KPZ limit for interacting particle systems －Introduction－

Tadahisa Funaki（舟木 直久）
Waseda University（早稲田大学）

November 17th＋19th， 2020

Yau Mathematical Sciences Center，Mini－Course，Nov 17－Dec 17， 2020 Lecture No 1

Plan of the course (10 lectures)

1 Introduction
2 Supplementary materials
Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales
3 Invariant measures of KPZ equation (F-Quastel, 2015)
4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino, 2017)
5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
$5.3 n$-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation

Plan of Lecture No 1

Introduction to the course
1 KPZ equation
2 Heuristic derivation of KPZ equation (following the original KPZ paper, 1986)
3 Reason for KPZ equation to attract a lot of attention
4 III-posedness, Renormalization
5 Cole-Hopf solution, Multiplicative linear stochastic heat equation, Itô's formula
6 KPZ equation from interacting particle systems (WASEP)
7 Quick overview of the course

1. KPZ equation

- The KPZ (Kardar-Parisi-Zhang, 1986) equation describes the motion of growing interface with random fluctuation.

- (Right Fig) $h=h(t, x) \in \mathbb{R}$ denotes height of interface measured from the x-axis at time t and position x.
- Video of combustion experiment by Laser shot: srep00034-s2.mov, srep00034-s3.mov (Takeuchi-Sano)
- KPZ is an equation for height function $h(t, x)$:

$$
\begin{equation*}
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\dot{W}(t, x), \quad x \in \mathbb{T}(\text { or } \mathbb{R}) \tag{1}
\end{equation*}
$$

where $\mathbb{T} \equiv \mathbb{R} / \mathbb{Z}=[0,1)$.

- We consider in 1D on a whole line \mathbb{R} or on a finite interval \mathbb{T} under periodic boundary condition.
- The coefficients $\frac{1}{2}$ are not important, since we can change them under some scaling.
- $\dot{W}(t, x)$ is a space-time Gaussian white noise with mean 0 and covariance structure:

$$
\begin{equation*}
E[\dot{W}(t, x) \dot{W}(s, y)]=\delta(t-s) \delta(x-y) \tag{2}
\end{equation*}
$$

- This means that the noise is independent if (t, x) is different, since "Gaussian property+0-correlation" means independence.
- However, $\dot{W}(t, x)$ is realized only as a generalized function (distribution).

2. Heuristic derivation of KPZ equation

- We give a derivation of KPZ equation following the original KPZ paper 1986.
- Consider a motion of interface (curve) growing upward with normal velocity:

$$
V=\kappa+A
$$

where κ is the (signed) curvature and $A>0$ is a constant.

- The interface dynamics can be described by an equation for its height function $h(t, x)$ assuming that the interface in \mathbb{R}^{2} is represented as a graph:

$$
\gamma_{t}=\{(x, y) ; y=h(t, x), x \in \mathbb{R}\} \subset \mathbb{R}^{2}
$$

- The dynamics " $V=\kappa+A$ " can be rewritten into the following nonlinear PDE for $h(t, x)$

$$
\begin{equation*}
\partial_{t} h=\frac{\partial_{x}^{2} h}{1+\left(\partial_{x} h\right)^{2}}+A\left(1+\left(\partial_{x} h\right)^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

- Indeed, (3) can be derived as follows.
- First, note that the normal vector \vec{n} to the curve

$$
\gamma_{h}=\{(x, y) ; y=h(x), x \in \mathbb{R}\} \subset \mathbb{R}^{2}
$$

at the point (x, y) is given by

$$
\stackrel{\rightharpoonup}{n}=\frac{1}{\left(1+\left(\partial_{x} h(x)\right)^{2}\right)^{1 / 2}}\binom{-\partial_{x} h(x)}{1}
$$

pf) $\stackrel{\rightharpoonup}{n} \perp\binom{1}{\partial_{x} h(x)}\left(=\right.$ tangent vector to $\left.\gamma_{h}\right)$ and $|\vec{n}|=1$.

- The interface growth to the direction \vec{n} is equivalent to the growth of the height function h to the vertical direction \vec{m}, where

$$
\stackrel{\rightharpoonup}{m}=\binom{0}{\left(1+\left(\partial_{x} h(x)\right)^{2}\right)^{1 / 2}}
$$

pf) We can check $(\stackrel{\rightharpoonup}{m}-\stackrel{\rightharpoonup}{n}) \perp \stackrel{\rightharpoonup}{n}$

- The curvature of the curve $\gamma_{h}=\{y=h(x)\}$ at (x, y) is given by

$$
\kappa=\frac{\partial_{x}^{2} h(x)}{\left(1+\left(\partial_{x} h(x)\right)^{2}\right)^{3 / 2}} .
$$

