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1. KPZ equation

» The KPZ (Kardar-Parisi-Zhang, 1986) equation describes
the motion of growing interface with random fluctuation.
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(Takeuchi-Sano-Sasamoto-Spohn)

» (Right Fig) h = h(t,x) € R denotes height of interface
measured from the x-axis at time t and position x.

» Video of combustion experiment by Laser shot:
srep00034-s2.mov, srep00034-s3.mov (Takeuchi-Sano)



KPZ is an equation for height function h(t, x):
O:h = 102h + L(0.h)? + W(t,x), x€T (or R). (1)

where T =R/Z = [0,1).

We consider in 1D on a whole line R or on a finite
interval T under periodic boundary condition.

The coefficients % are not important, since we can change
them under some scaling.

W(t, x) is a space-time Gaussian white noise with mean 0
and covariance structure:

EIW(t0)W(s.y)] = 8(t — )o(x — ). (2)

This means that the noise is independent if (¢, x) is
different, since “Gaussian property+0-correlation” means
independence.

However, W(t,x) is realized only as a generalized
function (distribution).



2. Heuristic derivation of KPZ equation

» We give a derivation of KPZ equation following the
original KPZ paper 1986.

» Consider a motion of interface (curve) growing upward
with normal velocity:

V=kr+A,

where & is the (signed) curvature and A > 0 is a constant.




» The interface dynamics can be described by an equation
for its height function h(t, x) assuming that the interface
in R? is represented as a graph:

v = {(x,y);y = h(t,x),x € R} C R?

» The dynamics “V = k + A" can be rewritten into the
following nonlinear PDE for h(t, x)

Och = ﬁ + A(1 + (Dch)?)V/? (3)




» Indeed, (3) can be derived as follows.

» First, note that the normal vector N to the curve

7 =1{(xy)iy = h(x),x € R} C R?
at the point (x,y) is given by

"= (1+ (8X;(x))2)1/2 <_8X1h(X))

- 1 N
pf) nL <8Xh(x)> (= tangent vector to ) and | n | = 1.

» The interface growth to the direction nis equivalent to
the growth of the height function h to the vertical
direction m, where

= ((1 + (axf(v)(x)f)”)

pf) We can check (;7 - F) 1n

(]



» The curvature of the curve v, = {y = h(x)} at (x,y) is
given by
zh(x)
(1 + (0Xh(x))2)
» Summarizing these observations, the interface growing
equation V = k + A can be written as

32

92h
ath = {(1 + (8Xh)2)3/2

+A} (1 + (9.h)*)V2?,

i.e. we obtain (3):

oh— 5 A(L + (0,h)2)1/2
1+ (Oyh)? * ’

for the height function h = h(t, x).



> If we consider h := h — At instead of h by subtracting the
constant growth factor At and write h for h again, we
obtain that
92h
1+ (0xh)?
~ 92h + 2(d.h)?,

Oeh = + A{(1+ (9:h)))? -1}

Och= 02h + 5(0xh)?,

at least if |0, h| is small, i.e., if we take the leading effect
of this equation.

» Note that u := Oxh is a solution of (viscous) Burgers
equation:

Opu = Dou+ 50,07,



» Kardar-Parisi-Zhang equation (KPZ, 1986) is obtained by
taking the fluctuation effect due to space-time
independent noise W(t, x) into account:

0:h = 392h + 1(9.h)? + W(t, x).

» Here h = h(t,x,w) and W(t,x) = W(t,x,w) is the
space-time Gaussian white noise defined on a certain
probability space (€2, F, P) with mean 0 and covariance
structure

E[W(t,x)W(s,y)] = 6(x — y)d(t —s).

> We took A =1 and put 1 in front of §2h.

Only leading terms are taken in the equation.

» This simplification is essential in view of the scaling
property or universality related to the KPZ equation.

v

Mathematically, everything is built on a probability space (2, F, P), i.e.
Q is a set, F is a o-field of Q, P is a measure on (Q, F) s.t. P(Q2) = 1.



3. Reason for KPZ equation to attract a lot of attention

> %—power law (instead of %—Iaw in usual CLT): Fluctuation
of height function at a single point x = O:

h(t7 0) X at + C2t%CTW7

in particular, Var(h(t,0)) = O(t3), as t — oo, i.e. the
fluctuations of A(t,0) are of order t3. Subdiffusive
behavior different from CLT (=diffusive behavior).

