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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of Lecture No 1

Introduction to the course

1 KPZ equation

2 Heuristic derivation of KPZ equation
(following the original KPZ paper, 1986)

3 Reason for KPZ equation to attract a lot of attention

4 Ill-posedness, Renormalization

5 Cole-Hopf solution, Multiplicative linear stochastic heat
equation, Itô’s formula

6 KPZ equation from interacting particle systems (WASEP)

7 Quick overview of the course
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1. KPZ equation

▶ The KPZ (Kardar-Parisi-Zhang, 1986) equation describes
the motion of growing interface with random fluctuation.

(Takeuchi-Sano-Sasamoto-Spohn)

▶ (Right Fig) h = h(t, x) ∈ R denotes height of interface
measured from the x-axis at time t and position x .

▶ Video of combustion experiment by Laser shot:
srep00034-s2.mov, srep00034-s3.mov (Takeuchi-Sano)
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▶ KPZ is an equation for height function h(t, x):

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + Ẇ (t, x), x ∈ T (or R). (1)

where T ≡ R/Z = [0, 1).
▶ We consider in 1D on a whole line R or on a finite

interval T under periodic boundary condition.
▶ The coefficients 1

2
are not important, since we can change

them under some scaling.
▶ Ẇ (t, x) is a space-time Gaussian white noise with mean 0

and covariance structure:

E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y). (2)

▶ This means that the noise is independent if (t, x) is
different, since “Gaussian property+0-correlation” means
independence.

▶ However, Ẇ (t, x) is realized only as a generalized
function (distribution).
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2. Heuristic derivation of KPZ equation
▶ We give a derivation of KPZ equation following the

original KPZ paper 1986.
▶ Consider a motion of interface (curve) growing upward

with normal velocity:

V = κ+ A,

where κ is the (signed) curvature and A > 0 is a constant.
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▶ The interface dynamics can be described by an equation
for its height function h(t, x) assuming that the interface
in R2 is represented as a graph:

γt = {(x , y); y = h(t, x), x ∈ R} ⊂ R2.

▶ The dynamics “V = κ+ A” can be rewritten into the
following nonlinear PDE for h(t, x)

∂th =
∂2
xh

1 + (∂xh)2
+ A(1 + (∂xh)

2)1/2 (3)
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▶ Indeed, (3) can be derived as follows.

▶ First, note that the normal vector
⇀
n to the curve

γh = {(x , y); y = h(x), x ∈ R} ⊂ R2

at the point (x , y) is given by

⇀
n=

1(
1 + (∂xh(x))2

)1/2 (−∂xh(x)
1

)

pf)
⇀
n⊥

(
1

∂xh(x)

)
(= tangent vector to γh) and | ⇀

n | = 1.

▶ The interface growth to the direction
⇀
n is equivalent to

the growth of the height function h to the vertical

direction
⇀
m, where

⇀
m=

(
0(

1 + (∂xh(x))
2
)1/2)

pf) We can check (
⇀
m − ⇀

n) ⊥⇀
n
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▶ The curvature of the curve γh = {y = h(x)} at (x , y) is
given by

κ =
∂2
xh(x)(

1 + (∂xh(x))2
)3/2 .

▶ Summarizing these observations, the interface growing
equation V = κ+ A can be written as

∂th =

{
∂2
xh

(1 + (∂xh)2)3/2
+ A

}
(1 + (∂xh)

2)1/2,

i.e. we obtain (3):

∂th =
∂2
xh

1 + (∂xh)2
+ A(1 + (∂xh)

2)1/2,

for the height function h = h(t, x).
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▶ If we consider h̃ := h− At instead of h by subtracting the
constant growth factor At and write h for h̃ again, we
obtain that

∂th =
∂2
xh

1 + (∂xh)2
+ A

{
(1 + (∂xh)

2)1/2 − 1
}

≃ ∂2
xh +

A
2
(∂xh)

2,

i.e.

∂th= ∂2
xh +

A
2
(∂xh)

2,

at least if |∂xh| is small, i.e., if we take the leading effect
of this equation.

▶ Note that u := ∂xh is a solution of (viscous) Burgers
equation:

∂tu = ∂2
xu + A

2
∂xu

2.
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▶ Kardar-Parisi-Zhang equation (KPZ, 1986) is obtained by
taking the fluctuation effect due to space-time
independent noise Ẇ (t, x) into account:

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + Ẇ (t, x).