- Summarizing these observations, the interface growing equation $V=\kappa+A$ can be written as

$$
\partial_{t} h=\left\{\frac{\partial_{x}^{2} h}{\left(1+\left(\partial_{x} h\right)^{2}\right)^{3 / 2}}+A\right\}\left(1+\left(\partial_{x} h\right)^{2}\right)^{1 / 2}
$$

i.e. we obtain (3):

$$
\partial_{t} h=\frac{\partial_{x}^{2} h}{1+\left(\partial_{x} h\right)^{2}}+A\left(1+\left(\partial_{x} h\right)^{2}\right)^{1 / 2}
$$

for the height function $h=h(t, x)$.

- If we consider $\tilde{h}:=h-A t$ instead of h by subtracting the constant growth factor $A t$ and write h for \tilde{h} again, we obtain that

$$
\begin{aligned}
\partial_{t} h & =\frac{\partial_{x}^{2} h}{1+\left(\partial_{x} h\right)^{2}}+A\left\{\left(1+\left(\partial_{x} h\right)^{2}\right)^{1 / 2}-1\right\} \\
& \simeq \partial_{x}^{2} h+\frac{A}{2}\left(\partial_{x} h\right)^{2},
\end{aligned}
$$

i.e.

$$
\partial_{t} h=\partial_{x}^{2} h+\frac{A}{2}\left(\partial_{x} h\right)^{2},
$$

at least if $\left|\partial_{x} h\right|$ is small, i.e., if we take the leading effect of this equation.

- Note that $u:=\partial_{x} h$ is a solution of (viscous) Burgers equation:

$$
\partial_{t} u=\partial_{x}^{2} u+\frac{A}{2} \partial_{x} u^{2} .
$$

- Kardar-Parisi-Zhang equation (KPZ, 1986) is obtained by taking the fluctuation effect due to space-time independent noise $\dot{W}(t, x)$ into account:

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\dot{W}(t, x) .
$$

- Here $h=h(t, x, \omega)$ and $\dot{W}(t, x)=\dot{W}(t, x, \omega)$ is the space-time Gaussian white noise defined on a certain probability space (Ω, \mathcal{F}, P) with mean 0 and covariance structure

$$
E[\dot{W}(t, x) \dot{W}(s, y)]=\delta(x-y) \delta(t-s) .
$$

- We took $A=1$ and put $\frac{1}{2}$ in front of $\partial_{x}^{2} h$.
- Only leading terms are taken in the equation.
- This simplification is essential in view of the scaling property or universality related to the KPZ equation.

[^0]3. Reason for KPZ equation to attract a lot of attention

- $\frac{1}{3}$-power law (instead of $\frac{1}{2}$-law in usual CLT): Fluctuation of height function at a single point $x=0$:

$$
h(t, 0) \asymp c_{1} t+c_{2} t^{\frac{1}{3}} \zeta_{T W},
$$

in particular, $\operatorname{Var}(h(t, 0))=O\left(t^{\frac{2}{3}}\right)$, as $t \rightarrow \infty$, i. e. the fluctuations of $h(t, 0)$ are of order $t^{\frac{1}{3}}$. Subdiffusive behavior different from CLT (=diffusive behavior).

- The limit distribution of $h(t, 0)$ under scaling is given by the so-called Tracy-Widom distribution $\zeta_{T W}$ (different depending on initial distributions). (instead of Gaussian distribution in CLT)
- KPZ universality class, 1:2:3 scaling, KPZ fixed point
- Integrable Probability
- Singular ill-posed SPDEs:
- Hairer: Regularity structures, KPZ equation, dynamic $P(\phi)_{d}$-model, Parabolic Anderson model
- Gubinelli-Imkeller-Perkowski: Paracontrolled calculus (harmonic analytic method)
- The solution map is continuous in " \dot{W}^{ε} and their (finitely many) polynomials".
- Renormalization is required (called subcritical case).
- Microscopic interacting particle systems
- Bertini-Giacomin (1997) was the first to this direction.
- This is one of main purposes of this course.

4. III-posedness, Renormalization

- Nonlinearity and roughness of noise conflict with each other.
- $\dot{W}(t, x) \in C^{-\frac{d+1}{2}-}:=\bigcap_{\delta>0} C^{-\frac{d+1}{2}-\delta}$ a.s. if $x \in \mathbb{T}^{d}$ or \mathbb{R}^{d}.
(Construction will be discussed later \rightarrow Lecture No 2).
- C^{α} : (Hölder-)Besov space with exponent $\alpha \in \mathbb{R}$.
- The linear SPDE $(d=1)$: (Schauder effect)

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\dot{W}(t, x), \quad x \in \mathbb{T}
$$

obtained by dropping the nonlinear term has a solution $h \in C^{\frac{1}{4}-, \frac{1}{2}-}([0, \infty) \times \mathbb{T}):=\bigcap_{\delta>0} C^{\frac{1}{4}-\delta, \frac{1}{2}-\delta}([0, \infty) \times \mathbb{T})$ a.s.
(This will be discussed later \rightarrow Lecture No 2).