» The limit distribution of h(t,0) under scaling is given by
the so-called Tracy-Widom distribution (7w (different
depending on initial distributions). (instead of Gaussian
distribution in CLT)

» KPZ universality class, 1:2:3 scaling, KPZ fixed point

» Integrable Probability



» Singular ill-posed SPDEs:

- Hairer: Regularity structures, KPZ equation, dynamic
P(¢)4-model, Parabolic Anderson model
Gubinelli-Imkeller-Perkowski: Paracontrolled calculus
(harmonic analytic method)

The solution map is continuous in “W?¢ and their
(finitely many) polynomials”.
- Renormalization is required (called subcritical case).

» Microscopic interacting particle systems

- Bertini-Giacomin (1997) was the first to this direction.
- This is one of main purposes of this course.



4. lll-posedness, Renormalization

>
>

>

Nonlinearity and roughness of noise conflict with each other.

W(t,x)e C-% = 5ﬂoC_%_5 a.s. if x € T? or RY.
>

(Construction will be discussed later — Lecture No 2).
C*: (Holder-)Besov space with exponent « € R.
The linear SPDE (d = 1): (Schauder effect)

O:h=302h+ W(t,x), xeT

obtained by dropping the nonlinear term has a solution
1 1 1 1
he Ci—27([0,00) X T) := 5ﬂ0CT5’T5([O, ) x T) as.
>

(This will be discussed later — Lecture No 2).
Therefore, no way to define the nonlinear term (9,h)? in
(1) in a usual sense.

Actually, it requires a renormalization. The following
Renormalized KPZ equation with compensator

dx(x) (= +00) would have a meaning (cf. Cole-Hopf

solution): :
Oeh = 307h + 3{(0xh)* — 6.(x)} + W(t,x).



5. Cole-Hopf solution, Multiplicative linear stochastic heat
equation, Itd's formula

» Recall classical Cole-Hopf (Hopf-Cole) transformation:
Let u be a solution of viscous Burgers equation:

Ol = %qu + %&(uZ + 0, ((t, x),

with smooth ¢. Then, Z(t,x) := el “(t9)9 solyes
the linear heat equation
0:Z = %G)Z(Z—FZC.

» In fact, x
oZ=7 / Oru(t, y)dy

=Z (30u+ 1P+ ),

while

027 =0 (uZ)=0u-Z +u-0,Z
=ow-Z+u*-Z.

» This leads to the above heat equation for Z.



» Motivated by this and regarding u = O h, consider the
(multiplicative) linear stochastic heat equation (SHE) for
Z=27(t,x,w):

0Z=102Z+ZW(t,x), x€R, (4)

with a multiplicative noise (defined in Itd's sense).

» The solution Z(t) of (4) can be defined in a generalized
functions’ sense or in a mild form (Duhamel’s formula):

Z(t,x) = / p(t,x,¥)Z(0, y)dy+ / / p(t—s,%,¥)Z(5,y)dW(s,y),

where p(t, x,y) = \/%e_(y_xw(”) is the heat kernel.

» (4) in Itd’s sense is well-posed (— see next page)

» SHE (4) defined in Stratonovich sense:
0Z=192Z+Zo W(t,x)

is ill-posed. (— see below)



» These two notions of solutions (in generalized functions
or mild) are equivalent, and Funique solution s.t.
Z(t) € C([0,00),Ctem) a.s., where
Com = {Z € C(R,R):|Z]], < 00" r > 0},
12, = supe=™|Z(x)].
xeR

» (Strong comparison) If Z(0,x) > 0 for "x € R and
Z(0,x) > 0 for °x € R, then Z(t) € C((0,),C,) a.s.,
where C; = C(R, (0,00)).

» Therefore, we can define the Cole-Hopf transformation:

h(t, x) := log Z(t, x). (5)



Heuristic derivation of the KPZ eq (with renormalization factor
dx(x)) from SHE (4) under the Cole-Hopf transformation (5):

» (Finite-dimensional) Itd's formula:
df(Xt) = f,(Xt)dXt + %f/,(Xt)(dXt)2

for example, for X; = B, (dB;)? = dt.
» In infinite-dimensional setting,

dW(t,x)dW(t,y) = 6(x — y)dt (= 0x(y)dt)

» By It6's formula, taking f(z) = log z under the C-H
transformation (5), we have

dh(t,x) = F/(Z(t,x))dZ(t,x) + LF"(Z(t, x))(dZ(t, x))*.

