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Photonic Crystals -Periodic lattice composed of dielectric material

Peacock feathers Opal Hexagonal FCC

periodic in periodic in periodic in
one direction two directions three directions

TXLI SEU & NCAM FAME 3/43



Background

Contents

@ Maxwell Eigenvalue Problems in 3D Photonic Crystals

TXLI SEU & NCAM FAME 4/43



Background

Maxwell Equations

Maxwell’s equations for electromagnetic waves:

V x E =wB, V x H=—wD, V-B=0, V-D=0.

o Dielectric material: D =cE, B =uH

o Complex media: D=ce+¢H, B=uH -+ CE
where

@ E: electric field, H: magnetic field

@ D: electric displacement field, B: magnetic induction field
@ & permittivity, u: permeability
°

&, ¢: magnetoelectric parameters (complex media)
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Background

3D Maxwell Eigenvalue Problems

Maxwell eigenvalue problems for 3D photonic crystals (MEPs):

V x E =wB, VxH=—-wD, V-B=0, V-D=0.

o Dielectric material: D=cE, B=yuH
-V x 'V x E = w?E, V- (cE) =0;
o Complex media: D=ceE+¢H, B=uH-+CE
T L) [ e oo

0 Vx| |H ¢l |H
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Background

Photonic Band Structure

Band Structure

x

w L r L u w L K U
wave vectors k
Photonic Bandgap: The frequency range where no electromagnetic eigenmode exists
Band Structure: A sequence of MEPs — finding several smallest positive eigenvalu%s
o
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Background

MEPs for Dielectric Material

Consider Maxwell’s equations for 3D PhC:

V x E(r) = —wB(r), V x H(r) = wD(r), V-D(r) =0, V- B(r)=0.

@ In combination with the linear constitutive relations

D(r) = e(r) - E(r),  B(r) = u(r) - H(r),

we obtain the MEPs:

~Vx OoT1[E]_ [o u] [E 3 B
o Q[ =wlt 4[] vos=o vio-o

@ The permittivity and permeability tensors € and p are 3D periodic functions®

e(r+ay)=¢e(r), p(r+a)=npn(), ¢=1,2,3.

IFor isotropic PhCs, . =1 and € is just a scalar function; for anisotropic PhCs, v and & are 3 x 3 Hermitian positive
definite (HPD) tensors.
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Background

Quasi-Periodic Boundary Conditions
@ Bloch’s Theorem: On a given crystal lattice, eigenfields E as well as H, D and B satisfy the
quasi-periodic conditions
F(r+ag) = e?™F(r), (=1,2,3,

where F = E, H, D, B, k is Bloch wave vector in the first Brillouin zone B, a1, a2, as are the lattice
translation vectors.

(a) FCC physical cell (b) Primitive cell Q (c) First Brillouin zone B

Figure: lllustration of the 3D quasi-periodic BCs
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Background
Lattice Translation Vectors [a;, ay, a3]

@ There are 14 Bravais lattices, and they belong to 7 lattice systems.
@ Each lattice has its associated lattice vectors.
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Background

Governing Equations for 3D PhCs

Goal: Develop a uniform framework for anisotropic 3D PhCs with various Bravais lattices to find several the
smallest positive eigenvalues w and the corresponding eigenfields E and H of MEPs

(5 ol ) ] v vome

with quasi-periodic conditions (QQQ BCs)

D(r 4 a;) = ™™ D(r), E(r +a;) = ™™ E(r), £=1,2,3.

@ Develop the Fast Algorithm for Maxwell Equations, FAME, with GPU accelerator to propose a
high-performance computing package.
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FAME

Contents
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FAME Representations of MEP in Oblique Coordinate Systems

Oblique Coordinate Systems

@ Given Bravais lattice vectors [a1, az, as3].
@ Define reciprocal lattice vectors {a*}3_; such that

1,

a =4 =
aj-a 6,_{071.

=j ..
L ij=1,23.
YR

@ {a;}3_;: the covariant basis, and {a’}3_;: the contravariant basis.

(a) FCC with lattice vectors {as}5_;. (b) Lattice and reciprocal lattice bases.
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FAME Representations of MEP in Oblique Coordinate Systems

@ Any position vector r and wave vector k can be written as
r=rla; + rla, + r3a3, = kja' + k,a® + k3a37

where rf =r-a’and ky, =k -a,, £ =1,2,3.