- Therefore, no way to define the nonlinear term $\left(\partial_{x} h\right)^{2}$ in (1) in a usual sense.
- Actually, it requires a renormalization. The following Renormalized KPZ equation with compensator $\delta_{x}(x)(=+\infty)$ would have a meaning (cf. Cole-Hopf solution):

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\dot{W}(t, x) .
$$

5. Cole-Hopf solution, Multiplicative linear stochastic heat equation, Itô's formula

- Recall classical Cole-Hopf (Hopf-Cole) transformation: Let u be a solution of viscous Burgers equation:

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+\frac{1}{2} \partial_{x} u^{2}+\partial_{x} \zeta(t, x)
$$

with smooth ζ. Then, $Z(t, x):=e^{\int_{-\infty}^{x} u(t, y) d y}$ solves the linear heat equation

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \zeta
$$

- In fact,

$$
\begin{aligned}
\partial_{t} Z & =Z \cdot \int_{-\infty}^{x} \partial_{t} u(t, y) d y \\
& =Z \cdot\left(\frac{1}{2} \partial_{x} u+\frac{1}{2} u^{2}+\zeta\right),
\end{aligned}
$$

while

$$
\begin{aligned}
\partial_{x}^{2} Z & =\partial_{x}(u Z)=\partial_{x} u \cdot Z+u \cdot \partial_{x} Z \\
& =\partial_{x} u \cdot Z+u^{2} \cdot Z
\end{aligned}
$$

- This leads to the above heat equation for Z.
- Motivated by this and regarding $u=\partial_{x} h$, consider the (multiplicative) linear stochastic heat equation (SHE) for $Z=Z(t, x, \omega):$

$$
\begin{equation*}
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}(t, x), \quad x \in \mathbb{R}, \tag{4}
\end{equation*}
$$

with a multiplicative noise (defined in Itô's sense).

- The solution $Z(t)$ of (4) can be defined in a generalized functions' sense or in a mild form (Duhamel's formula):
$Z(t, x)=\int_{\mathbb{R}} p(t, x, y) Z(0, y) d y+\int_{0}^{t} \int_{\mathbb{R}} p(t-s, x, y) Z(s, y) d W(s, y)$,
where $p(t, x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-(y-x)^{2} /(2 t)}$ is the heat kernel.
- (4) in Itô's sense is well-posed (\rightarrow see next page)
- SHE (4) defined in Stratonovich sense:

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \circ \dot{W}(t, x)
$$

is ill-posed. (\rightarrow see below)

- These two notions of solutions (in generalized functions or mild) are equivalent, and ${ }^{\exists}$ unique solution s.t. $Z(t) \in C\left([0, \infty), \mathcal{C}_{\text {tem }}\right)$ a.s., where

$$
\begin{aligned}
\mathcal{C}_{\text {tem }} & =\left\{Z \in C(\mathbb{R}, \mathbb{R}) ;\|Z\|_{r}<\infty,{ }^{\forall} r>0\right\} \\
\|Z\|_{r} & =\sup _{x \in \mathbb{R}} e^{-r|x|}|Z(x)|
\end{aligned}
$$

- (Strong comparison) If $Z(0, x) \geq 0$ for ${ }^{\forall} x \in \mathbb{R}$ and $Z(0, x)>0$ for ${ }^{\exists} x \in \mathbb{R}$, then $Z(t) \in C\left((0, \infty), \mathcal{C}_{+}\right)$a.s., where $\mathcal{C}_{+}=C(\mathbb{R},(0, \infty))$.
- Therefore, we can define the Cole-Hopf transformation:

$$
\begin{equation*}
h(t, x):=\log Z(t, x) \tag{5}
\end{equation*}
$$

Heuristic derivation of the KPZ eq (with renormalization factor $\delta_{x}(x)$) from SHE (4) under the Cole-Hopf transformation (5):

- (Finite-dimensional) Itô's formula:

$$
d f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) d X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right)\left(d X_{t}\right)^{2}
$$

for example, for $X_{t}=B_{t},\left(d B_{t}\right)^{2}=d t$.