▶ Here h = h(t, x , ω) and Ẇ (t, x) = Ẇ (t, x , ω) is the
space-time Gaussian white noise defined on a certain
probability space (Ω,F ,P) with mean 0 and covariance
structure

E [Ẇ (t, x)Ẇ (s, y)] = δ(x − y)δ(t − s).

▶ We took A = 1 and put 1
2
in front of ∂2

xh.
▶ Only leading terms are taken in the equation.
▶ This simplification is essential in view of the scaling

property or universality related to the KPZ equation.

Mathematically, everything is built on a probability space (Ω,F ,P), i.e.
Ω is a set, F is a σ-field of Ω, P is a measure on (Ω,F) s.t. P(Ω) = 1.
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3. Reason for KPZ equation to attract a lot of attention

▶ 1
3
-power law (instead of 1

2
-law in usual CLT): Fluctuation

of height function at a single point x = 0:

h(t, 0) ≍ c1t + c2t
1
3 ζTW ,

in particular, Var(h(t, 0)) = O(t
2
3 ), as t → ∞, i. e. the

fluctuations of h(t, 0) are of order t
1
3 . Subdiffusive

behavior different from CLT (=diffusive behavior).

▶ The limit distribution of h(t, 0) under scaling is given by
the so-called Tracy-Widom distribution ζTW (different
depending on initial distributions). (instead of Gaussian
distribution in CLT)

▶ KPZ universality class, 1:2:3 scaling, KPZ fixed point

▶ Integrable Probability

12 / 40



▶ Singular ill-posed SPDEs:

- Hairer: Regularity structures, KPZ equation, dynamic
P(ϕ)d -model, Parabolic Anderson model

- Gubinelli-Imkeller-Perkowski: Paracontrolled calculus
(harmonic analytic method)

- The solution map is continuous in “Ẇ ε and their
(finitely many) polynomials”.

- Renormalization is required (called subcritical case).

▶ Microscopic interacting particle systems

- Bertini-Giacomin (1997) was the first to this direction.
- This is one of main purposes of this course.
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4. Ill-posedness, Renormalization

▶ Nonlinearity and roughness ofnoise conflictwith eachother.
▶ Ẇ (t, x) ∈ C− d+1

2
− := ∩

δ>0
C− d+1

2
−δ a.s. if x ∈ Td or Rd .

(Construction will be discussed later → Lecture No 2).
▶ Cα: (Hölder-)Besov space with exponent α ∈ R.
▶ The linear SPDE (d = 1): (Schauder effect)

∂th = 1
2
∂2
xh + Ẇ (t, x), x ∈ T

obtained by dropping the nonlinear term has a solution
h ∈ C

1
4
−, 1

2
−([0,∞)× T) := ∩

δ>0
C

1
4
−δ, 1

2
−δ([0,∞)× T) a.s.

(This will be discussed later → Lecture No 2).
▶ Therefore, no way to define the nonlinear term (∂xh)

2 in
(1) in a usual sense.

▶ Actually, it requires a renormalization. The following
Renormalized KPZ equation with compensator
δx(x) (= +∞) would have a meaning (cf. Cole-Hopf
solution):

∂th = 1
2∂

2
xh + 1

2{(∂xh)
2 − δx(x)}+ Ẇ (t, x).
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5. Cole-Hopf solution, Multiplicative linear stochastic heat
equation, Itô’s formula

▶ Recall classical Cole-Hopf (Hopf-Cole) transformation:
Let u be a solution of viscous Burgers equation:

∂tu = 1
2
∂2
xu + 1

2
∂xu

2 + ∂xζ(t, x),

with smooth ζ. Then, Z (t, x) := e
∫ x
−∞ u(t,y)dy solves

the linear heat equation

∂tZ = 1
2
∂2
xZ + Zζ.

▶ In fact,
∂tZ = Z ·

∫ x

−∞
∂tu(t, y)dy

= Z · ( 12∂xu + 1
2u

2 + ζ),

while

∂2
xZ = ∂x(uZ ) = ∂xu · Z + u · ∂xZ

= ∂xu · Z + u2 · Z .

