
Fast Algorithm and Electromagnetic Field Behavior of 3D
Photonic Crystals

Tiexiang Li

Southeast University
Nanjing Center for Applied Mathematics

joint work with Wen-Wei Lin, Xing-Long Lyu, Jia-Wei Lin, Tung-Ming Huang, Xin Liang, Heng Tian

2024 Current Developments in Mathematics and Physics

TXLI SEU & NCAM FAME 1 / 43



Contents

1 Maxwell Eigenvalue Problems in 3D Photonic Crystals

2 Fast Eigensolver for Maxwell Eigenvalue Problems
Representations of MEP in Oblique Coordinate Systems
Discretized MEP with Null-space Free Technique

3 Electromagnetic Field Behavior of PhCs with Chiral Media

4 Conclusions

TXLI SEU & NCAM FAME 2 / 43



Photonic Crystals -Periodic lattice composed of dielectric material
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Background

Maxwell Equations

Maxwell’s equations for electromagnetic waves:

∇× E = ıωB, ∇× H = −ıωD, ∇ · B = 0, ∇ · D = 0.

Dielectric material: D = εE , B = µH
Complex media: D = εE + ξH , B = µH + ζE

where

E : electric field, H : magnetic field

D: electric displacement field, B: magnetic induction field

ε: permittivity, µ: permeability

ξ, ζ: magnetoelectric parameters (complex media)
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Background

3D Maxwell Eigenvalue Problems

Maxwell eigenvalue problems for 3D photonic crystals (MEPs):

∇× E = ıωB, ∇× H = −ıωD, ∇ · B = 0, ∇ · D = 0.

Dielectric material: D = εE , B = µH

99K ∇× µ−1∇× E = ω2εE , ∇ · (εE ) = 0;

Complex media: D = εE + ξH , B = µH + ζE[
−∇× 0
0 ∇×

] [
E
H

]
= ıω

[
ζ µ
ε ξ

] [
E
H

]
, ∇ · B = 0, ∇ · D = 0.
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Background

Photonic Band Structure

Photonic Bandgap: The frequency range where no electromagnetic eigenmode exists

Band Structure: A sequence of MEPs → finding several smallest positive eigenvalues
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Background

MEPs for Dielectric Material

Consider Maxwell’s equations for 3D PhC:

∇× E(r) = −ıωB(r), ∇× H(r) = ıωD(r), ∇ · D(r) = 0, ∇ · B(r) = 0.

In combination with the linear constitutive relations

D(r) = ε(r) · E(r), B(r) = µ(r) · H(r),

we obtain the MEPs:[
−∇× 0
0 ∇×

] [
E
H

]
= ıω

[
0 µ
ε 0

] [
E
H

]
, ∇ · B = 0, ∇ · D = 0.

The permittivity and permeability tensors ε and µ are 3D periodic functions1

ε(r + aℓ) = ε(r), µ(r + aℓ) = µ(r), ℓ = 1, 2, 3.

1For isotropic PhCs, µ = 1 and ε is just a scalar function; for anisotropic PhCs, µ and ε are 3× 3 Hermitian positive
definite (HPD) tensors.
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Background

Quasi-Periodic Boundary Conditions

Bloch’s Theorem: On a given crystal lattice, eigenfields E as well as H ,D and B satisfy the
quasi-periodic conditions

F (r + aℓ) = eı2πk·aℓF (r), ℓ = 1, 2, 3,

where F = E , H , D, B, k is Bloch wave vector in the first Brillouin zone B, a1, a2, a3 are the lattice

translation vectors.

(a) FCC physical cell (b) Primitive cell Ω (c) First Brillouin zone B

Figure: Illustration of the 3D quasi-periodic BCs
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Background

Lattice Translation Vectors [a1, a2, a3]

There are 14 Bravais lattices, and they belong to 7 lattice systems.
Each lattice has its associated lattice vectors.
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Background

Governing Equations for 3D PhCs

Goal: Develop a uniform framework for anisotropic 3D PhCs with various Bravais lattices to find several the
smallest positive eigenvalues ω and the corresponding eigenfields E and H of MEPs[

−∇× 0
0 ∇×

] [
E
H

]
= ıω

[
0 µ
ε 0

] [
E
H

]
, ∇ · (εE) = 0, ∇ · (µD) = 0, (1)

with quasi-periodic conditions (QQQ BCs)

D(r + aℓ) = eı2πk·aℓD(r),E(r + aℓ) = eı2πk·aℓE(r), ℓ = 1, 2, 3.