@ The volume of primitive cell Q satisfies
|Q| =ai - (a2 X a3).

@ The gradient operator V and curl operator VX can be represented as
OF -a) ;v _ 1 >

8("— . aj)
ort )= 1q

ori £

vii
€ U)

2| 0,i,j=1

where F = E, H, D, B. e Levi-Civita symbol, /4 = 1((¢, i,) are even permutation); —1((¢, i, ) are odd
permutation); 0(¢, i and j have two same indices).
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of Vx and V- in oblique coordinates

In oblique coordinate system {32}2:1, Maxwell's equations have the forms

3 3 ¢ 3 ¢
1 0ij OE; ¢ 1 ¢ij OHj ¢ oD OB
—_— - = B —_— J - = — D —_— = —_— = :12
2 on mwBL g 2 g = mwD ) e =) Ga =0 (=123,

ij=1 ij=1 =1

where the components of D and B on {a,};_; as well as, E and H on {a’}?_, are given by

3 3 3
D=>) (D-a")a,=> D‘a;, B=Y) Ba,
=1 =1

=1
3 3 3
E=) (E-a)a’ =) Fa', H=) Ha"
=1 =1 =1
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of constitutive relations

Write A = [a1,as,a3] and A™! = [a',a% a®]", for the constitutive relations
E(r) =€ '(r)D(r), H(r)=p ' (nB(r),

we have the matrix-vector form

Bl . eyl lecaliz  [ecovhis] D
E| =ATE(r) =ATe ' (NA-ATID(r) = |[ecovlor  [ecovloe  [Ecovlos Di s
Es leaotlst  [ecvls2  [ecovlssl LD

Hi [H&i/]ll [u&;\ilhz [uc}ll,ha B!
Hy| = [H&lel [chX]zz [HEJ¥]23 Bi ,
Hs [meovlsr  [meovlz2  [meovlzsl LB

where

-1

[Ecovlpa(r) = ap-s_l(r)-aq, [IJ’c_o}/]Pq(r) = ap-u_l(r)-aq, p,g=1,2,3.

@ e tand u 7, hence [el] and o], are 3-by-3 HPD matrices.

cov
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FAME Representations of MEP in Oblique Coordinate Systems

Representations of boundary conditions

For quasi-periodic boundary conditions
E(r+ay) = 2™ E(r), H(r+ay) = ™ H(r),
they are particularly simple as
Eq(r1+5},r2+5§,r3+63) = exp(zZﬂ'k~ag)Eq(r1,r2,r3), g=1,23.

The same goes for H.
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FAME Representations of MEP in Oblique Coordinate Systems

Yee's scheme in oblique coordinates

ieNy:={0,1,...,nm —1}, jeN:={0,1,...,my— 1}, keN3:={0,1,...,n3 —1}.

Figure: Setting up of E and B, H and D by Yee's scheme in oblique coordinates.

@ Sampling points of {D?}3_, and {E,}3_, are the same,

@ Sampling points of {B*}3_, and {H,}3_, are the same.
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FAME Discretized MEP with Null-space Free Technique
FD Discretization of Vx and V- with QQQ BCs

Combining with Bloch conditions, the first-order central finite difference (FD) discretization of all the partial derivatives
can be formulated as:

@ Matrix-vector form of BEq/aré7 q,0=1,2,3,g #¢,
OE,/ort = Creq = n1(Iny @ In, @ Kny(k-a1) — In)eq, q = 2,3,
OEg)0r? = Coeg = na(lny @ Kny (k- a2) @ Iny — In)eq, g =1,3,
OE,/0r} = Geq = m3(Kny(k-a3) @ Iny @ In, — In)eq, 9 =1,2,

where n = nimn3, eq 1= vec({Eq(i,j, k) }ien; jen, ken; ), 4 = 1,2,3,

I
Kin(8) := |:el?07r0 "o 1} €C™M, 0 R, meN={n,n,ns}.

@ Km(0) is unitary with the elegant decomposition
Km(0) = exp(:270/ m) W (0)* Fy Wi (1) Fin W (),
with unitary Wi, (6) = diag(exp(:276[0: m — 1]/m)), and F, is the discrete Fourier transform matrix (DFT) .

o Similarly 9H/Or' = —Cihg, OHg/0r* = —Cihg, OHg/dr® = —Cihq.