» Note f'(z) = (log z)' = z71, f"(z) = (log 2)" = —z72.
» Note also from SHE (4),

(dZ(t,x))? = (Z(t, x)dW(t, x))? = Z2(t, x)b.(x)dt.



» Therefore, writing 0;h for dhs;x) we obtain

Och = 2710,Z — 127222, (x)
— 7 (l&ﬂz + zw) — 15(x) (by SHE (4))
1771027 + W — 15,(x).

» However, since h = log Z, a simple computation (as we
already saw for u = 0xh) shows

Z7'02Z = 2h + (0h)? (= Owu+ u?).
» This leads to the KPZ eq with renormalization factor:

Och = 102k + 3{(0xh)* — 6.(x)} + W(t,x).  (6)



The function h(t, x) defined by (5) is meaningful and
called the Cole-Hopf solution of the KPZ equation,
although the equation (1) does not make sense.

Problem: To introduce approximations for (6), in
particular, well adapted to finding invariant measures.
(— F-Quastel, Lecture No 3)

Hairer gave a meaning to (6) without bypassing SHE.

[td's formula for Stratonovich integral has no It
correction term (i.e. the term with 7). If SHE defined in
Stratonovich sense were well-posed, we would obtain
well-posed KPZ equation. But, this is not true.



6. KPZ equation from interacting particle systems

» One of our interests is to derive KPZ(-Burgers) equation
from microscopic particle systems.

» Bertini-Giacomin (1997): Derivation of Cole-Hopf
solution of KPZ equation from WASEP (weakly
asymmetric simple exclusion process)

» For WASEP, Cole-Hopf transformation works even at
microscopic level (Gartner).



6.1 WASEP (weakly asymmetric simple exclusion process)

» WASEP (on Z) is a collection of infinite particles on Z.

» Each particle performs simple random walk with jump
rates 1 to the right and 1 + 0 to the left, under the
exclusion rule that at most one particle can occupy each
site, where 6 > 0 is a small parameter (weak asymmetry).

» Configuration space: X = {+1, -1}~

» 0 ={0(x)}xez € X and

+1} { 3 particle at x
o(x) = =

| no particle at x

. e . s
I__-:‘\‘___\_g__ I E— . ___9__;_.____. _._,__|__..|.!FJ_—.|_j:|--



» oY € X denotes a new configuration after exchanging
variables at x and y (i.e., if there is a particle at x and no
particle at y, 0¥ is the configuration after the particle at
x jumps to y. Or a particle at y jumps to x if x is
vacant.)

o(y), ifz=x,
o (z) = o(x), ifz=y,

o(z), otherwise.

» (Infinitesimal) rate of transition o +— o®?*1, when the
whole configuration is o, is given by

C2241(0) = 2lio(z)=1.0(z4+1)=— 13 H(3+0) Lo (2)=—Lo(z+1)=1}-

| |
LI
Fl .

— s

? oz 2



» Generator: For a function f on X,

LF(0) =) coora(0){f(o*"") = f(0)}.
z€Z
» The rate ¢, ,4+1 can be decomposed as follows.
» The rate that a particle makes a jump:
A=1+6(=3+(3+49))
» When a jump occurs,

1
p+ =12 = probability of jump to the right
1
p_ = % probability of jump to the left

Note that p, + p_ =1 (i.e., p+ is a probability), by
normalizing ¢, ,+1 by A.



6.2 Construction of interacting particle systems (in general)

» Particle system is a continuous-time (jump) Markov
process 0, = 0,(w) on a configuration space X’ of
particles.

» Once infinitesimal rate c(o) governing the random motion
of particles is given, one can construct o; as follows.

» [Distributional construction]

» c(o) determines the generator of Markov process L

» We can construct corresponding semigroup et on C(X).

» By Markov property, etl determines finite-dimensional
distributions (joint distributions of Markov process at
finitely many times).

» By Kolmogorov's extension theorem+-regularization of
paths, this determines the distribution of the Markov
process on the path space D([0,o0), X'), which denotes
the Skorohod space allowing jumps of functions.

Liggett, Interacting Particle Systems, Springer, 1985.