▶ This leads to the above heat equation for Z .
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▶ Motivated by this and regarding u = ∂xh, consider the
(multiplicative) linear stochastic heat equation (SHE) for
Z = Z (t, x , ω):

∂tZ = 1
2∂

2
xZ + ZẆ (t, x), x ∈ R, (4)

with a multiplicative noise (defined in Itô’s sense).
▶ The solution Z (t) of (4) can be defined in a generalized

functions’ sense or in a mild form (Duhamel’s formula):

Z (t, x) =

∫
R
p(t, x , y)Z (0, y)dy+

∫ t

0

∫
R
p(t−s, x , y)Z (s, y)dW (s, y),

where p(t, x , y) = 1√
2πt

e−(y−x)2/(2t) is the heat kernel.

▶ (4) in Itô’s sense is well-posed (→ see next page)

▶ SHE (4) defined in Stratonovich sense:

∂tZ = 1
2∂

2
xZ + Z ◦ Ẇ (t, x)

is ill-posed. (→ see below)
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▶ These two notions of solutions (in generalized functions
or mild) are equivalent, and ∃unique solution s.t.
Z (t) ∈ C ([0,∞), Ctem) a.s., where

Ctem = {Z ∈ C (R,R); ∥Z∥r < ∞,∀ r > 0},
∥Z∥r = sup

x∈R
e−r |x ||Z (x)|.

▶ (Strong comparison) If Z (0, x) ≥ 0 for ∀x ∈ R and
Z (0, x) > 0 for ∃x ∈ R, then Z (t) ∈ C ((0,∞), C+) a.s.,
where C+ = C

(
R, (0,∞)

)
.

▶ Therefore, we can define the Cole-Hopf transformation:

h(t, x) := log Z (t, x). (5)
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Heuristic derivation of the KPZ eq (with renormalization factor
δx(x)) from SHE (4) under the Cole-Hopf transformation (5):
▶ (Finite-dimensional) Itô’s formula:

df (Xt) = f ′(Xt)dXt +
1
2
f ′′(Xt)(dXt)

2

for example, for Xt = Bt , (dBt)
2 = dt.

▶ In infinite-dimensional setting,

dW (t, x)dW (t, y) = δ(x − y)dt (= δx(y)dt)

▶ By Itô’s formula, taking f (z) = log z under the C-H
transformation (5), we have

dh(t, x) = f ′(Z (t, x))dZ (t, x) + 1
2
f ′′(Z (t, x))(dZ (t, x))2.

▶ Note f ′(z) = (log z)′ = z−1, f ′′(z) = (log z)′′ = −z−2.
▶ Note also from SHE (4),

(dZ (t, x))2 = (Z (t, x)dW (t, x))2 = Z 2(t, x)δx(x)dt.
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▶ Therefore, writing ∂th for dh(t,x)
dt

, we obtain

∂th = Z−1∂tZ − 1
2
Z−2Z 2δx(x)

= Z−1
(

1
2
∂2
xZ + ZẆ

)
− 1

2
δx(x) (by SHE (4))

= 1
2
Z−1∂2

xZ + Ẇ − 1
2
δx(x).

▶ However, since h = log Z , a simple computation (as we
already saw for u = ∂xh) shows

Z−1∂2
xZ = ∂2

xh + (∂xh)
2 (= ∂xu + u2).

▶ This leads to the KPZ eq with renormalization factor:

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x). (6)
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▶ The function h(t, x) defined by (5) is meaningful and
called the Cole-Hopf solution of the KPZ equation,
although the equation (1) does not make sense.

▶ Problem: To introduce approximations for (6), in
particular, well adapted to finding invariant measures.
(→ F-Quastel, Lecture No 3)

▶ Hairer gave a meaning to (6) without bypassing SHE.

▶ Itô’s formula for Stratonovich integral has no Itô
correction term (i.e. the term with 1

2
). If SHE defined in

Stratonovich sense were well-posed, we would obtain
well-posed KPZ equation. But, this is not true.
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6. KPZ equation from interacting particle systems

▶ One of our interests is to derive KPZ(-Burgers) equation
from microscopic particle systems.

▶ Bertini-Giacomin (1997): Derivation of Cole-Hopf
solution of KPZ equation from WASEP (weakly
asymmetric simple exclusion process)

▶ For WASEP, Cole-Hopf transformation works even at
microscopic level (Gärtner).
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6.1 WASEP (weakly asymmetric simple exclusion process)

▶ WASEP (on Z) is a collection of infinite particles on Z.
▶ Each particle performs simple random walk with jump

rates 1
2
to the right and 1

2
+ δ to the left, under the

exclusion rule that at most one particle can occupy each
site, where δ > 0 is a small parameter (weak asymmetry).