- In infinite-dimensional setting,

$$
d W(t, x) d W(t, y)=\delta(x-y) d t\left(=\delta_{x}(y) d t\right)
$$

- By Itô's formula, taking $f(z)=\log z$ under the C-H transformation (5), we have

$$
d h(t, x)=f^{\prime}(Z(t, x)) d Z(t, x)+\frac{1}{2} f^{\prime \prime}(Z(t, x))(d Z(t, x))^{2} .
$$

- Note $f^{\prime}(z)=(\log z)^{\prime}=z^{-1}, f^{\prime \prime}(z)=(\log z)^{\prime \prime}=-z^{-2}$.
- Note also from SHE (4),

$$
(d Z(t, x))^{2}=(Z(t, x) d W(t, x))^{2}=Z^{2}(t, x) \delta_{x}(x) d t .
$$

- Therefore, writing $\partial_{t} h$ for $\frac{d h(t, x)}{d t}$, we obtain

$$
\begin{align*}
\partial_{t} h & =Z^{-1} \partial_{t} Z-\frac{1}{2} Z^{-2} Z^{2} \delta_{x}(x) \\
& =Z^{-1}\left(\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}\right)-\frac{1}{2} \delta_{x}(x) \tag{4}\\
& =\frac{1}{2} Z^{-1} \partial_{x}^{2} Z+\dot{W}-\frac{1}{2} \delta_{x}(x)
\end{align*}
$$

- However, since $h=\log Z$, a simple computation (as we already saw for $u=\partial_{x} h$) shows

$$
Z^{-1} \partial_{x}^{2} Z=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2} \quad\left(=\partial_{x} u+u^{2}\right)
$$

- This leads to the KPZ eq with renormalization factor:

$$
\begin{equation*}
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\dot{W}(t, x) \tag{6}
\end{equation*}
$$

- The function $h(t, x)$ defined by (5) is meaningful and called the Cole-Hopf solution of the KPZ equation, although the equation (1) does not make sense.
- Problem: To introduce approximations for (6), in particular, well adapted to finding invariant measures. (\rightarrow F-Quastel, Lecture No 3)
- Hairer gave a meaning to (6) without bypassing SHE.
- Itô's formula for Stratonovich integral has no Itô correction term (i.e. the term with $\frac{1}{2}$). If SHE defined in Stratonovich sense were well-posed, we would obtain well-posed KPZ equation. But, this is not true.

6. KPZ equation from interacting particle systems

- One of our interests is to derive KPZ(-Burgers) equation from microscopic particle systems.
- Bertini-Giacomin (1997): Derivation of Cole-Hopf solution of KPZ equation from WASEP (weakly asymmetric simple exclusion process)
- For WASEP, Cole-Hopf transformation works even at microscopic level (Gärtner).
6.1 WASEP (weakly asymmetric simple exclusion process)
- WASEP (on \mathbb{Z}) is a collection of infinite particles on \mathbb{Z}.
- Each particle performs simple random walk with jump rates $\frac{1}{2}$ to the right and $\frac{1}{2}+\delta$ to the left, under the exclusion rule that at most one particle can occupy each site, where $\delta>0$ is a small parameter (weak asymmetry).
- Configuration space: $\mathcal{X}=\{+1,-1\}^{\mathbb{Z}}$
- $\sigma=\{\sigma(x)\}_{x \in \mathbb{Z}} \in \mathcal{X}$ and

$$
\left.\sigma(x)=\begin{array}{l}
+1 \\
-1
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\exists \text { particle at } x \\
\text { no particle at } x
\end{array}\right.
$$

- $\sigma^{x, y} \in \mathcal{X}$ denotes a new configuration after exchanging variables at x and y (i.e., if there is a particle at x and no particle at $y, \sigma^{x, y}$ is the configuration after the particle at x jumps to y. Or a particle at y jumps to x if x is vacant.)

$$
\sigma^{x, y}(z)= \begin{cases}\sigma(y), & \text { if } z=x \\ \sigma(x), & \text { if } z=y \\ \sigma(z), & \text { otherwise }\end{cases}
$$

- (Infinitesimal) rate of transition $\sigma \mapsto \sigma^{z, z+1}$, when the whole configuration is σ, is given by

$$
C_{z, z+1}(\sigma)=\frac{1}{2} 1_{\{\sigma(z)=1, \sigma(z+1)=-1\}}+\left(\frac{1}{2}+\delta\right) 1_{\{\sigma(z)=-1, \sigma(z+1)=1\}} .
$$

- Generator: For a function f on \mathcal{X},

$$
L f(\sigma)=\sum_{z \in \mathbb{Z}} c_{z, z+1}(\sigma)\left\{f\left(\sigma^{z, z+1}\right)-f(\sigma)\right\} .
$$