Develop the Fast Algorithm for Maxwell Equations, FAME, with GPU accelerator to propose a
high-performance computing package.
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FAME Representations of MEP in Oblique Coordinate Systems

Oblique Coordinate Systems

Given Bravais lattice vectors [a1, a2, a3].

Define reciprocal lattice vectors {aℓ}3ℓ=1 such that

ai · aj = δji ≡
{

1, i = j
0, i ̸= j

i , j = 1, 2, 3.

{aℓ}3ℓ=1: the covariant basis, and {aℓ}3ℓ=1: the contravariant basis.

(a) FCC with lattice vectors {aℓ}3ℓ=1. (b) Lattice and reciprocal lattice bases.
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FAME Representations of MEP in Oblique Coordinate Systems

Any position vector r and wave vector k can be written as

r = r1a1 + r2a2 + r3a3, k = k1a
1 + k2a

2 + k3a
3,

where r ℓ = r · aℓ and kℓ = k · aℓ, ℓ = 1, 2, 3.

The volume of primitive cell Ω satisfies

|Ω| = a1 · (a2 × a3).

The gradient operator ∇ and curl operator ∇× can be represented as

∇× F = ai × (
∂(F · aj)

∂r i
aj) =

1

|Ω|

3∑
ℓ,i,j=1

ϵℓij
∂(F · aj)

∂r i
aℓ,

∇ · F =
3∑

ℓ=1

∂(F · aℓ)
∂r ℓ

,

where F = E , H, D, B. ϵ: Levi-Civita symbol, ϵℓij = 1((ℓ, i , j) are even permutation); −1((ℓ, i , j) are odd
permutation); 0(ℓ, i and j have two same indices).
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of ∇× and ∇· in oblique coordinates

In oblique coordinate system {aℓ}3ℓ=1, Maxwell’s equations have the forms

1

|Ω|

3∑
i,j=1

ϵℓij
∂Ej

∂r i
= ıωBℓ,

1

|Ω|

3∑
i,j=1

ϵℓij
∂Hj

∂r i
= −ıωDℓ,

3∑
ℓ=1

∂Dℓ

∂r ℓ
=

3∑
ℓ=1

∂Bℓ

∂r ℓ
= 0, ℓ = 1, 2, 3,

where the components of D and B on {aℓ}3ℓ=1 as well as, E and H on {aℓ}3ℓ=1 are given by

D =
3∑

ℓ=1

(D · aℓ)aℓ =
3∑

ℓ=1

Dℓaℓ, B =
3∑

ℓ=1

Bℓaℓ,

E =
3∑

ℓ=1

(E · aℓ)aℓ =
3∑

ℓ=1

Eℓa
ℓ, H =

3∑
ℓ=1

Hℓa
ℓ.
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of constitutive relations

Write A = [a1, a2, a3] and A−1 = [a1, a2, a3]⊤, for the constitutive relations

E(r) = ε−1(r)D(r), H(r) = µ−1(r)B(r),

we have the matrix-vector formE1

E2

E3

 = A⊤E(r) = A⊤ε−1(r)A · A−1D(r) =

[ε−1
cov]11 [ε−1

cov]12 [ε−1
cov]13

[ε−1
cov]21 [ε−1

cov]22 [ε−1
cov]23

[ε−1
cov]31 [ε−1

cov]32 [ε−1
cov]33

D1

D2

D3

 ,

H1

H2

H3

 =

[µ−1
cov]11 [µ−1

cov]12 [µ−1
cov]13

[µ−1
cov]21 [µ−1

cov]22 [µ−1
cov]23

[µ−1
cov]31 [µ−1

cov]32 [µ−1
cov]33

B1

B2

B3

 ,

where
[ε−1cov]pq(r) = ap ·ε−1(r)·aq, [µ−1cov]pq(r) = ap ·µ−1(r)·aq, p, q = 1, 2, 3.