▶ Configuration space: X = {+1,−1}Z
▶ σ = {σ(x)}x∈Z ∈ X and

σ(x) =
+1

−1

}
⇐⇒

{
∃ particle at x

no particle at x
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▶ σx ,y ∈ X denotes a new configuration after exchanging
variables at x and y (i.e., if there is a particle at x and no
particle at y , σx ,y is the configuration after the particle at
x jumps to y . Or a particle at y jumps to x if x is
vacant.)

σx ,y (z) =


σ(y), if z = x ,

σ(x), if z = y ,

σ(z), otherwise.

▶ (Infinitesimal) rate of transition σ 7→ σz,z+1, when the
whole configuration is σ, is given by

cz,z+1(σ) =
1
2
1{σ(z)=1,σ(z+1)=−1}+(1

2
+δ)1{σ(z)=−1,σ(z+1)=1}.
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▶ Generator: For a function f on X ,

Lf (σ) =
∑
z∈Z

cz,z+1(σ){f (σz,z+1)− f (σ)}.

▶ The rate cz,z+1 can be decomposed as follows.

▶ The rate that a particle makes a jump:
λ = 1 + δ

(
= 1

2
+ (1

2
+ δ)

)
▶ When a jump occurs,

p+ =
1
2

1+δ
: probability of jump to the right

p− =
1
2
+δ

1+δ
: probability of jump to the left

Note that p+ + p− = 1 (i.e., p± is a probability), by
normalizing cz,z+1 by λ.

24 / 40



6.2 Construction of interacting particle systems (in general)

▶ Particle system is a continuous-time (jump) Markov
process σt ≡ σt(ω) on a configuration space X of
particles.

▶ Once infinitesimal rate c(σ) governing the random motion
of particles is given, one can construct σt as follows.

▶ [Distributional construction]
▶ c(σ) determines the generator of Markov process L
▶ We can construct corresponding semigroup etL on C (X ).
▶ By Markov property, etL determines finite-dimensional

distributions (joint distributions of Markov process at
finitely many times).

▶ By Kolmogorov’s extension theorem+regularization of
paths, this determines the distribution of the Markov
process on the path space D([0,∞),X ), which denotes
the Skorohod space allowing jumps of functions.

Liggett, Interacting Particle Systems, Springer, 1985.
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▶ [Pathwise construction]
▶ Each particle has its own “bell”. Bells are independent

and ring according to the exponential holding time:

P(T > t) = e−λt , t ≥ 0, λ > 0.

Since E [T ] = 1
λ , “large λ” means that the bell rings

quickly. We write T
d
= exp(λ).

▶ λ for each particle is determined from infinitesimal rate
c(σ). (For WASEP, λ = 1 + δ)

▶ When first bell rings, the corresponding particle makes a
jump to a place chosen by certain probability {p}.
(For WASEP, {p±})

▶ After this jump, whole system refreshes with all bells,
and repeats the procedure.

▶ We usually consider infinite particle system, and this
requires careful construction of the system.
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6.3 Hydrodynamic limit (LLN)

▶ WASEP σt = (σt(x))x∈Z is constructed by the above
recipe from cz,z+1(σ) with weak asymmetry δ.

▶ We first study the hydrodynamic limit (HDL) for the
WASEP σt taking δ = ε, where ε is the ratio of
microscopic/macroscopic spatial sizes.

▶ As we will see, scalings in δ are different for HDL/KPZ.

▶ Consider the macroscopic empirical measure of σt defined
by small-mass and space-time-diffusive scaling:

Xt(du) = ε
∑
x∈Z

σε−2t(x)δεx(du), u ∈ R,

or equivalently, for a test function φ ∈ C∞
0 (R),

⟨Xt , φ⟩ = ε
∑
x∈Z

σε−2t(x)φ(εx).
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Theorem 1

Xt(du) −→
ε↓0

α(t, u)du (in prob),

where α(t, u) is a solution of viscous Burgers equation:

∂tα = 1
2
∂2
uα + 1

2
∂u(1− α2).

If α = ∂um, the equation for m is

∂tm = 1
2
∂2
um + 1

2
(1− (∂um)2).

