . ,mn+1,

completed with product of cycles of lengths 1.

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

Theorem. The absolute contribution c1(H(m1, . . . ,mn)) of 1-cylinder

square-tiled surfaces to the Masur–Veech volume VolH(m1, . . . ,mn) equals

c1 =
2

(d− 1)!
·
∏

k

1

(k + 1)µk
·
d−2∑

j=0

j! (n− 1− j)!χj(ν) .

Here d = dimH(m1, . . . ,mn); ν ∈ Sn is any permutation with decomposition

into cycles of lengths (m1 + 1), . . . , (mn + 1); µi is the number of zeroes of

order i, i.e. the multiplicity of the entry i in the multiset {m1, . . . ,mn}.
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The count of 1-cylinder N -square-tiled surfaces in the stratum H(m1, . . . ,mn)
is reduced to the count of solutions of the following equation for permutations:

(N−cycle) · (N−cycle) = product of cycles of lengths m1+1, . . . ,mn+1,

completed with product of cycles of lengths 1.

Frobenius formula expresses this number in terms of characters of the exterior

powers of the standard representation Stn of the symmetric group Sn:

χj(g) := tr(g, πj) πj := ∧j(Stn) (0 ≤ j ≤ n− 1) .

For permutations ν representing the principal and the minimal strata the

characters χj(ν) admit easier computation which leads to the following

formulae:

c1(H(12g−2)) =
1

4g − 2
·

4

22g−2
, c1(H(2g − 2)) =

1

2g
·

4

2g − 1
.



Contribution of 1-cylinder diagrams.
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Theorem. The contribution c1 of 1-cylinder square-tiled surfcaes to the volume

VolH1(m1, . . . ,mn) of any nohyperelliptic stratum of Abelian differentials satisfies

ζ(d)

d+ 1
·

4

(m1 + 1) . . . (mn + 1)
≤ c1 ≤

ζ(d)

d− 10

29

·
4

(m1 + 1) . . . (mn + 1)
,

where d = dimC H(m1, . . . ,mn).
(Here we used a result of Zagier.)

Theorem (analog of the Prime Number Theorem). The relative contribution

of 1-cylinder square-tiled surfaces to the volume of the stratum is of the order

1/(dimension of the stratum) when g ≫ 1:

d ·
c1(H(m1, . . . ,mn))

Vol(H1(m1, . . . ,mn))
→ 1 as g → +∞ ,

where convergence is uniform for all strata in genus g.

The result uses the large genus volume asymptotics conjecture by Eskin–Zorich

and independently proved by Chen–Möller–Sauvaget–Zagier and Aggarwal.
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29

·
4

(m1 + 1) . . . (mn + 1)
,

where d = dimC H(m1, . . . ,mn).
(Here we used a result of Zagier.)

Theorem (analog of the Prime Number Theorem). The relative contribution

of 1-cylinder square-tiled surfaces to the volume of the stratum is of the order

1/(dimension of the stratum) when g ≫ 1:

d ·
c1(H(m1, . . . ,mn))

Vol(H1(m1, . . . ,mn))
→ 1 as g → +∞ ,

where convergence is uniform for all strata in genus g.

The result uses the large genus volume asymptotics conjecture by Eskin–Zorich

and independently proved by Chen–Möller–Sauvaget–Zagier and Aggarwal.
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