ε−1 and µ−1, hence [ε−1cov] and [µ−1cov], are 3-by-3 HPD matrices.
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of boundary conditions

For quasi-periodic boundary conditions

E (r + aℓ) = eı2πk·aℓE (r), H(r + aℓ) = eı2πk·aℓH(r),

they are particularly simple as

Eq(r
1+δ1ℓ ,r

2+δ2ℓ ,r
3+δ3ℓ ) = exp(ı2πk·aℓ)Eq(r

1,r2,r3), q = 1, 2, 3.

The same goes for H .
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FAME Representations of MEP in Oblique Coordinate Systems

Yee’s scheme in oblique coordinates

i ∈ N1 := {0, 1, . . . , n1 − 1}, j ∈ N2 := {0, 1, . . . , n2 − 1}, k ∈ N3 := {0, 1, . . . , n3 − 1}.

Figure: Setting up of E and B, H and D by Yee’s scheme in oblique coordinates.

Sampling points of {Dℓ}3ℓ=1 and {Eℓ}3ℓ=1 are the same,

Sampling points of {Bℓ}3ℓ=1 and {Hℓ}3ℓ=1 are the same.
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FAME Discretized MEP with Null-space Free Technique

FD Discretization of ∇× and ∇· with QQQ BCs

Combining with Bloch conditions, the first-order central finite difference (FD) discretization of all the partial derivatives
can be formulated as:

Matrix-vector form of ∂Eq/∂rℓ, q, ℓ = 1, 2, 3, q ̸= ℓ,

∂Eq/∂r
1 =⇒ C1eq ≡ n1(In3 ⊗ In2 ⊗ Kn1 (k · a1)− In)eq , q = 2, 3,

∂Eq/∂r
2 =⇒ C2eq ≡ n2(In3 ⊗ Kn2 (k · a2)⊗ In1 − In)eq , q = 1, 3,

∂Eq/∂r
3 =⇒ C3eq ≡ n3(Kn3 (k · a3)⊗ In2 ⊗ In1 − In)eq , q = 1, 2,

where n = n1n2n3, eq := vec({Eq(i , j , k)}i∈N1,j∈N2,k∈N3
), q = 1, 2, 3,

Km(θ) :=

[
0 Im−1

eı2πθ 0

]
∈ Cm×m, θ ∈ R, m ∈ N = {n1, n2, n3}.

Km(θ) is unitary with the elegant decomposition

Km(θ) = exp(ı2πθ/m)Wm(θ)
∗F∗

mWm(1)FmWm(θ),

with unitary Wm(θ) = diag(exp(ı2πθ[0 :m − 1]/m)), and Fm is the discrete Fourier transform matrix (DFT) .

Similarly ∂Hq/∂r1 ⇒ −C∗
1 hq , ∂Hq/∂r2 ⇒ −C∗

2 hq , ∂Hq/∂r3 ⇒ −C∗
3 hq .
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FAME Discretized MEP with Null-space Free Technique

Then the discretizations for
−∇× E = ıωB, ∇× H = ıωD

can be obtained as:

−ıωb = Ce, ıωd = C∗h with C :=
1

|Ω|

[
0 −C3 C2

C3 0 −C1

−C2 C1 0

]
,

satisfying

CℓT = T (Λℓ − In) nℓ, C∗
ℓ T = T (Λ∗

ℓ − In) nℓ, ℓ = 1, 2, 3

Λ1 = In3 ⊗ In2 ⊗
(
ξ1Wn1

(1)
)
, Λ2 = In3 ⊗

(
ξ2Wn2

(1)
)
⊗ In1 , Λ3 =

(
ξ3Wn3

(1)
)
⊗ In2 ⊗ In1 ,

T =
(
Wn3

(k·a3)⊗Wn2
(k·a2)⊗Wn1

(k·a1)
)(

F∗
n3
⊗F∗

n2
⊗F∗

n1

)
, ξℓ = exp (ı2πk·aℓ/nℓ) .

{Cp,C
∗
p }3p=1 is a set of commutative normal matrices with K∗

m(θ)Km(θ) = Im.