(KPZ type but without noise)

F-Sasada, CMP 299, 2010
F, Lectures on Random Interfaces, SpringerBriefs, 2016, Theorem 2.7
for relation to Vershik curve (introducing boundary).
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Heuristic derivation of the limit equation

▶ To show this theorem, we use Dynkin’s formula
(→ Lecture No 2):

⟨Xt , φ⟩ = ⟨X0, φ⟩+
∫ t

0

ε−2·ε
∑
x

(Lσ)ε−2s(x)φ(εx)ds+Mε
t (φ).

▶ ε−2 comes from the time change.

▶ The contribution of the martingale term Mε
t (φ) vanishes

in the limit as ε ↓ 0. (In Lecture No 2, we will explain
martingale.)
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▶ For the term with integral, we can compute as

ε−1
∑
x

Lσ(x)φ(εx)

=
ε−1

2

∑
x

σ(x)
[{

φ(ε(x + 1))− φ(εx)
}
−
{
φ(εx)− φ(ε(x − 1))

}]
− ε−1 · 2ε

∑
x

1σ(x+1)=1,σ(x)=−1

{
φ(ε(x + 1))− φ(εx)

}
=
ε−1

2

∑
x

σ(x) ε2
(
φ′′(εx) + O(ε)

)
− ε−1 · 2ε

∑
x

1σ(x+1)=1,σ(x)=−1 ε
(
φ′(εx) + O(ε)

)
.

▶ Red ε was originally δ. Other ε’s are from the definition
of Xt .

▶ Note that the RHS is now O(1) in ε, though it still
contains nonlinear microscopic function.

▶ This is called the gradient property of the model.
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▶ From the above computation, the drift term is rewritten
as

1
2
⟨Xt , φ

′′⟩ − ε
∑
x

Ax(σε−2t)φ
′(εx) + O(ε),

where Ax(σ) = 21σ(x+1)=1,σ(x)=−1.
▶ By the assumption of the local equilibrium, we can expect

σε−2t(·)
law
= να(t,u) asymptotically as ε ↓ 0, where να is the

Bernoulli measure on {±1}Z with mean α ∈ [−1, 1].
▶ In particular, να(σ(0) = 1) = α+1

2
, να(σ(0) = −1) = 1−α

2
.

▶ Bernoulli product measures are invariant (and reversible)
measures of the leading SEP of WASEP (or its
symmetrization).

▶ Thus, by assuming local ergodicity, one can replace Ax(σ)
by its local average with proper α:

E να[Ax ] = 2 · α+1
2

· 1−α
2

= 1
2
(1− α2).

▶ We obtain the HD equation (closed equation) for α(t, u)

∂tα = 1
2
α′′ + 1

2
(1− α2)′.
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6.4 Equilibrium linear fluctuation (CLT)

▶ We consider the fluctuation of WASEP with asymmetry
δ = ε (same as HDL) under the global equilibrium να
around its mean α:

Y ε
t (du) =

√
ε
∑
x∈Z

(
σε−2t(x)− α

)
δεx(du),

▶ Non-equilibrium fluctuation: F-Sasada-Sauer-Xie, SPA
123, 2013.
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Theorem 2
Y ε
t → Yt and Yt is a solution of linear SPDE:

∂tY = 1
2
∂2
uY − α∂uY +

√
1− α2∂uẆ (t, u)

▶ Heuristically, this SPDE follows by observing

σ − α =
√
εY (since

√
ε = ε√

ε
in Y ε

t )

E να+
√
εY [A]− E να[A] = 1

2
(1− (α +

√
εY )2)− 1

2
(1− α2)

∼ −
√
εαY (→ fluctuation of drift term)

▶ Noise term is the same as KPZ as we will discuss.

33 / 40



6.5 KPZ limit (Nonlinear fluctuation)
▶ We consider the fluctuation of WASEP with asymmetry

δ =
√
ε under the global equilibrium να:

Y ε
t (du) =

√
ε
∑
x∈Z

(
σε−2t(x)− α

)
δεx−cε−1/2t(du),

▶ Fluctuation is observed under moving frame with
macroscopic speed cε−1/2 (to cancel diverg. linear term).

▶ Choose c = α.

Theorem 3
Y ε
t → Yt and Yt is a solution of KPZ-Burgers equation:

∂tY = 1
2
∂2
uY − 1

2
∂uY

2 +
√
1− α2∂uẆ (t, u).