- The rate $c_{z, z+1}$ can be decomposed as follows.
- The rate that a particle makes a jump:

$$
\lambda=1+\delta\left(=\frac{1}{2}+\left(\frac{1}{2}+\delta\right)\right)
$$

- When a jump occurs,

$$
\begin{array}{ll}
p_{+}=\frac{\frac{1}{2}}{1+\delta} & : \\
p_{-}=\frac{1}{2}+\delta \\
1+\delta & \text { probability of jump to the right } \\
\text { probability of jump to the left }
\end{array}
$$

Note that $p_{+}+p_{-}=1$ (i.e., $p_{ \pm}$is a probability), by normalizing $c_{z, z+1}$ by λ.
6.2 Construction of interacting particle systems (in general)

- Particle system is a continuous-time (jump) Markov process $\sigma_{t} \equiv \sigma_{t}(\omega)$ on a configuration space \mathcal{X} of particles.
- Once infinitesimal rate $c(\sigma)$ governing the random motion of particles is given, one can construct σ_{t} as follows.
- [Distributional construction]
- $c(\sigma)$ determines the generator of Markov process L
- We can construct corresponding semigroup $e^{t L}$ on $C(\mathcal{X})$.
- By Markov property, $e^{t L}$ determines finite-dimensional distributions (joint distributions of Markov process at finitely many times).
- By Kolmogorov's extension theorem+regularization of paths, this determines the distribution of the Markov process on the path space $D([0, \infty), \mathcal{X})$, which denotes the Skorohod space allowing jumps of functions.

Liggett, Interacting Particle Systems, Springer, 1985.

- [Pathwise construction]
- Each particle has its own "bell". Bells are independent and ring according to the exponential holding time:

$$
P(T>t)=e^{-\lambda t}, \quad t \geq 0, \lambda>0
$$

Since $E[T]=\frac{1}{\lambda}$, "large λ " means that the bell rings quickly. We write $T \stackrel{\text { d }}{=} \exp (\lambda)$.

- λ for each particle is determined from infinitesimal rate $c(\sigma)$. (For WASEP, $\lambda=1+\delta$)
- When first bell rings, the corresponding particle makes a jump to a place chosen by certain probability $\{p\}$. (For WASEP, $\left\{p_{ \pm}\right\}$)
- After this jump, whole system refreshes with all bells, and repeats the procedure.
- We usually consider infinite particle system, and this requires careful construction of the system.
6.3 Hydrodynamic limit (LLN)
- WASEP $\sigma_{t}=\left(\sigma_{t}(x)\right)_{x \in \mathbb{Z}}$ is constructed by the above recipe from $c_{z, z+1}(\sigma)$ with weak asymmetry δ.
- We first study the hydrodynamic limit (HDL) for the WASEP σ_{t} taking $\delta=\varepsilon$, where ε is the ratio of microscopic/macroscopic spatial sizes.
- As we will see, scalings in δ are different for HDL/KPZ.
- Consider the macroscopic empirical measure of σ_{t} defined by small-mass and space-time-diffusive scaling:

$$
X_{t}(d u)=\varepsilon \sum_{x \in \mathbb{Z}} \sigma_{\varepsilon^{-2} t}(x) \delta_{\varepsilon x}(d u), \quad u \in \mathbb{R}
$$

or equivalently, for a test function $\varphi \in C_{0}^{\infty}(\mathbb{R})$,

$$
\left\langle X_{t}, \varphi\right\rangle=\varepsilon \sum_{x \in \mathbb{Z}} \sigma_{\varepsilon^{-2} t}(x) \varphi(\varepsilon x)
$$

Theorem 1

$$
X_{t}(d u) \underset{\varepsilon \downarrow 0}{\longrightarrow} \alpha(t, u) d u \quad \text { (in prob) }
$$

where $\alpha(t, u)$ is a solution of viscous Burgers equation:

$$
\partial_{t} \alpha=\frac{1}{2} \partial_{u}^{2} \alpha+\frac{1}{2} \partial_{u}\left(1-\alpha^{2}\right)
$$

If $\alpha=\partial_{u} m$, the equation for m is

$$
\partial_{t} m=\frac{1}{2} \partial_{u}^{2} m+\frac{1}{2}\left(1-\left(\partial_{u} m\right)^{2}\right)
$$

(KPZ type but without noise)

F-Sasada, CMP 299, 2010
F, Lectures on Random Interfaces, SpringerBriefs, 2016, Theorem 2.7 for relation to Vershik curve (introducing boundary).