Tq = (Wn3
(k · a3)⊗Wn2

(k · a2)⊗Wn1
(k · a1))(Fn3

⊗ Fn2
⊗ Fn1

)q←− 3D FFT

T∗p = (F∗
n3
⊗ F∗

n2
⊗ F∗

n1
)(W ∗

n3
(k · a3)⊗W ∗

n2
(k · a2)⊗W ∗

n1
(k · a1))p←− 3D IFFT
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FAME Discretized MEP with Null-space Free Technique

CℓT = T (Λℓ − In) nℓ, C∗
ℓ T = T (Λ∗

ℓ − In) nℓ, ℓ = 1, 2, 3

CNc = 0, Nc = [C⊤
1 ,C⊤

2 ,C⊤
3 ].

C has a singular value decomposition (SVD)

C = Pdiag(Λ1/2
q ,Λ1/2

q , 0)Q∗ = PrΣrQ
∗
r , Σr = diag(Λ1/2

q ,Λ1/2
q )

with Λq = Λ∗
1Λ1 + Λ∗

2Λ2 + Λ∗
3Λ3, and

Q =
[
Qr |Q0

]
≡ (I3 ⊗ T )

[
Π1 Π2 |Π0

]
≡ (I3 ⊗ T )

 \ \ \
\ \ \
\ \ \

 ,

P =
[
Pr |P0

]
= (I3 ⊗ T )

[
−Π̄2 Π̄1 | Π̄0

]
,

����*
Qr = (I3 ⊗ T )

\ \
\ \
\ \



where Qr ,Pr ∈ C3n×2n are unitary and Πi,j ∈ Cn×n are diagonal.

⋆ C has the special structure which can easily be treated with the 3D FFT and 3D IFFT to accelerate the
numerical simulation.
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FAME Discretized MEP with Null-space Free Technique

Discretization of constitutive relations

For the constitutive relations in oblique coordinate system[
E1,E2,E3

]⊤
= [ε−1

cov]
[
D1,D2,D3

]⊤
,
[
H1,H2,H3

]⊤
= [µ−1

cov]
[
B1,B2,B3

]⊤
,

with
[ε−1

cov]pq(r) = ap ·ε−1(r)·aq , [µ−1
cov]pq(r) = ap ·µ−1(r)·aq , p, q = 1, 2, 3,

we denote

[ε−1
cov]pq,ijk =[ε−1

cov]pq(i/n1, j/n2, k/n3) , [µ−1
cov]pq,ijk =[µ−1

cov]pq
(
î/n1, ĵ/n2, k̂/n3

)
, i ∈ N1, j ∈ N2, k ∈ N3, p, q = 1, 2, 3.

Define an interpolation operator on E and H, as

E1,ijk ≈
1

2
([ε−1

cov]11,ijk + [ε−1
cov]11,(i+1)jk )D

1
ijk+

1

2

(
[ε−1

cov]12,ijk
1

2

(
D2

ijk+D2
i(j−1)k

)
+[ε−1

cov]12,(i+1)jk
1

2

(
D2

(i+1)jk+D2
(i+1)(j−1)k

))
+

1

2

(
[ε−1

cov]13,ijk
1

2

(
D3

ijk+D3
ij(k−1)

)
+[ε−1

cov]13,(i+1)jk
1

2

(
D3

(i+1)jk+D3
(i+1)j(k−1)

))
.
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FAME Discretized MEP with Null-space Free Technique

Discretization of constitutive relations

Then for the constitutive relations E(r) = ε−1(r)D(r), H(r) = µ−1(r)B(r), we have the discretized form

e=Nintd=((K+ I3n) (N −Nd ) (K∗ + I3n) + 2KNdK∗ + 2Nd ) d/4,

h=Mintb=((K∗+ I3n) (M−Md ) (K+ I3n)+2K∗MdK+ 2Md ) b/4,

where

K = (In + C1/n1)⊕ (In + C2/n2)⊕ (In + C3/n3) ,

Nd = diag (N11)⊕ diag (N22)⊕ diag (N33) ,Md = diag (M11)⊕ diag (M22)⊕ diag (M33) ,

N =

diag (N11) diag (N12) diag (N13)
diag (N21) diag (N22) diag (N23)
diag (N31) diag (N32) diag (N33)

 , M =

diag (M11) diag (M12) diag (M13)
diag (M21) diag (M22) diag (M23)
diag (M31) diag (M32) diag (M33)

 ,

Npq = vec([ε−1
cov ]pq(i, j, k)), Mpq = vec([µ−1

cov ]pq(i, j, k)), i ∈ N1, j ∈ N2, k ∈ N3, p, q = 1, 2, 3.