If ht is determined as Yt = ∂uht , then ht satisfies the KPZ
equation (more precisely, its Cole-Hopf solution)

∂th = 1
2
∂2
uh − 1

2
(∂uh)

2 +
√
1− α2Ẇ (t, u).
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▶ By the similar computation to above, we have

⟨Yt , φ⟩ =⟨Y0, φ⟩+
∫ t

0

ε−2 ·
√
ε
∑
x

(L√εσ)ε−2s(x)φ(εx − cε−1/2s)ds

−
∫ t

0

c
∑
x

(
σε−2s(x)− α

)
φ′(εx − cε−1/2s)ds +Mε

t (φ),

where Mε
t (φ) is a martingale different from that in HDL

(but asymptotically the same as that appears in linear
fluctuation).

▶ For the martingale Mε
t , under the equilibrium να,

E [Mε
t (φ)

2] ∼ εt(1− α2)
∑
x

φ′(εx)2 ∼ t(1− α2)∥φ′∥2L2(R).

(→ see Lecture No 2 for quadratic variation of M)

▶ This means Mε
t →

√
1− α2∂uW (t, u).

▶ W (t, u) is an integral of Ẇ (t, u) in t.
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▶ The first term in the drift is

ε−2 ·
√
ε
∑
x

L√εσ(x)φ(εx − cε−1/2t)

=ε−2 ·
√
ε
2

∑
x

σ(x) ε2
(
φ′′(εx − cε−1/2t) + O(ε)

)
− ε−2 ·

√
ε ·

√
ε
∑
x

Ax(σ) ε
(
φ′(εx − cε−1/2t) + O(ε)

)
.

▶ Red
√
ε = δ originally. Other

√
ε comes from that in the

definition of Y ε
t .

▶ The first term is 1
2
⟨Yt , φ

′′⟩ by noting that
∑

x α∆φ = 0.
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▶ The second term (after all ε cancel) is still diverging.
But, we can expect by the local ergodicity
(Boltzmann-Gibbs principle= combination of local
averaging due to local ergodicity and Taylor expansion)

Ax(σ) ∼ E
ν
α+

√
εYt (εx−cε−1/2t)

[
Ax(σ)

]
= 1

2

(
1− (α+

√
εYt(εx − cε−1/2t))2

)
= 1

2 (1− α2)− α
√
εYt(εx − cε−1/2t)− 1

2εY
2
t (εx − cε−1/2t).

▶ Thus, one can expect that this term behaves as

ε−
1
2αYt(φ

′) + 1
2
⟨Y 2

t , φ
′⟩

since
∑

x
1
2
(1− α2)φ′ = 0.

▶ The first term cancels with the second term in the drift
≃ −ε−

1
2 cYt(φ

′) (originally from moving frame) if we
choose the frame speed c = α, and one would obtain
1
2
⟨Y 2

t , φ
′⟩ in the limit.
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▶ Therefore, in the limit we would have the KPZ-Burgers
equation

∂tY = 1
2
∂2
uY − 1

2
∂uY

2 +
√
1− α2∂uẆ (t, u).

▶ Note: For Y , renormalization is unnecessary, since one
would have ∂u{δu(u)} = ∂u{const} = 0.

▶ The above derivation is heuristic.
▶ Bertini-Giacomin relied on microscopic Cole-Hopf

transformation for the proof.
▶ Roughly, consider the process

ζεt (x) := exp
{
− γε

x∑
y=x0(t)

σt(y)− λεt
}

and show that ζεt converges to the solution Zt of SHE in
a proper scaling. x0(t) is a properly chosen point defined
by the position of a tagged particle. See F, Lectures on
Random Interfaces, p.56 for this transformation.

▶ ∑x
x0(t)

σ(y) corresponds to the height process.
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6.6 Other models

Derivation of scalar KPZ (-Burgers) equation

▶ Bertini-Giacomin (as discussed above): Derivation from WASEP
(weakly asymmetric simple exclusion process), Cole-Hopf
transformation (even at microscopic level).

▶ Goncalves-Jara, Goncalves-Jara-Sethuraman: Derivation from
general WAEP with speed change of gradient type and with
Bernoulli invariant measures, or from WA zero-range process
(of gradient type).

▶ Method: 2nd order Boltzmann-Gibbs principle, martingale
formulation (called energy solutions).

▶ Gubinelli-Perkowski: Uniqueness of stationary energy solutions
(satisfying Yaglom reversibility, i.e., - (nonlinear drift term) for time
reversed process).

Derivation of coupled KPZ (-Burgers) equation

▶ We will discuss later.
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7. Quick overview of the course

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman)
5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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