» [Pathwise construction]

» Each particle has its own “bell”. Bells are independent
and ring according to the exponential holding time:

P(T>t)=e* >0, A>0.

Since E[T] = %, “large A" means that the bell rings

quickly. We write T 4 exp(A).

» )\ for each particle is determined from infinitesimal rate
c(o). (For WASEP, A =1+ )

» When first bell rings, the corresponding particle makes a
jump to a place chosen by certain probability {p}.
(For WASEP, {p+})

» After this jump, whole system refreshes with all bells,
and repeats the procedure.

» We usually consider infinite particle system, and this
requires careful construction of the system.



6.3 Hydrodynamic limit (LLN)

>

>

WASEP o, = (04(x))xez is constructed by the above
recipe from ¢, ,+1(0) with weak asymmetry 4.

We first study the hydrodynamic limit (HDL) for the
WASEP o, taking 0 = ¢, where ¢ is the ratio of
microscopic/macroscopic spatial sizes.

As we will see, scalings in ¢ are different for HDL/KPZ.

Consider the macroscopic empirical measure of o, defined
by small-mass and space-time-diffusive scaling:

(du) =€) ooae(x)0en(du), u€ER,
XEL
or equivalently, for a test function ¢ € C5°(R),

Xt7 76 E UE 2t

XEZ



Theorem 1

X:(du) ? a(t,u)du  (in prob),
>t
where a(t, u) is a solution of viscous Burgers equation:
O = 20200+ 10,(1 — o).
If « = 0,m, the equation for m is

dem = L12m+ (1 — (8,m)?).

(KPZ type but without noise)

F-Sasada, CMP 299, 2010
F, Lectures on Random Interfaces, SpringerBriefs, 2016, Theorem 2.7
for relation to Vershik curve (introducing boundary).



Heuristic derivation of the limit equation

» To show this theorem, we use Dynkin's formula
(— Lecture No 2):

(Xt, @) = (Xo, ) / 52 (Lo)e—25(x)p(ex)ds+M; ().

» =2 comes from the time change.

» The contribution of the martingale term M: () vanishes
in the limit as € | 0. (In Lecture No 2, we will explain
martingale.)



» For the term with integral, we can compute as

et Z Lo(x)p(ex

= Z ) [{elete+ 1) = olex)} = {(ex) — eletx = 1) }]
DD 1U<x+1>:1,g<x):,1{so(e(x +1)) - o(ex) }

:22 N€X+O())

e 1.2¢ Z Lo(x+1)=1,0(x)=—1 5((,0’(5x) + O(s)).

» Red ¢ was originally §. Other €'s are from the definition
of X;.

» Note that the RHS is now O(1) in ¢, though it still
contains nonlinear microscopic function.

» This is called the gradient property of the model.



From the above computation, the drift term is rewritten
as

(X, " —5ZA o.-2:)¢ (ex) + O(e),

where AX( ) - 210‘(X+1):1,0‘(X):71'

By the assumption of the local equilibrium, we can expect
oo—2¢(+) 2w Va(t,u) asymptotically as ¢ | 0, where v, is the
Bernoulli measure on {4-1}% with mean « € [-1,1].

In particular, v,(0(0) = 1) = 25, 1,(0(0) = —1) = 152
Bernoulli product measures are invariant (and reversible)
measures of the leading SEP of WASEP (or its
symmetrization).

Thus, by assuming local ergodicity, one can replace A, (o)
by its local average with proper a:

E[A]=2 -2 5% = 3(1-a%).

We obtain the HD equation (closed equation) for a(t, u)
Orv = %O/’ + %(1 —a?).



6.4 Equilibrium linear fluctuation (CLT)

» We consider the fluctuation of WASEP with asymmetry
0 = £ (same as HDL) under the global equilibrium v,
around its mean a:

Y (du) \/_Z o-24(x d;x(du)7
XEZ

» Non-equilibrium fluctuation: F-Sasada-Sauer-Xie, SPA
123, 2013.



Theorem 2
Y: — Y. and Y; is a solution of linear SPDE:

8:,Y = 102Y — ad,Y + V1 — a29,W(t,u)

» Heuristically, this SPDE follows by observing

o—a=+cY (since \/E:\% in YY)
Eronser[A] - E[A] = (1 - (o + VEY)) - 21— 0?)
~ —y/eaY (- fluctuation of drift term)

» Noise term is the same as KPZ as we will discuss.