Both Nint and Mint are Hermite positive definite (HPD).

Both KNdK∗ and K∗MdK are diagonal matrices.
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FAME Discretized MEP with Null-space Free Technique

Discretized MEP with QQQ BCs ⇔ A Null-Space Free GEP

Utilizing above discretization scheme, MEP can be discretized into a GEP[
−∇× 0
0 ∇×

] [
E
H

]
= ıω

[
0 µ
ε 0

] [
E
H

]
=⇒

[
−C 0
0 C∗

] [
e
h

]
= ıω

[
0 M−1

int

N−1
int 0

] [
e
h

]
.

With the SVD of C = PrΣrQ
∗
r , the above GEP can be transformed into a null-space free GEP:[

−Σr 0
0 Σr

] [
er

hr

]
= ıω

[
0 M−1

int,r

N−1
int,r 0

] [
er

hr

]
,

or by replacing er with (−ıω−1)N−1
int,rΣrh

r to obtain

Arh
r ≡ ΣrNint,rΣrh

r = ω2M−1
int,rh

r ,

where Nint,r := P∗
r N−1

int Pr and Mint,r := Q∗
r M−1

int Qr .

Mint ≡ I and Nint ≻ 0 (i.e. the permeability µ ≡ 1 and the permittivity ε(r) ≻ 0 for all r ∈ Ω).
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FAME Discretized MEP with Null-space Free Technique

MEPs for 3D PhC with Quasi-periodic BCs

For GEP from 3D anisotropic photonic crystal with QQQ BCs[
−C 0
0 C∗

] [
e
h

]
= ıω

[
0 M−1

int
N−1

int 0

] [
e
h

]
⇒ Arh

r ≡ ΣrNint,rΣrh
r = ω2M−1

int,rh
r with hr ∈ C2Ns+Nc

Numerical Challenges:

✓ C: singular, non-Hermitian;

✓ There exist zero eigenvalues with approximately one third of the number of coefficient matrices;

✓ Need a few smallest positive eigenvalues;

✓ The matrix dimension is very Large! Especially for supercell structure.

⋆ Goal: compute several smallest positive eigenvalues of Arx = λx.
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FAME Discretized MEP with Null-space Free Technique

Eigensolver for MEPs with Quasi-periodic BCs

For SEP from 3D anisotropic photonic crystal[
−C 0
0 C∗

] [
e
h

]
= ıω

[
0 M−1

int

N−1
int 0

] [
e
h

]
⇒ Arh

r ≡ ΣrNint,rΣrh
r = ω2M−1

int,rh
r with hr ∈ C2Ns+Nc .

null-space free + FFT:

✓ Ar : nonsingular, Hermitian positive definite L99 null-space free transformation

✓ There exist no zero eigenvalues in Ar L99 null-space free GEP

✓ Need a few of smallest positive eigenvalues L99 inverse Lanczos + CG!

✓ Dimension is very Large! L99 3D FFT, Highly suitable for parallel processing!
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Electromagnetic Field Behavior of PhCs with Chiral Media

MEPs for Chiral Media

Let relative permeability µ := 1. Consider the electromagnetic fields in bi-isotropic chiral media[
0 −ı∇×

ı∇× 0

] [
H
E

]
= ω

[
µ ζ
ξ ε

] [
H
E

]
. (3)

where ζ and ξ satisfying

ε(x) =

{
εi , x ∈ material,

εo , otherwise,
ζ(x) =

{
−ıγ, x ∈ material,

0, otherwise,
ξ(x) =

{
ıγ, x ∈ material,

0, otherwise,

and εi > 0, εo > 0, γ ≥ 0.