Heuristic derivation of the limit equation

- To show this theorem, we use Dynkin's formula (\rightarrow Lecture No 2):

$$
\left\langle X_{t}, \varphi\right\rangle=\left\langle X_{0}, \varphi\right\rangle+\int_{0}^{t} \varepsilon^{-2} \cdot \varepsilon \sum_{x}(L \sigma)_{\varepsilon^{-2} s}(x) \varphi(\varepsilon x) d s+M_{t}^{\varepsilon}(\varphi)
$$

- ε^{-2} comes from the time change.
- The contribution of the martingale term $M_{t}^{\varepsilon}(\varphi)$ vanishes in the limit as $\varepsilon \downarrow 0$. (In Lecture No 2, we will explain martingale.)
- For the term with integral, we can compute as

$$
\begin{aligned}
\varepsilon^{-1} & \sum_{x} L \sigma(x) \varphi(\varepsilon x) \\
= & \frac{\varepsilon^{-1}}{2} \sum_{x} \sigma(x)[\{\varphi(\varepsilon(x+1))-\varphi(\varepsilon x)\}-\{\varphi(\varepsilon x)-\varphi(\varepsilon(x-1))\}] \\
& -\varepsilon^{-1} \cdot 2 \varepsilon \sum_{x} 1_{\sigma(x+1)=1, \sigma(x)=-1}\{\varphi(\varepsilon(x+1))-\varphi(\varepsilon x)\} \\
= & \frac{\varepsilon^{-1}}{2} \sum_{x} \sigma(x) \varepsilon^{2}\left(\varphi^{\prime \prime}(\varepsilon x)+O(\varepsilon)\right) \\
& -\varepsilon^{-1} \cdot 2 \varepsilon \sum_{x} 1_{\sigma(x+1)=1, \sigma(x)=-1} \varepsilon\left(\varphi^{\prime}(\varepsilon x)+O(\varepsilon)\right) .
\end{aligned}
$$

- Red ε was originally δ. Other ε 's are from the definition of X_{t}.
- Note that the RHS is now $O(1)$ in ε, though it still contains nonlinear microscopic function.
- This is called the gradient property of the model.
- From the above computation, the drift term is rewritten as

$$
\frac{1}{2}\left\langle X_{t}, \varphi^{\prime \prime}\right\rangle-\varepsilon \sum_{x} A_{x}\left(\sigma_{\varepsilon^{-2} t}\right) \varphi^{\prime}(\varepsilon x)+O(\varepsilon),
$$

where $A_{x}(\sigma)=21_{\sigma(x+1)=1, \sigma(x)=-1}$.

- By the assumption of the local equilibrium, we can expect $\sigma_{\varepsilon^{-2} t}(\cdot) \stackrel{\text { law }}{=} \nu_{\alpha(t, u)}$ asymptotically as $\varepsilon \downarrow 0$, where ν_{α} is the Bernoulli measure on $\{ \pm 1\}^{\mathbb{Z}}$ with mean $\alpha \in[-1,1]$.
- In particular, $\nu_{\alpha}(\sigma(0)=1)=\frac{\alpha+1}{2}, \nu_{\alpha}(\sigma(0)=-1)=\frac{1-\alpha}{2}$.
- Bernoulli product measures are invariant (and reversible) measures of the leading SEP of WASEP (or its symmetrization).
- Thus, by assuming local ergodicity, one can replace $A_{x}(\sigma)$ by its local average with proper α :

$$
E^{\nu_{\alpha}}\left[A_{\times}\right]=2 \cdot \frac{\alpha+1}{2} \cdot \frac{1-\alpha}{2}=\frac{1}{2}\left(1-\alpha^{2}\right) .
$$

- We obtain the HD equation (closed equation) for $\alpha(t, u)$

$$
\partial_{t} \alpha=\frac{1}{2} \alpha^{\prime \prime}+\frac{1}{2}\left(1-\alpha^{2}\right)^{\prime} .
$$

6.4 Equilibrium linear fluctuation (CLT)

- We consider the fluctuation of WASEP with asymmetry $\delta=\varepsilon$ (same as HDL) under the global equilibrium ν_{α} around its mean α :

$$
Y_{t}^{\varepsilon}(d u)=\sqrt{\varepsilon} \sum_{x \in \mathbb{Z}}\left(\sigma_{\varepsilon^{-2} t}(x)-\alpha\right) \delta_{\varepsilon x}(d u)
$$

- Non-equilibrium fluctuation: F-Sasada-Sauer-Xie, SPA 123, 2013.