TXLI SEU & NCAM FAME 19/43



FAME Discretized MEP with Null-space Free Technique
Then the discretizations for

—VXE=wB, VXxH=wD
can be obtained as:

1 0 -G G
—wb =Ce, wod =C*h with C:= —| G 0 -G/,
|Q| ) G 0

@ satisfying

CT=T(MA—h)n, GT=TN—h)n, (=123]

A=y @ Iy @ (E1Way (1)) 5 Ao = Iy ® (EWiy(1)) ® hyys As = (E3 Wiy (1) @ Iy @ Iy,
T = (Way(k-a3) @ Wa(k-a2) @ Wyy(k-a1)) (Fr, @ Fr, @ Fry ), €0 = exp (12nk-ac /ne)
o {Cp, Cp*}f,:l is a set of commutative normal matrices with K,(0)Kn(0) = In.
Tq=(Wyy(k-a3) @ Way(k-az) ® Wi (k- a1))(Fry ® Fay ® Foy)q <— 3D FFT
T"p = (Fy, @ Fly ® F ) (Wi (k- as) ® W) (k- a2) @ W, (k- a1))p «— 3D IFFT

TXLI SEU & NCAM FAME
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FAME Discretized MEP with Null-space Free Technique

‘CZT:T(AZ_In)nﬁv C;T: T(/\;f—l,,)mg,le,Z,B
@ CN. =0, N. =[], G, G

@ C has a singular value decomposition (SVD)

C = Pdiag(Ay?,AY?,0)Q" = P.X,QF, X, =diag(Ay? AY?)

with Ag = AjA; + A3A; + AjAs, and

Qr=(R®T)

A
\ \]
\

—
—
—

P = [Pr|Po] = (I3 X T) [ —|=|2 |=|1 | |=|0 ] s
where @, P, € C*™*?" are unitary and IM;; € C™*" are diagonal.

% C has the special structure which can easily be treated with the 3D FFT and 3D IFFT to accelerate the
numerical simulation.
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FAME Discretized MEP with Null-space Free Technique

Discretization of constitutive relations

For the constitutive relations in oblique coordinate system

[Ei, B2, B3] " = [ecl] [DY, D%, D3], [Hi, Ha, Hs] | = [ugl] [BY, B2, B3] T,
with

[Ec_oxll]pq(") = ap-s_l(r)-aq, [l"c_ml/]pq(") = ap-u_l(r)-aq, p,q=1,23,
we denote

[s;\l/]Pq,’jk:[Ec;)\l/]PQ(i/nlvj/nL k/n3) ) [“’C_O\l/]PqJJk = [#’(:_0\1/]1-717 (f/nl,f/HQ, i;/n3> ) i€ vaj € N21 k € N?,, P, q= 11 27 3.

Define an interpolation operator on E and H, as

1. _ _
Ev ik ~ S ([coulin, ik + (el (1)) Djpet

1/ _ 1 _ 1

5 ([€C0\1/]12,Uk E(ng + D?(jfl)k) + [€CO\1/]12,(i+1)jk E(D(Q,'H)jk + D(2,-+1)(j,1)k>> +
1/ _ 1 _ 1

Py ([sco\I/]B,ijk §<D3'k + Dg(k—n) + [Ecoxl/]13,(i+1)jk E(D(3i+1)jk + D(3i+1)j(k—1))) :
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FAME Discretized MEP with Null-space Free Technique

Discretization of constitutive relations

Then for the constitutive relations E(r) = e '(r)D(r), H(r) = u~*(r)B(r), we have the discretized form
e=Nintd=((K + In) (N — Ng) (K* + hp) + 2KNGK* 4+ 2Ny) d/4,
h=Mincb=((K* + hn) (M — My) (K + lsn) +2KMyK + 2M4) b/4,

where

K=(+C/m)® (+ C/m)® (I + C/ns),
Ny = diag (Nu) @ diag (sz) @ diag (N33) s My = diag(Mn) @ diag (Mzz) @ diag (M33) s
diag (N1;) diag (N12)  diag (Ny3) diag (My;)  diag (Mio)  diag (Mi3)
N = |diag (N21) diag (Nx) diag(Naxs)|, M = [diag(M2) diag (M) diag(Ma3)| ,
diag (N3;) diag (N32) diag (Ns3) diag (Ms;) diag (M3;)  diag (Ms3)

NPq = Vec([Ec_O\}]Pq(iwja k))a MPq = Vec([/»“c_m}]l?q("#ju k))v i € Np, J €Ny, k€N, P, 9= 1,2,3.