Goal: Find the smallest positive eigenvalues and their corresponding eigenvectors.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Discretization of MEPs

By Yee’s scheme, we obtain a generalized eigenvalue problem (GEP)

[
0 −ı ∇×

ı∇× 0

] [
H
E

]
= ω

[
µ ζ
ξ ε

] [
H
E

]
=⇒

[
0 −ı C

ıC∗ 0

] [
h
e

]
= ω

[
µd ζd
ξd εd

] [
h
e

]
≡ Ax = ωB(γ)x

where h, e ∈ C3n.

µd , εd , ξd , ζd ∈ C3n×3n are diagonal with the following structures

µd = I3n, εd = ε0I
(0) + εi I

(i),

ζd = −ıγI (i), ξd = ıγI (i),

where εi , ε0 are the permittivities inside and outside the medium, γ > 0 is the chirality, I (i) ∈ R3n×3n denotes the

diagonal matrix with the j-th diagonal entry being 1 for the corresponding j-th discrete point inside the material and

zero otherwise, I (0) = I3n − I (i).

⋆ Goal: compute several smallest positive eigenvalues of Ax = ωB(γ)x.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Study the Electromagnetic Field Behavior Theoretically
With the assumption µ = 1 we can rewrite[

I3n 0

ξdµ
−1
d I3n

]
↠ (A,B(γ)) ≡

([
0 −ıC
ıC∗ 0

]
,

[
µd ζd
ξd εd

])
↞

[
I3n µ−1

d ζd
0 I3n

]
as ([

0 −ıC
ıC∗ −γ[I (i)C + C∗I (i)]

]
,

[
I3n 0

0 ε0I
(0) + (εi − γ2)I(i)

])
≡ (Aγ ,Bγ)

??
we call γ∗ ≡ √

εi as critical chiralityAγ is Hermitian, singular, indefinite

• when γ < γ∗, (Aγ ,Bγ) with Bγ > 0 being positive definite has all real eigenvalues

• when γ > γ∗, Bγ is indefinite and (Aγ ,Bγ) has complex eigenvalues

• when γ = γ∗, B∗
γ = diag(I3n, ε0I

(0)) is semi-positive definite

⇒ (Aγ ,Bγ) has infinite eigenvalues ω = ∞

⇒ we can prove that there exist a lot of ω = ∞ coming from 2× 2 Jordan blocks!
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• when γ > γ∗, Bγ is indefinite and (Aγ ,Bγ) has complex eigenvalues

• when γ = γ∗, we can prove that (Aγ ,Bγ) has 2× 2 Jordan blocks at ω = ∞

Furthermore, we can prove that:

For γ+ = γ∗ + η as η → 0+, Aγ+ − ωBγ+ has at least one complex conjugate eigenvalue pairs ω±(γ
+) with

large imaginary part.

At γ = γ+, the electric field E(x) ≈ 0 when x is outside the material.

Increasing γ+ → γ0 → γ1 ⇒ ω±(γ) ∈ C → ω±(γ
1) ∈ R. Bifurcation happened at γ0.

ω+(γ
1) > 0 is the new smallest positive real eigenvalues.

In this case, at γ = γ1, the electric field E(x) ≈ 0 when x is outside the material.
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(a) Scenario of bifurcation
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(b) Eigencurve-structure vs. γ

Figure: Conjugate eigenvalue pair and eigencurve-structure with γ∗ =
√
13

TXLI SEU & NCAM FAME 32 / 43



Electromagnetic Field Behavior of PhCs with Chiral Media

Eigensolver for MEP for Chiral PhCs

By Yee’s scheme, we obtain a GEP for bi-isotropic chiral media (3)[
0 −ı C

ıC∗ 0

] [
h
e

]
= ω

[
µd ζd
ξd εd

] [
h
e

]
≡ Ax = ωB(γ)x with x ∈ C6n

⋆ Goal: compute several smallest positive eigenvalues of Ax = λBx.