Theorem 2
$Y_{t}^{\varepsilon} \rightarrow Y_{t}$ and Y_{t} is a solution of linear SPDE:

$$
\partial_{t} Y=\frac{1}{2} \partial_{u}^{2} Y-\alpha \partial_{u} Y+\sqrt{1-\alpha^{2}} \partial_{u} \dot{W}(t, u)
$$

- Heuristically, this SPDE follows by observing

$$
\begin{aligned}
& \sigma-\alpha=\sqrt{\varepsilon} Y \quad\left(\text { since } \sqrt{\varepsilon}=\frac{\varepsilon}{\sqrt{\varepsilon}} \text { in } Y_{t}^{\varepsilon}\right) \\
& E^{\nu_{\alpha+\sqrt{\varepsilon}} Y}[A]-E^{\nu_{\alpha}}[A]=\frac{1}{2}\left(1-(\alpha+\sqrt{\varepsilon} Y)^{2}\right)-\frac{1}{2}\left(1-\alpha^{2}\right) \\
& \\
& \quad \sim-\sqrt{\varepsilon} \alpha Y \quad(\rightarrow \text { fluctuation of drift term })
\end{aligned}
$$

- Noise term is the same as KPZ as we will discuss.
6.5 KPZ limit (Nonlinear fluctuation)
- We consider the fluctuation of WASEP with asymmetry $\delta=\sqrt{\varepsilon}$ under the global equilibrium ν_{α} :

$$
Y_{t}^{\varepsilon}(d u)=\sqrt{\varepsilon} \sum_{x \in \mathbb{Z}}\left(\sigma_{\varepsilon^{-2} t}(x)-\alpha\right) \delta_{\varepsilon x-c \varepsilon^{-1 / 2} t}(d u),
$$

- Fluctuation is observed under moving frame with macroscopic speed $c \varepsilon^{-1 / 2}$ (to cancel diverg. linear term).
- Choose $\boldsymbol{c}=\alpha$.

Theorem 3

$Y_{t}^{\varepsilon} \rightarrow Y_{t}$ and Y_{t} is a solution of KPZ-Burgers equation:

$$
\partial_{t} Y=\frac{1}{2} \partial_{u}^{2} Y-\frac{1}{2} \partial_{u} Y^{2}+\sqrt{1-\alpha^{2}} \partial_{u} \dot{W}(t, u) .
$$

If h_{t} is determined as $Y_{t}=\partial_{u} h_{t}$, then h_{t} satisfies the KPZ equation (more precisely, its Cole-Hopf solution)

$$
\partial_{t} h=\frac{1}{2} \partial_{u}^{2} h-\frac{1}{2}\left(\partial_{u} h\right)^{2}+\sqrt{1-\alpha^{2}} \dot{W}(t, u) .
$$

- By the similar computation to above, we have

$$
\begin{aligned}
\left\langle Y_{t}, \varphi\right\rangle= & \left\langle Y_{0}, \varphi\right\rangle+\int_{0}^{t} \varepsilon^{-2} \cdot \sqrt{\varepsilon} \sum_{x}\left(L_{\sqrt{\varepsilon}} \sigma\right)_{\varepsilon^{-2} s}(x) \varphi\left(\varepsilon x-c \varepsilon^{-1 / 2} s\right) d s \\
& -\int_{0}^{t} c \sum_{x}\left(\sigma_{\varepsilon^{-2} s}(x)-\alpha\right) \varphi^{\prime}\left(\varepsilon x-c \varepsilon^{-1 / 2} s\right) d s+M_{t}^{\varepsilon}(\varphi)
\end{aligned}
$$

where $M_{t}^{\varepsilon}(\varphi)$ is a martingale different from that in HDL (but asymptotically the same as that appears in linear fluctuation).

- For the martingale M_{t}^{ε}, under the equilibrium ν_{α},
$E\left[M_{t}^{\varepsilon}(\varphi)^{2}\right] \sim \varepsilon t\left(1-\alpha^{2}\right) \sum_{x} \varphi^{\prime}(\varepsilon x)^{2} \sim t\left(1-\alpha^{2}\right)\left\|\varphi^{\prime}\right\|_{L^{2}(\mathbb{R})}^{2}$.
$(\rightarrow$ see Lecture No 2 for quadratic variation of M)
- This means $M_{t}^{\varepsilon} \rightarrow \sqrt{1-\alpha^{2}} \partial_{u} W(t, u)$.
- $W(t, u)$ is an integral of $\dot{W}(t, u)$ in t.
- The first term in the drift is

$$
\begin{aligned}
\varepsilon^{-2} \cdot \sqrt{\varepsilon} & \sum_{x} L_{\sqrt{\varepsilon}} \sigma(x) \varphi\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right) \\
= & \varepsilon^{-2} \cdot \frac{\sqrt{\varepsilon}}{2} \sum_{x} \sigma(x) \varepsilon^{2}\left(\varphi^{\prime \prime}\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right)+O(\varepsilon)\right) \\
& -\varepsilon^{-2} \cdot \sqrt{\varepsilon} \cdot \sqrt{\varepsilon} \sum_{x} A_{x}(\sigma) \varepsilon\left(\varphi^{\prime}\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right)+O(\varepsilon)\right) .
\end{aligned}
$$