@ Both Ny and M, are Hermite positive definite (HPD).
@ Both KANZK* and KM yK are diagonal matrices.
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FAME Discretized MEP with Null-space Free Technique

Discretized MEP with QQQ BCs < A Null-Space Free GEP

Utilizing above discretization scheme, MEP can be discretized into a GEP

Rl A 1 H R R N R e

@ With the SVD of C = P,X,Q;, the above GEP can be transformed into a null-space free GEP:

=X, 0] (e 0 ML Te
0 I |lh| TNt 0| |n]”

int,r

or by replacing " with (—w ™)V, 1 ¥,h" to obtain

int,r

AR =X N, Zoh" = WM Lh,

int,r

where Nty := PN 1P, and Mine, := QAM 1 Q,.

int int

@ Min: =1 and Nine = 0 (i.e. the permeability u = 1 and the permittivity £(r) > 0 for all r € Q).

TXLI SEU & NCAM FAME
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FAME Discretized MEP with Null-space Free Technique

MEPs for 3D PhC with Quasi-periodic BCs
For GEP from 3D anisotropic photonic crystal with QQQ BCs
—C 0 |e| _ 0 Mi:tl e
o TN o Jh
= A" =T N T h" = w? ML h" with h" € C2Ns+he
0 ]

n zero eigfenvalues k (<<n) wanted eigenvalues other eigenvalues

@ Numerical Challenges:

V' C: singular, non-Hermitian;
V" There exist zero eigenvalues with approximately one third of the number of coefficient matrices;
v" Need a few smallest positive eigenvalues;
V" The matrix dimension is very Large! Especially for supercell structure.
% Goal: compute several smallest positive eigenvalues of A,x = \x.
FAME 25 /43
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FAME Discretized MEP with Null-space Free Technique
Eigensolver for MEPs with Quasi-periodic BCs
For SEP from 3D anisotropic photonic crystal

PR N

= Ah =T N, Zh" = P ML b with b € C2the,
0 o0

n zero eigenvalues k (<<n) wanted eigenvalues other eigenvalues

@ null-space free + FFT:

V' A,: nonsingular, Hermitian positive definite «-- null-space free transformation
v There exist no zero eigenvalues in A, «-- null-space free GEP

V" Need a few of smallest positive eigenvalues «-- inverse Lanczos + CG!

v" Dimension is very Large! «-- 3D FFT, Highly suitable for parallel processing!

TXLI SEU & NCAM FAME
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Electromagnetic Field Behavior of PhCs with Chiral Media

Contents

© Electromagnetic Field Behavior of PhCs with Chiral Media
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Electromagnetic Field Behavior of PhCs with Chiral Media

MEPs for Chiral Media

Let relative permeability © := 1. Consider the electromagnetic fields in bi-isotropic chiral media

0 — Vx| |H| _ w C||H
WWx 0 E| = %“le ¢||E|"
where ¢ and ¢ satisfying

€, X € material, —17y, X € material, 17y, X € material,
g(x) = . Cx) = . £(x) = )
€0, Otherwise, 0, otherwise, 0, otherwise,

and g; > 0,60 > 0,7 > 0.

@ Goal: Find the smallest positive eigenvalues and their corresponding eigenvectors.

TXLI SEU & NCAM FAME
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Electromagnetic Field Behavior of PhCs with Chiral Media

Discretization of MEPs

@ By Yee's scheme, we obtain a generalized eigenvalue problem (GEP)

[ ) B P [

1V X 0 E & el |E
0 —|C hi _ lma Ca| [ Z 4y —
o el @ [ = mem st

where h,e € C3".
@ 11y,e4,E4,Cq € C3%3M are diagonal with the following structures
pd = l3n, g = eol® + 10,

(y = 7z'yl(’-), &g = z'yl(’-)7

where ¢;, g¢ are the permittivities inside and outside the medium, v > 0 is the chirality, /() € R37X37 denotes the
diagonal matrix with the j-th diagonal entry being 1 for the corresponding j-th discrete point inside the material and

zero otherwise, [0 = 3, — /().