6.5 KPZ limit (Nonlinear fluctuation)

» We consider the fluctuation of WASEP with asymmetry
d = /2 under the global equilibrium U

Ya dU \/—Z O¢ 2t 65x—ca*1/2t(du)7
XEL
» Fluctuation is observed under moving frame with
macroscopic speed ce~1/2 (to cancel diverg. linear term).
» Choose ¢ = a.

Theorem 3

Y — Y: and Y; is a solution of KPZ-Burgers equation:
0,Y =102y — 10,Y? + V1 - a20,W(t, u).

If h; is determined as Y; = O, h;, then h; satisfies the KPZ
equation (more precisely, its Cole-Hopf solution)

O:h = 102h — 1(9,h)? + V1 — a2W(t, u).



» By the similar computation to above, we have
t
(Yo, 0) =(Yo, ) +/ e72 VEY (L yz0).—2s(x)p(ex — ce™/2s)ds
0 X
t
— / CZ (0e—25(x) — )¢ (ex — ce"Y2s)ds + ME(p),
0 X

where M:(p) is a martingale different from that in HDL
(but asymptotically the same as that appears in linear
fluctuation).

» For the martingale M;, under the equilibrium v,

E[M; ()] ~ et(1 = a®) Y~ ¢/ (ex)? ~ (1 = 0®) |/ [ Fa(ay-

(— see Lecture No 2 for quadratic variation of M)
» This means M; — /1 — o20,W(t, u).
> W(t,u)is an integral of W(t, u) in t.



» The first term in the drift is

2. \@Z L zo(x)p(ex — ce ?t)
2. % Z o(x) e (gp”(sx —ce M2ty + O(s))
— 2B VED D A2 (¢ (ex - =720 + 0(e)).

» Red /= = § originally. Other /¢ comes from that in the
definition of Yf.

» The first term is %(Yt, ¢") by noting that > aAy =0.



» The second term (after all € cancel) is still diverging.
But, we can expect by the local ergodicity
(Boltzmann-Gibbs principle= combination of local
averaging due to local ergodicity and Taylor expansion)

A(0) ~ E¥arveviex—ee=1/29 {AX(J)}

(1 — (a+ VEYe(ex — *1/215))2)
(1—a?) — aveYy(ex — ce?t) — Je Vi (ex — ce7H20).

NI NI=

» Thus, one can expect that this term behaves as

I\JII—‘

“2aYi(¢) +5(YE¢)

since > 2(1 — a?)¢’ =0.
» The first term cancels with the second term in the drift
1 .. . .
~ —e2¢cYi(¢’) (originally from moving frame) if we
choose the frame speed ¢ = «, and one would obtain
(Y2, ¢') in the limit.



Therefore, in the limit we would have the KPZ-Burgers
equation

8,Y = 102Y — 10,V + V1 — a20,W(t, u).
Note: For Y, renormalization is unnecessary, since one
would have 0,{0,(u)} = d,{const} = 0.
The above derivation is heuristic.
Bertini-Giacomin relied on microscopic Cole-Hopf

transformation for the proof.
Roughly, consider the process

Ci(x) = exp{ — Y Z oi(y) — )\gt}
y=xo(t)
and show that (; converges to the solution Z; of SHE in
a proper scaling. xo(t) is a properly chosen point defined
by the position of a tagged particle. See F, Lectures on
Random Interfaces, p.56 for this transformation.
> Zio(t) o(y) corresponds to the height process.



6.6 Other models

Derivation of scalar KPZ (-Burgers) equation

» Bertini-Giacomin (as discussed above): Derivation from WASEP
(weakly asymmetric simple exclusion process), Cole-Hopf
transformation (even at microscopic level).

» Goncalves-Jara, Goncalves-Jara-Sethuraman: Derivation from
general WAEP with speed change of gradient type and with
Bernoulli invariant measures, or from WA zero-range process
(of gradient type).

» Method: 2nd order Boltzmann-Gibbs principle, martingale
formulation (called energy solutions).

» Gubinelli-Perkowski: Uniqueness of stationary energy solutions
(satisfying Yaglom reversibility, i.e., - (nonlinear drift term) for time
reversed process).

Derivation of coupled KPZ (-Burgers) equation

» We will discuss later.
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