- Red $\sqrt{\varepsilon}=\delta$ originally. Other $\sqrt{\varepsilon}$ comes from that in the definition of Y_{t}^{ε}.
- The first term is $\frac{1}{2}\left\langle Y_{t}, \varphi^{\prime \prime}\right\rangle$ by noting that $\sum_{x} \alpha \Delta \varphi=0$.
- The second term (after all ε cancel) is still diverging. But, we can expect by the local ergodicity (Boltzmann-Gibbs principle= combination of local averaging due to local ergodicity and Taylor expansion)

$$
\begin{aligned}
& A_{x}(\sigma) \sim E^{\nu} \alpha_{\alpha+\sqrt{\varepsilon} \gamma_{t}\left(e x-c e^{\left.-1 / 2_{t}\right)}\right.}\left[A_{x}(\sigma)\right] \\
& =\frac{1}{2}\left(1-\left(\alpha+\sqrt{\varepsilon} Y_{t}\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right)\right)^{2}\right) \\
& =\frac{1}{2}\left(1-\alpha^{2}\right)-\alpha \sqrt{\varepsilon} Y_{t}\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right)-\frac{1}{2} \varepsilon Y_{t}^{2}\left(\varepsilon x-c \varepsilon^{-1 / 2} t\right) .
\end{aligned}
$$

- Thus, one can expect that this term behaves as

$$
\varepsilon^{-\frac{1}{2}} \alpha Y_{t}\left(\varphi^{\prime}\right)+\frac{1}{2}\left\langle Y_{t}^{2}, \varphi^{\prime}\right\rangle
$$

since $\sum_{x} \frac{1}{2}\left(1-\alpha^{2}\right) \varphi^{\prime}=0$.

- The first term cancels with the second term in the drift $\simeq-\varepsilon^{-\frac{1}{2}} c Y_{t}\left(\varphi^{\prime}\right)$ (originally from moving frame) if we choose the frame speed $c=\alpha$, and one would obtain $\frac{1}{2}\left\langle Y_{t}^{2}, \varphi^{\prime}\right\rangle$ in the limit.
- Therefore, in the limit we would have the KPZ-Burgers equation

$$
\partial_{t} Y=\frac{1}{2} \partial_{u}^{2} Y-\frac{1}{2} \partial_{u} Y^{2}+\sqrt{1-\alpha^{2}} \partial_{u} \dot{W}(t, u) .
$$

- Note: For Y, renormalization is unnecessary, since one would have $\partial_{u}\left\{\delta_{u}(u)\right\}=\partial_{u}\{$ const $\}=0$.
- The above derivation is heuristic.
- Bertini-Giacomin relied on microscopic Cole-Hopf transformation for the proof.
- Roughly, consider the process

$$
\zeta_{t}^{\varepsilon}(x):=\exp \left\{-\gamma_{\varepsilon} \sum_{y=x_{0}(t)}^{x} \sigma_{t}(y)-\lambda_{\varepsilon} t\right\}
$$

and show that ζ_{t}^{ε} converges to the solution Z_{t} of SHE in a proper scaling. $x_{0}(t)$ is a properly chosen point defined by the position of a tagged particle. See F, Lectures on Random Interfaces, p. 56 for this transformation.

- $\sum_{x_{0}(t)}^{x} \sigma(y)$ corresponds to the height process.
6.6 Other models

Derivation of scalar KPZ (-Burgers) equation

- Bertini-Giacomin (as discussed above): Derivation from WASEP (weakly asymmetric simple exclusion process), Cole-Hopf transformation (even at microscopic level).
- Goncalves-Jara, Goncalves-Jara-Sethuraman: Derivation from general WAEP with speed change of gradient type and with Bernoulli invariant measures, or from WA zero-range process (of gradient type).
- Method: 2nd order Boltzmann-Gibbs principle, martingale formulation (called energy solutions).
- Gubinelli-Perkowski: Uniqueness of stationary energy solutions (satisfying Yaglom reversibility, i.e., - (nonlinear drift term) for time reversed process).

Derivation of coupled KPZ (-Burgers) equation

- We will discuss later.

7. Quick overview of the course

1 Introduction
2 Supplementary materials
Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales
3 Invariant measures of KPZ equation (F-Quastel)
4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino)
5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman)
5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation

[^0]: Mathematically, everything is built on a probability space (Ω, \mathcal{F}, P), i.e.
 Ω is a set, \mathcal{F} is a σ-field of Ω, P is a measure on (Ω, \mathcal{F}) s.t. $P(\Omega)=1$.