% Goal: compute several smallest positive eigenvalues of Ax = wB(7)x.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Study the Electromagnetic Field Behavior Theoretically
With the assumption p = 1 we can rewrite

ha O _ ([0 =] [pa Ca b pg'c
et ) mBen=(le o[ 5] [

0 —1C f3n 0
LC* 77[/(f)c+c*/(f>]]’ o | @+ (-0 |

'

| A is Hermitian, singular, indefinite |

as

(A"m B’Y)

| we call v* = ,/¢; as critical chirality |

e when v < ~*, (A, By) with B, > 0 being positive definite has all real eigenvalues
e when v > ~*, B, is indefinite and (A, By) has complex eigenvalues
e when v =+, B} = diag(lsn, £0/@) is semi-positive definite
= (A, By) has infinite eigenvalues w = oo
= we can prove that there exist a lot of w = co coming from 2 x 2 Jordan blocks!

TXLI SEU & NCAM FAME
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Electromagnetic Field Behavior of PhCs with Chiral Media

e when v > ~*, B, is indefinite and (A,, B,) has complex eigenvalues

e when v = ~*, we can prove that (A,, By) has 2 x 2 Jordan blocks at w = co

Furthermore, we can prove that:

@ Forym =~*4+nasn— 0", A+ —wB,+ has at least one complex conjugate eigenvalue pairs w+ (") with
large imaginary part.

@ Aty =1, the electric field E(x) ~ 0 when x is outside the material.
@ Increasing 77 — 7% = 4! = wi(y) € C — wx(y') € R. Bifurcation happened at 4°.

@ wi(y1) > 0 is the new smallest positive real eigenvalues.

@ In this case, at v = ', the electric field E(x) =~ 0 when x is outside the material.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Y
B(v) () =-1)
6 T Py Py 3 > v
a(y)(p=1) a7 () i
5 |
|
\_ ¥ |
\ 0 N Ak
@ T
a(n) 3 :
0, =—-1 23
ar(ys)(p=1) d ar(s)(n ) Bl 1o
B() L
|
|
|
! |
|
(a) Scenario of bifurcation (b) Eigencurve-structure vs. v

Figure: Conjugate eigenvalue pair and eigencurve-structure with v* = /13
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Electromagnetic Field Behavior of PhCs with Chiral Media

Eigensolver for MEP for Chiral PhCs

@ By Yee's scheme, we obtain a GEP for bi-isotropic chiral media (3)

[ 0 — } H :w{ﬂd Cd] [h] = Ax = wB(7)x with x € C*"

1C” 0 e (a €4 |e

% Goal: compute several smallest positive eigenvalues of Ax = \Bx.
@ Numerical Challenges:
V' A: complex Hermitian, singular, maybe indefinite
v B: complex Hermitian, block sparse, maybe indefinite (depending on the magnetoelectric parameters)
v There exist 2n zero eigenvalues
v" Need a few of smallest positive eigenvalues
v" Dimension 3n or 6n is very Large! (> 5,000, 000)
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Electromagnetic Field Behavior of PhCs with Chiral Media

Null Space Free Method (6n — 4n)

Transform GEP into a null-space free standard eigenvalue problem with v # ~*

~ 0 Y1 ~
Ax = wBx —_— Ayr=w <z {_271 0 ]) yr = wBy,,

|§, is Hermitian and indefinitel

and .
" e = [_'3” ‘C"} diag (Pr, Q) ¥,
&d €d
where .
T A — 1; * * Cd _I3n (O 0 gd I3n .
Ari= Ady) = diag(Pr, Q7) {hn 0 0 bl |-t o] F28(PQ)

with ® := ®(v) = g — £4(q being Hermitian.

—~ 1
o A, is Hermitian and positive definite, | | (FASTII)
inverse Lanczos method

then (ﬁ,, §,) has all eigenvalues being positive real

. Ar is Hermitian and indefinite, } shift-and-inverse Arnoldi method

then (A;, By) is indefinite and has complex eigenvalues
TXLI SEU & NCAM FAME 34/43



Electromagnetic Field Behavior of PhCs with Chiral Media

Chiral media (3D)

Consider the FCC lattice with chiral media. The radius r of the spheres and the minor axis length s of the spheroids are

r = 0.08a and s = 0.06a with a being the lattice constant. Take the relative permittivity ¢; = 13 and then
~v* = 1/13 =~ 3.606.