Numerical Challenges:

✓ A: complex Hermitian, singular, maybe indefinite

✓ B: complex Hermitian, block sparse, maybe indefinite (depending on the magnetoelectric parameters)

✓ There exist 2n zero eigenvalues

✓ Need a few of smallest positive eigenvalues

✓ Dimension 3n or 6n is very Large! (≥ 5, 000, 000)
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Null Space Free Method (6n → 4n)

Transform GEP into a null-space free standard eigenvalue problem with γ ̸= γ∗

Ax = ωBx - Âryr = ω

(
ı

[
0 Σ−1

r

−Σ−1
r 0

])
yr ≡ ωB̂ryr ,

and [
h⊤ e⊤

]⊤
= ı

[
−I3n −ζd
ξd εd

]−1

diag (Pr ,Qr ) yr ,

where

Âr := Âr (γ) ≡ diag(P∗
r ,Q

∗
r )

[
ζd −I3n
I3n 0

] [
Φ−1 0
0 I3n

] [
ξd I3n
−I3n 0

]
diag(Pr ,Qr )

with Φ := Φ(γ) ≡ εd − ξdζd being Hermitian.

• when γ < γ∗, Âr is Hermitian and positive definite,

then (Âr , B̂r ) has all eigenvalues being positive real

}
inverse Lanczos method

(FAST!!!)

• when γ > γ∗, Âr is Hermitian and indefinite,

then (Âr , B̂r ) is indefinite and has complex eigenvalues

}
shift-and-inverse Arnoldi method

B̂r is Hermitian and indefinite
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Chiral media (3D)

Consider the FCC lattice with chiral media. The radius r of the spheres and the minor axis length s of the spheroids are
r = 0.08a and s = 0.06a with a being the lattice constant. Take the relative permittivity εi = 13 and then
γ∗ =

√
13 ≈ 3.606.

(a) physical cell (b) working cell

Figure: Illustration of the 3D physical cell and Brillouin zone of the FCC lattice

The mesh numbers n1 = n2 = n3 = 96 and the matrix dimension of Âr is 3,538,944. Furthermore, the stopping
tolerance is set to be 10−12.
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Anticrossing eigencurves

The influence of the resonance modes for band structures.
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(a) γ = 3.607
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(b) γ = 3.61302
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(d) Zoom-in at γ =
3.61302

Figure: Band structures.
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Condensations of eigenvectors with γ = 1 < γ∗

In the following, we study the relationship between the condensation and the parameter γ.

(a) (λ1, e1) (b) (λ3, e3)

Figure: The absolute values of the first and third eigenmodes for e1 and e3 with γ = 1.
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Condensations of eigenvectors with γ > γ∗

The absolute values of e2 corresponding to the first smallest positive eigenvalue (resonance mode) with k = 6
14
L are

shown.

In order to measure the neighborhood, we define new radius of the sphere and the connecting spheroid to be ρr and
ρs, respectively.
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Figure: The absolute values of e2, me, mh for the resonance mode.

TXLI SEU & NCAM FAME 38 / 43



Electromagnetic Field Behavior of PhCs with Chiral Media

Condensations of eigenvectors

According to the mesh indices belonging to the material or not, we separate e and h as (ei , eo) and (hi , ho), where the

index i/o denotes inside/outside the material. Since e∗e+ h∗h = 1, we use the ratios
e∗o eo
e∗i ei

and
h∗o ho
h∗i hi

to determine the

condensations of the electric and magnetic fields. The results in Figure 3.6 show that these ratios are decreasing as γ
increases.
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Figure: Ratios e∗o eo
e∗i ei

and
h∗o ho
h∗i hi

for the six smallest positive eigenvalues vs. various γ.
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Fast Algorithm for Maxwell’s Equations
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Conclusions

Conclusions

1. For the Maxwell eigenvalue problems arising in 3D anisotropic photonic crystals, we want to calculate some
smallest positive eigenvalues.

2. The explicit SVD of the discrete curl matrix C arising from Yee’s FD in the oblique coordinate systems is
constructed.

3. A null-space free technique to deflate the null space of the large-scale GEP and then an eigensolver called
“FAME” based on 3D FFT are developed.

4. The special eigenvalue behaviors and condensation of eigenvectors of the 3D chiral photonic crystals are
found theoretically and numerically.

5. In the furthermore work, these techniques can be generalized and applied to phononic crystals, photonic
quasi-crystals, and to discover more physical phenomena ......

Thanks for your attention!
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