(@) physical cell (b) working cel

Figure: Illustration of the 3D physical cell and Brillouin zone of the FCC lattice

@ The mesh numbers n; = ny = n3 = 96 and the matrix dimension of Z, is 3,5638,944. Furthermore, the stopping
tolerance is set to be 10712,
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Electromagnetic Field Behavior of PhCs with Chiral Media

Anticrossing eigencurves

The influence of the resonance modes for band structures.

X U U a X W K

(b) v = 3.61302

(c) v = 3.6138 (d) Zoom-in at 4 =
3.61302

Figure: Band structures.
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Electromagnetic Field Behavior of PhCs with Chiral Media
Condensations of eigenvectors with v =1 < ~*

In the following, we study the relationship between the condensation and the parameter ~.

B,
02

ot

x 0 o6 y

(@) (M1,e1) (b) (X3, e3)

Figure: The absolute values of the first and third eigenmodes for e; and e3 with v = 1.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Condensations of eigenvectors with v > ~*

@ The absolute values of e, corresponding to the first smallest positive eigenvalue (resonance mode) with k = I%L are

shown.

@ In order to measure the neighborhood, we define new radius of the sphere and the connecting spheroid to be pr and

ps, respectively.

w00 107
1410

12}
05 o |
2 1p
3
o1 S
2
Sos
03 3
~ 2
&
02 Sos
]
£
o1 E
i~ S S04
, ! " £ vpaco000000eqgqy
o0 § I B 02 o
ot 02 Pepo0
02 f 04 o 3922900000000
= os v 1 15 2 25 3
»
(2) lez (b) me and my,

Figure: The absolute values of e, me, my, for the resonance mode.
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Electromagnetic Field Behavior of PhCs with Chiral Media

Condensations of eigenvectors

According to the mesh indices belonging to the material or not, we separate e and h as (e;,e,) and (h;, h,), where the

. . . . . . . * hXh .

index i/o denotes inside/outside the material. Since e*e + h*h = 1, we use the ratios Zi?_ and 1§32 to determine the
i € i i

condensations of the electric and magnetic fields. The results in Figure 3.6 show that these ratios are decreasing as ~y

increases.

e’e, h*h,
(a) e(f"e- (b) h(.z‘h-
1 1 1 !
. ) . e:eo h:ho . o . .
Figure: Ratios Fo and %= for the six smallest positive eigenvalues vs. various 7.
i ei i

i i
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Fast Algorithm for Maxwell’s Equations

http:// www.njcam.org.cn/fame/index.phtml

47 A NT I

Fast Algoritlfirrirs for- Maxwell Fguztions

Home Background BandStructure Publications Downloads Team

Fast Algorithms for Maxwell's Equations (FAME) is a package for solving three-
dimensional source-free
Maxwell's equations with periodical structures

High-performance Implementations

I @
o, ] [
Null-space Free Eigensolver
Ultrafast Parallelizations on Multi-GPU User Friendly GUI in MATLAB

Downloads

FAME on GPU
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FEEREEFT | UbuntuhRIFEAN3.0BFX, JERXRTFAMERBRGEFEEH L !

dEXIR=

WRFEE
#HPTERERT

dEXX5t (UbuntuhR) *EEFHZEv3.0!

“A1EF3.0"
UbuntuhRFAMEIGE4HEBEE L !

54bEXR5t (WindowshR) v3.048LE, Ubuntu hRE _ELLFAMERRME, {4 B R R AR B ROk
ZEHBARBAAEFZHEBURARIRITHAR.

O
EIRFAME:
=M TFRAETFEMITHABEEE

e F RERHETER RN RBAEHIIMAZ RO SR, A EBEEEMERTR&ENE
REEM, ERSAMNTWRERND NESE R RN E SR, WEI T+ —HERABHOFR
HE.
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Conclusions

Conclusions

1. For the Maxwell eigenvalue problems arising in 3D anisotropic photonic crystals, we want to calculate some
smallest positive eigenvalues.

2. The explicit SVD of the discrete curl matrix C arising from Yee's FD in the oblique coordinate systems is
constructed.

3. A null-space free technique to deflate the null space of the large-scale GEP and then an eigensolver called
“FAME" based on 3D FFT are developed.

4. The special eigenvalue behaviors and condensation of eigenvectors of the 3D chiral photonic crystals are
found theoretically and numerically.

5. In the furthermore work, these techniques can be generalized and applied to phononic crystals, photonic
quasi-crystals, and to discover more physical phenomena ......

Thanks for your attention!
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